Revision as of 06:11, 17 July 2011 edit98.204.48.143 (talk) →Structure and Properties: typo fix← Previous edit | Revision as of 22:00, 15 November 2011 edit undo564dude (talk | contribs)Extended confirmed users3,917 edits Replaced manually entered references with {{cite}} templates, removed {{citation style}} maintenance templateNext edit → | ||
Line 56: | Line 56: | ||
==Preparation== | ==Preparation== | ||
Rhodium(II) acetate is usually prepared by the heating hydrated ] in ] (CH<sub>3</sub>COOH):<ref> |
Rhodium(II) acetate is usually prepared by the heating hydrated ] in ] (CH<sub>3</sub>COOH):<ref>{{cite doi|10.1002/9780470132449.ch16}}</ref> Rhodium(II) acetate dimer undergoes ], the replacement of the acetate group by other ]s and related groups.<ref>{{cite book |last1= Doyle|first1= M.P.|editor1-first= Iwao|editor1-last= Ojima|title= Catalytic Asymmetric Synthesis|edition= 2nd|year= 2000|publisher= Wiley|location= New York|isbn= 0471298050|chapter= Asymmetric Addition and Insertion Reactions of Catalytically-Generated Metal Carbenes|}}</ref> | ||
:Rh<sub>2</sub>(OAc)<sub>4</sub> + 4 HO<sub>2</sub>Y → Rh<sub>2</sub>(O<sub>2</sub>Y)<sub>4</sub> + 4 HOAc | :Rh<sub>2</sub>(OAc)<sub>4</sub> + 4 HO<sub>2</sub>Y → Rh<sub>2</sub>(O<sub>2</sub>Y)<sub>4</sub> + 4 HOAc | ||
Line 62: | Line 62: | ||
:] | :] | ||
The structure of rhodium(II) acetate features a pair of ] atoms, each with ], defined by four acetate oxygen atoms, a water ligand, and a Rh-Rh bond (2.39 Å.<ref> |
The structure of rhodium(II) acetate features a pair of ] atoms, each with ], defined by four acetate oxygen atoms, a water ligand, and a Rh-Rh bond (2.39 Å.<ref>{{cite doi|10.1107/S0567740871004527}}</ref>. ] and ] adopt similar structures. | ||
==Chemical Properties== | ==Chemical Properties== | ||
The application of dirhodium tetraacetate to organic synthesis was pioneered by Teyssie and co-workers.<ref> |
The application of dirhodium tetraacetate to organic synthesis was pioneered by Teyssie and co-workers.<ref>{{cite doi|10.1016/S0040-4039(01)87603-6}}</ref> A extensive library of successful transformations rapidly evolved, ranging from Rh(II)-catalyzed OH and NH insertions to ] of ]<ref>{{cite doi|10.1016/S0040-4039(00)78050-6}}</ref> and ] systems.<ref>{{cite doi|10.1039/C39800000765 }}</ref> Nowadays, it is used mainly as a ]. It can help distinguish between ] and ] by binding selectively to ribonucleosides at their 2' and 3' OH groups<ref>{{cite doi|10.1038/newbio239237a0}}</ref>. Rhodium(II) acetate dimer, compared to copper(II) acetate, is more reactive and useful in differentiating ribonucleosides and deoxynucleosides because it is soluble in ] solution like water whereas copper(II) acetate only dissolves in non-aqueous solution. | ||
===Selected catalytic reactions=== | ===Selected catalytic reactions=== | ||
Line 81: | Line 81: | ||
==References== | ==References== | ||
{{Citation style|date=September 2007}} | |||
{{reflist}} | {{reflist}} | ||
Revision as of 22:00, 15 November 2011
Names | |
---|---|
IUPAC name Rhodium (II) acetate | |
Other names
Dirhodium tetraacetate, Tetrakis(acetato)dirhodium(II), Rhodium diacetate dimer, Tetrakis-(mu-acetato)dirhodium | |
Identifiers | |
CAS Number | |
3D model (JSmol) | |
ChemSpider | |
ECHA InfoCard | 100.036.425 |
PubChem CID | |
RTECS number |
|
CompTox Dashboard (EPA) | |
InChI
| |
SMILES
| |
Properties | |
Chemical formula | C8H12O8Rh2 |
Molar mass | 441.99 g/mol |
Appearance | Emerald green powder |
Density | 1.126 g/cm |
Melting point | >100 °C |
Boiling point | decomposes |
Solubility in water | soluble |
Solubility in other solvents | polar organic solvents |
Structure | |
Crystal structure | monoclinic |
Coordination geometry | octahedral |
Dipole moment | 0 D |
Hazards | |
NFPA 704 (fire diamond) | 3 0 0 |
Flash point | low flammability |
Related compounds | |
Except where otherwise noted, data are given for materials in their standard state (at 25 °C , 100 kPa). Y verify (what is ?) Infobox references |
Rhodium(II) acetate is the chemical compound with the formula Rh2(AcO)4, where AcO is the acetate ion (CH3CO2). This emerald green powder is a catalyst for cyclopropanation of alkenes. It is also used as catalyst for insertion into C-H and X-H bonds (X = N/S/O) and for ylide formation for organic syntheses.
Preparation
Rhodium(II) acetate is usually prepared by the heating hydrated rhodium(III) chloride in acetic acid (CH3COOH): Rhodium(II) acetate dimer undergoes ligand exchange, the replacement of the acetate group by other carboxylates and related groups.
- Rh2(OAc)4 + 4 HO2Y → Rh2(O2Y)4 + 4 HOAc
Structure and Properties
The structure of rhodium(II) acetate features a pair of rhodium atoms, each with octahedral molecular geometry, defined by four acetate oxygen atoms, a water ligand, and a Rh-Rh bond (2.39 Å.. Copper(II) acetate and chromium(II) acetate adopt similar structures.
Chemical Properties
The application of dirhodium tetraacetate to organic synthesis was pioneered by Teyssie and co-workers. A extensive library of successful transformations rapidly evolved, ranging from Rh(II)-catalyzed OH and NH insertions to cyclopropanation of olefins and aromatic systems. Nowadays, it is used mainly as a catalyst. It can help distinguish between ribonucleosides and deoxynucleosides by binding selectively to ribonucleosides at their 2' and 3' OH groups. Rhodium(II) acetate dimer, compared to copper(II) acetate, is more reactive and useful in differentiating ribonucleosides and deoxynucleosides because it is soluble in aqueous solution like water whereas copper(II) acetate only dissolves in non-aqueous solution.
Selected catalytic reactions
1. Cyclopropanation
through the decomposition of diazocarbonyl compounds, the intra- and intermolecular cyclopropanation reactions occurs.
2. Aromatic cycloaddition
Rhodium acetate is a very efficient catalyst for two-component cycloaddition as well as three-component 1,3-dipolar cycloaddition reactions.
3. C-H insertion
Rh(II)-catalyzed regioselective intramolecular and regiospecific intermolecular C-H insertion into aliphatic and aromatic C-H bonds is a useful method for the synthesis of a diverse range of organic compounds.
4. Oxidation of alcohols
Allylic and benzylic alcohols were oxidized to the corresponding carbonyl compounds using tert-butyl hydroperoxide in stoichiometric amounts and Rh2(OAc)4 as catalyst in dichloromethane at ambient temperature.
5. X-H insertion (X = N/S/O)
Rh(II) carbenoid reacts with amines, alcohols or thiols to yield the product of a formal intra- or intermolecular X-H bond (X = N/O/S) insertion via the formation of an ylide intermediate.
References
- Attention: This template ({{cite doi}}) is deprecated. To cite the publication identified by doi:10.1002/9780470132449.ch16, please use {{cite journal}} (if it was published in a bona fide academic journal, otherwise {{cite report}} with
|doi=10.1002/9780470132449.ch16
instead. - Doyle, M.P. (2000). "Asymmetric Addition and Insertion Reactions of Catalytically-Generated Metal Carbenes". In Ojima, Iwao (ed.). Catalytic Asymmetric Synthesis (2nd ed.). New York: Wiley. ISBN 0471298050.
{{cite book}}
: Cite has empty unknown parameter:|1=
(help) - Attention: This template ({{cite doi}}) is deprecated. To cite the publication identified by doi:10.1107/S0567740871004527, please use {{cite journal}} (if it was published in a bona fide academic journal, otherwise {{cite report}} with
|doi=10.1107/S0567740871004527
instead. - Attention: This template ({{cite doi}}) is deprecated. To cite the publication identified by doi:10.1016/S0040-4039(01)87603-6, please use {{cite journal}} (if it was published in a bona fide academic journal, otherwise {{cite report}} with
|doi=10.1016/S0040-4039(01)87603-6
instead. - Attention: This template ({{cite doi}}) is deprecated. To cite the publication identified by doi:10.1016/S0040-4039(00)78050-6, please use {{cite journal}} (if it was published in a bona fide academic journal, otherwise {{cite report}} with
|doi=10.1016/S0040-4039(00)78050-6
instead. - Attention: This template ({{cite doi}}) is deprecated. To cite the publication identified by doi:10.1039/C39800000765 , please use {{cite journal}} (if it was published in a bona fide academic journal, otherwise {{cite report}} with
|doi=10.1039/C39800000765
instead. - Attention: This template ({{cite doi}}) is deprecated. To cite the publication identified by doi:10.1038/newbio239237a0, please use {{cite journal}} (if it was published in a bona fide academic journal, otherwise {{cite report}} with
|doi=10.1038/newbio239237a0
instead.
Rhodium compounds | |||
---|---|---|---|
Rh(0) |
| ||
Rh(I) |
| ||
Rh(II) |
| ||
Rh(III) |
| ||
Rh(IV) | |||
Rh(V) | |||
Rh(VI) |