Browse history interactively ← Previous edit Next edit → Content deleted Content addedVisual Wikitext Inline
Revision as of 20:35, 7 April 2020 edit Nerd271 (talk | contribs )Extended confirmed users 15,796 edits →Hyperbolic functions : Polish.Tag : Visual edit ← Previous edit
Revision as of 21:08, 27 May 2020 edit undo 49.147.83.13 (talk ) →Reduction to an integral of a rational function Next edit →
Line 73:
Line 73:
where <math>u = \sin x</math>, so that <math>du = \cos x\,dx</math>. This admits a decomposition by ]:
where <math>u = \sin x</math>, so that <math>du = \cos x\,dx</math>. This admits a decomposition by ]:
: <math> \frac{1}{(1-u^2)^2} = \frac{1/4}{1-u} + \frac{1/4}{(1-u)^2} + \frac{1/4}{1+u} + \frac{1/4}{(1+u)^2}. </math>
: <math> \frac{1}{(1-u^2)^2} = \frac{1}{(1+u)^2(1-u )^2} = \frac{1/4}{1+ u} + \frac{1/4}{(1+ u)^2} + \frac{1/4}{1- u} + \frac{1/4}{(1- u)^2}. </math>
Antidifferentiating term by-term, one gets
Antidifferentiating term by-term, one gets
Line 79:
Line 79:
: <math>
: <math>
\begin{align}
\begin{align}
\int \sec^3 x \, dx &= -\frac 1 4\ln |1-u| + \frac{1/4}{1-u} + \frac 1 4 \ln|1+u| - \frac{1/4}{1+u} + C \\
\int \sec^3 x \, dx &= \frac 1 4\ln |1+ u| - \frac{1/4}{1+ u} - \frac 1 4 \ln|1- u| + \frac{1/4}{1- u} + C \\
&= \frac 1 4 \ln \Biggl| \frac{1+u}{1-u} \Biggl|+ \frac 1 2 \frac{u}{1-u^2} + C \\
&= \frac 1 4 \ln \Biggl| \frac{1+u}{1-u} \Biggl|+ \frac 1 2 \left( \frac{u}{1-u^2}\right) + C \\
&= \frac 1 4 \ln \Biggl|\frac{1+\sin x}{1-\sin x} \Biggl|+ \frac 1 2 \frac{\sin x}{\cos^2 x} + C = \frac 1 4 \ln \Biggl|\frac{1+\sin x}{1-\sin x}\Biggl| + \frac 1 2 \sec x \tan x + C.
&= \frac 1 4 \ln \Biggl|\frac{1+\sin x}{1-\sin x} \Biggl|+ \frac 1 2 \left( \frac{\sin x}{\cos^2 x}\right) + C = \frac 1 4 \ln \left |\frac{1+\sin x}{1-\sin x}\right | + \frac 1 2 \sec x \tan x + C\\
&= \frac 1 4 \ln \left|\frac{(1+\sin x)^2}{1-\sin^2 x}\right| + \frac 1 2 \sec x \tan x + C = \frac 1 4 \ln \left|\frac{(1+\sin x)^2}{\cos^2 x}\right| + \frac 1 2 \sec x \tan x + C\\
&= \frac14 \ln \left|\frac{1+\sin x}{\cos x}\right|^2 + \frac12 \sec x \tan x + C = \frac12 \ln \left|\frac{1+\sin x}{\cos x}\right| + \frac12 \sec x \tan x + C\\
&= \frac12 (\ln|\sec x + \tan x| + \sec x \tan x + C).
\end{align}
\end{align}
</math>
</math>
Revision as of 21:08, 27 May 2020
Commonly encountered and tricky integral
The integral of secant cubed is a frequent and challenging indefinite integral of elementary calculus :
∫
sec
3
x
d
x
=
1
2
(
sec
x
tan
x
+
ln
|
sec
x
+
tan
x
|
)
+
C
.
{\displaystyle \int \sec ^{3}x\,dx={\frac {1}{2}}(\sec x\tan x+\ln \left|\sec x+\tan x\right|)+C.}
There are a number of reasons why this particular antiderivative is worthy of special attention:
The technique used for reducing integrals of higher odd powers of secant to lower ones is fully present in this, the simplest case. The other cases are done in the same way.
The utility of hyperbolic functions in integration can be demonstrated in cases of odd powers of secant (powers of tangent can also be included).
This is one of several integrals usually done in a first-year calculus course in which the most natural way to proceed involves integrating by parts and returning to the same integral one started with (another is the integral of the product of an exponential function with a sine or cosine function; yet another the integral of a power of the sine or cosine function).
This integral is used in evaluating any integral of the form
∫
a
2
+
x
2
d
x
,
{\displaystyle \int {\sqrt {a^{2}+x^{2}}}\,dx,}
where
a
{\displaystyle a}
is a constant. In particular, it appears in the problems of:
Derivations
Integration by parts
This antiderivative may be found by integration by parts , as follows:
∫
sec
3
x
d
x
=
∫
u
d
v
{\displaystyle \int \sec ^{3}x\,dx=\int u\,dv}
where
d
v
=
sec
2
x
d
x
,
v
=
tan
x
,
u
=
sec
x
,
d
u
=
sec
x
tan
x
d
x
.
{\displaystyle {\begin{aligned}dv&{}=\sec ^{2}x\,dx,\\v&{}=\tan x,\\u&{}=\sec x,\\du&{}=\sec x\tan x\,dx.\end{aligned}}}
Then
∫
sec
3
x
d
x
=
∫
u
d
v
=
u
v
−
∫
v
d
u
=
sec
x
tan
x
−
∫
sec
x
tan
2
x
d
x
=
sec
x
tan
x
−
∫
sec
x
(
sec
2
x
−
1
)
d
x
=
sec
x
tan
x
−
(
∫
sec
3
x
d
x
−
∫
sec
x
d
x
.
)
=
sec
x
tan
x
−
∫
sec
3
x
d
x
+
∫
sec
x
d
x
.
{\displaystyle {\begin{aligned}\int \sec ^{3}x\,dx&{}=\int u\,dv\\&{}=uv-\int v\,du\\&{}=\sec x\tan x-\int \sec x\tan ^{2}x\,dx\\&{}=\sec x\tan x-\int \sec x\,(\sec ^{2}x-1)\,dx\\&{}=\sec x\tan x-\left(\int \sec ^{3}x\,dx-\int \sec x\,dx.\right)\\&{}=\sec x\tan x-\int \sec ^{3}x\,dx+\int \sec x\,dx.\end{aligned}}}
Here we have assumed the integral of the secant function is known.
Next we add
∫
sec
3
x
d
x
{\displaystyle \textstyle \int \sec ^{3}x\,dx}
to both sides of the equality just derived:
2
∫
sec
3
x
d
x
=
sec
x
tan
x
+
∫
sec
x
d
x
=
sec
x
tan
x
+
ln
|
sec
x
+
tan
x
|
+
C
.
{\displaystyle {\begin{aligned}2\int \sec ^{3}x\,dx&=\sec x\tan x+\int \sec x\,dx\\&=\sec x\tan x+\ln \left|\sec x+\tan x\right|+C.\end{aligned}}}
Then divide both sides by 2:
∫
sec
3
x
d
x
=
1
2
(
sec
x
tan
x
+
ln
|
sec
x
+
tan
x
|
)
+
C
.
{\displaystyle \int \sec ^{3}x\,dx={\frac {1}{2}}(\sec x\tan x+\ln \left|\sec x+\tan x\right|)+C.}
Reduction to an integral of a rational function
∫
sec
3
x
d
x
=
∫
d
x
cos
3
x
=
∫
cos
x
d
x
cos
4
x
=
∫
cos
x
d
x
(
1
−
sin
2
x
)
2
=
∫
d
u
(
1
−
u
2
)
2
{\displaystyle \int \sec ^{3}x\,dx=\int {\frac {dx}{\cos ^{3}x}}=\int {\frac {\cos x\,dx}{\cos ^{4}x}}=\int {\frac {\cos x\,dx}{(1-\sin ^{2}x)^{2}}}=\int {\frac {du}{(1-u^{2})^{2}}}}
where
u
=
sin
x
{\displaystyle u=\sin x}
, so that
d
u
=
cos
x
d
x
{\displaystyle du=\cos x\,dx}
. This admits a decomposition by partial fractions :
1
(
1
−
u
2
)
2
=
1
(
1
+
u
)
2
(
1
−
u
)
2
=
1
/
4
1
+
u
+
1
/
4
(
1
+
u
)
2
+
1
/
4
1
−
u
+
1
/
4
(
1
−
u
)
2
.
{\displaystyle {\frac {1}{(1-u^{2})^{2}}}={\frac {1}{(1+u)^{2}(1-u)^{2}}}={\frac {1/4}{1+u}}+{\frac {1/4}{(1+u)^{2}}}+{\frac {1/4}{1-u}}+{\frac {1/4}{(1-u)^{2}}}.}
Antidifferentiating term by-term, one gets
∫
sec
3
x
d
x
=
1
4
ln
|
1
+
u
|
−
1
/
4
1
+
u
−
1
4
ln
|
1
−
u
|
+
1
/
4
1
−
u
+
C
=
1
4
ln
|
1
+
u
1
−
u
|
+
1
2
(
u
1
−
u
2
)
+
C
=
1
4
ln
|
1
+
sin
x
1
−
sin
x
|
+
1
2
(
sin
x
cos
2
x
)
+
C
=
1
4
ln
|
1
+
sin
x
1
−
sin
x
|
+
1
2
sec
x
tan
x
+
C
=
1
4
ln
|
(
1
+
sin
x
)
2
1
−
sin
2
x
|
+
1
2
sec
x
tan
x
+
C
=
1
4
ln
|
(
1
+
sin
x
)
2
cos
2
x
|
+
1
2
sec
x
tan
x
+
C
=
1
4
ln
|
1
+
sin
x
cos
x
|
2
+
1
2
sec
x
tan
x
+
C
=
1
2
ln
|
1
+
sin
x
cos
x
|
+
1
2
sec
x
tan
x
+
C
=
1
2
(
ln
|
sec
x
+
tan
x
|
+
sec
x
tan
x
+
C
)
.
{\displaystyle {\begin{aligned}\int \sec ^{3}x\,dx&={\frac {1}{4}}\ln |1+u|-{\frac {1/4}{1+u}}-{\frac {1}{4}}\ln |1-u|+{\frac {1/4}{1-u}}+C\\&={\frac {1}{4}}\ln {\Biggl |}{\frac {1+u}{1-u}}{\Biggl |}+{\frac {1}{2}}\left({\frac {u}{1-u^{2}}}\right)+C\\&={\frac {1}{4}}\ln {\Biggl |}{\frac {1+\sin x}{1-\sin x}}{\Biggl |}+{\frac {1}{2}}\left({\frac {\sin x}{\cos ^{2}x}}\right)+C={\frac {1}{4}}\ln \left|{\frac {1+\sin x}{1-\sin x}}\right|+{\frac {1}{2}}\sec x\tan x+C\\&={\frac {1}{4}}\ln \left|{\frac {(1+\sin x)^{2}}{1-\sin ^{2}x}}\right|+{\frac {1}{2}}\sec x\tan x+C={\frac {1}{4}}\ln \left|{\frac {(1+\sin x)^{2}}{\cos ^{2}x}}\right|+{\frac {1}{2}}\sec x\tan x+C\\&={\frac {1}{4}}\ln \left|{\frac {1+\sin x}{\cos x}}\right|^{2}+{\frac {1}{2}}\sec x\tan x+C={\frac {1}{2}}\ln \left|{\frac {1+\sin x}{\cos x}}\right|+{\frac {1}{2}}\sec x\tan x+C\\&={\frac {1}{2}}(\ln |\sec x+\tan x|+\sec x\tan x+C).\end{aligned}}}
Hyperbolic functions
Integrals of the form:
∫
sec
n
x
tan
m
x
d
x
{\displaystyle \int \sec ^{n}x\tan ^{m}x\,dx}
can be reduced using the Pythagorean identity if
n
{\displaystyle n}
is even or
n
{\displaystyle n}
and
m
{\displaystyle m}
are both odd. If
n
{\displaystyle n}
is odd and
m
{\displaystyle m}
is even, hyperbolic substitutions can be used to replace the nested integration by parts with hyperbolic power reducing formulas.
sec
x
=
cosh
u
tan
x
=
sinh
u
sec
2
x
d
x
=
cosh
u
d
u
or
sec
x
tan
x
d
x
=
sinh
u
d
u
sec
x
d
x
=
d
u
or
d
x
=
sech
u
d
u
u
=
arcosh
(
sec
x
)
=
arsinh
(
tan
x
)
=
ln
|
sec
x
+
tan
x
|
{\displaystyle {\begin{aligned}\sec x&{}=\cosh u\\\tan x&{}=\sinh u\\\sec ^{2}x\,dx&{}=\cosh u\,du{\text{ or }}\sec x\tan x\,dx=\sinh u\,du\\\sec x\,dx&{}=\,du{\text{ or }}dx=\operatorname {sech} u\,du\\u&{}=\operatorname {arcosh} (\sec x)=\operatorname {arsinh} (\tan x)=\ln |\sec x+\tan x|\end{aligned}}}
Note that
∫
sec
x
d
x
=
ln
|
sec
x
+
tan
x
|
{\displaystyle \int \sec x\,dx=\ln |\sec x+\tan x|}
follows directly from this substitution.
∫
sec
3
x
d
x
=
∫
cosh
2
u
d
u
=
1
2
∫
(
cosh
2
u
+
1
)
d
u
=
1
2
(
1
2
sinh
2
u
+
u
)
+
C
=
1
2
(
sinh
u
cosh
u
+
u
)
+
C
=
1
2
(
sec
x
tan
x
+
ln
|
sec
x
+
tan
x
|
)
+
C
{\displaystyle {\begin{aligned}\int \sec ^{3}x\,dx&{}=\int \cosh ^{2}u\,du\\&{}={\frac {1}{2}}\int (\cosh 2u+1)\,du\\&{}={\frac {1}{2}}\left({\frac {1}{2}}\sinh 2u+u\right)+C\\&{}={\frac {1}{2}}(\sinh u\cosh u+u)+C\\&{}={\frac {1}{2}}(\sec x\tan x+\ln \left|\sec x+\tan x\right|)+C\\\end{aligned}}}
Higher odd powers of secant
Just as the integration by parts above reduced the integral of secant cubed to the integral of secant to the first power, so a similar process reduces the integral of higher odd powers of secant to lower ones. This is the secant reduction formula, which follows the syntax:
∫
sec
n
x
d
x
=
sec
n
−
2
x
tan
x
n
−
1
+
n
−
2
n
−
1
∫
sec
n
−
2
x
d
x
(for
n
≠
1
)
{\displaystyle \int \sec ^{n}x\,dx={\frac {\sec ^{n-2}x\tan x}{n-1}}\,+\,{\frac {n-2}{n-1}}\int \sec ^{n-2}x\,dx\qquad {\text{ (for }}n\neq 1{\text{)}}\,\!}
Alternatively:
∫
sec
n
x
d
x
=
sec
n
−
1
x
sin
x
n
−
1
+
n
−
2
n
−
1
∫
sec
n
−
2
x
d
x
(for
n
≠
1
)
{\displaystyle \int \sec ^{n}x\,dx={\frac {\sec ^{n-1}x\sin x}{n-1}}\,+\,{\frac {n-2}{n-1}}\int \sec ^{n-2}x\,dx\qquad {\text{ (for }}n\neq 1{\text{)}}\,\!}
Even powers of tangents can be accommodated by using binomial expansion to form an odd polynomial of secant and using these formulae on the largest term and combining like terms.
See also
Notes
The constants of integration are absorbed in the remaining integral term.
References
Spivak, Michael (2008). "Integration in Elementary Terms". Calculus . p. 382 . This is a tricky and important integral that often comes up.
Category :
Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.
**DISCLAIMER** We are not affiliated with Wikipedia, and Cloudflare.
The information presented on this site is for general informational purposes only and does not constitute medical advice.
You should always have a personal consultation with a healthcare professional before making changes to your diet, medication, or exercise routine.
AI helps with the correspondence in our chat.
We participate in an affiliate program. If you buy something through a link, we may earn a commission 💕
↑