Misplaced Pages

Ride height: Difference between revisions

Article snapshot taken from Wikipedia with creative commons attribution-sharealike license. Give it a read and then ask your questions in the chat. We can research this topic together.
Browse history interactively← Previous editNext edit →Content deleted Content addedVisualWikitext
Revision as of 13:35, 30 June 2009 edit218.248.69.23 (talk)No edit summary← Previous edit Revision as of 14:19, 3 July 2009 edit undoAmphBot (talk | contribs)4,582 editsm robot Adding: bg, de, fi, fr, nl, ru, sv, ukNext edit →
Line 13: Line 13:


Other, simpler suspension systems, such as ] springs, offer a way of manually adjusting ride height (and often, spring stiffness) by compressing the spring ], using a threaded shaft and adjustable knob or nut. Other, simpler suspension systems, such as ] springs, offer a way of manually adjusting ride height (and often, spring stiffness) by compressing the spring ], using a threaded shaft and adjustable knob or nut.

]
]
]
]
]
]
]
]

Revision as of 14:19, 3 July 2009

This article needs additional citations for verification. Please help improve this article by adding citations to reliable sources. Unsourced material may be challenged and removed.
Find sources: "Ride height" – news · newspapers · books · scholar · JSTOR (May 2007) (Learn how and when to remove this message)

Ride height (ground clearance or simply clearance in British English) is the amount of space between the base of an automobile tire and the underside of the chassis; or, more properly, to the shortest distance between a flat, level surface, and any part of a vehicle other than those parts designed to contact the ground (such as tires, tracks, skis, etc.). Ground clearance is measured with standard vehicle equipment, and for cars, is usually given with no cargo or passengers.

Ground clearance is a critical factor in several important characteristics of a vehicle. For all vehicles, especially cars, variations in clearance represent a trade off between handling and practicality. A higher ground clearance means that the center of mass of the car is higher, which makes for less precise and more dangerous handling characteristics (most notably, the chance of rollover is higher). However, it also means that the car is more capable of being driven on roads that are not level, without the road scraping against and likely damaging the chassis and underbody. Higher ride heights will typically adversely affect aerodynamic properties. This is why sports cars typically have very low clearances, while off-road vehicles and SUVs have higher ones. Two well-known extremes of each are the Ferrari F40 and the Hummer.

For armored fighting vehicles (AFV), ground clearance presents an additional factor in a vehicle's overall performance: a lower ground clearance means that the vehicle minus the chassis is lower to the ground and thus harder to spot and harder to hit. The final design of any AFV reflects a compromise between being a smaller target on one hand, and having greater battlefield mobility on the other. Very few AFVs have top speeds at which car-like handling becomes an issue, though rollovers can and do occur. By contrast, an AFV is far more likely to need high ground clearance than a road vehicle.

Lowering a car's suspension is a common and relatively inexpensive aftermarket modification. Many people prefer the more aggressive look of a lowered body, and there is an easily realized car handling improvement from the lower center of gravity. Most passenger cars are produced such that one or two inches of lowering won't increase the probability of damage significantly. On most automobiles, ride height is modified by changing the length of the suspension springs, and is the essence of many aftermarket suspension kits supplied by manufacturers such as Eibach, and H&R, .

Self-leveling suspension systems are designed to maintain a constant ride height regardless of load. Vehicles not equipped with self-leveling will pitch down at one end when laden; this adversely affects ride, handling, and aerodynamic properties.

Some modern automobiles (such as Audi's Allroad Quattro) have adjustable suspension systems, which can vary the ride height by locating the suspension mounting points, depending on road conditions and/or the settings selected by the driver.

Other, simpler suspension systems, such as coilover springs, offer a way of manually adjusting ride height (and often, spring stiffness) by compressing the spring in situ, using a threaded shaft and adjustable knob or nut.