Misplaced Pages

Integral of secant cubed: Difference between revisions

Article snapshot taken from Wikipedia with creative commons attribution-sharealike license. Give it a read and then ask your questions in the chat. We can research this topic together.
Browse history interactively← Previous editNext edit →Content deleted Content addedVisualWikitext
Revision as of 14:56, 30 May 2020 edit49.147.83.13 (talk) Integration by parts: Correction← Previous edit Revision as of 17:38, 3 June 2020 edit undo49.147.83.13 (talk) Integration by partsNext edit →
Line 42: Line 42:
\end{align} \end{align}
</math> </math>

Now, the ] is

:<math>\int \sec x \,dx = \ln |\sec x + \tan x|,</math>

where the constant of integration is ignored for now.

Next add <math>\int\sec^3 x \,dx</math> to both sides of the equality just derived:{{efn|The constants of integration are absorbed in the remaining integral term.}} Next add <math>\int\sec^3 x \,dx</math> to both sides of the equality just derived:{{efn|The constants of integration are absorbed in the remaining integral term.}}


Line 54: Line 47:
\begin{align} \begin{align}
2 \int \sec^3 x \, dx & = \sec x \tan x + \int \sec x\,dx \\ 2 \int \sec^3 x \, dx & = \sec x \tan x + \int \sec x\,dx \\
& = \sec x \tan x + \ln\left|\sec x + \tan x\right| + C. & = \sec x \tan x + \ln\left|\sec x + \tan x\right| + C,
\end{align} \end{align}
</math> </math>


given that the ] is: <math>\int \sec x \,dx = \ln |\sec x + \tan x| + C.</math>
Then divide both sides by 2:

Finally, divide both sides by 2:


:<math>\int \sec^3 x \, dx = \frac{1}{2}(\sec x \tan x + \ln \left|\sec x + \tan x\right|) + C.</math> :<math>\int \sec^3 x \, dx = \frac{1}{2}(\sec x \tan x + \ln \left|\sec x + \tan x\right|) + C.</math>

Revision as of 17:38, 3 June 2020

Part of a series of articles about
Calculus
a b f ( t ) d t = f ( b ) f ( a ) {\displaystyle \int _{a}^{b}f'(t)\,dt=f(b)-f(a)}
Differential
Definitions
Concepts
Rules and identities
Integral
Definitions
Integration by
Series
Convergence tests
Vector
Theorems
Multivariable
Formalisms
Definitions
Advanced
Specialized
Miscellanea
Commonly encountered and tricky integral

The integral of secant cubed is a frequent and challenging indefinite integral of elementary calculus:

sec 3 x d x = 1 2 ( sec x tan x + ln | sec x + tan x | ) + C . {\displaystyle \int \sec ^{3}x\,dx={\frac {1}{2}}(\sec x\tan x+\ln \left|\sec x+\tan x\right|)+C.}

There are a number of reasons why this particular antiderivative is worthy of special attention:

  • The technique used for reducing integrals of higher odd powers of secant to lower ones is fully present in this, the simplest case. The other cases are done in the same way.
  • The utility of hyperbolic functions in integration can be demonstrated in cases of odd powers of secant (powers of tangent can also be included).
  • This is one of several integrals usually done in a first-year calculus course in which the most natural way to proceed involves integrating by parts and returning to the same integral one started with (another is the integral of the product of an exponential function with a sine or cosine function; yet another the integral of a power of the sine or cosine function).
  • This integral is used in evaluating any integral of the form
a 2 + x 2 d x , {\displaystyle \int {\sqrt {a^{2}+x^{2}}}\,dx,}
where a {\displaystyle a} is a constant. In particular, it appears in the problems of:

Derivations

Integration by parts

This antiderivative may be found by integration by parts, as follows:

sec 3 x d x = u d v = u v v d u {\displaystyle \int \sec ^{3}x\,dx=\int u\,dv=uv-\int v\,du}

where

u = sec x , d v = sec 2 x d x , v = tan x , d u = sec x tan x d x . {\displaystyle u=\sec x,\quad dv=\sec ^{2}x\,dx,\quad v=\tan x,\quad du=\sec x\tan x\,dx.}

Then

sec 3 x d x = ( sec x ) ( sec 2 x ) d x = sec x tan x tan x ( sec x tan x ) d x = sec x tan x sec x tan 2 x d x = sec x tan x sec x ( sec 2 x 1 ) d x = sec x tan x ( sec 3 x d x sec x d x ) = sec x tan x sec 3 x d x + sec x d x . {\displaystyle {\begin{aligned}\int \sec ^{3}x\,dx&{}=\int (\sec x)(\sec ^{2}x)\,dx\\&{}=\sec x\tan x-\int \tan x\,(\sec x\tan x)\,dx\\&{}=\sec x\tan x-\int \sec x\tan ^{2}x\,dx\\&{}=\sec x\tan x-\int \sec x\,(\sec ^{2}x-1)\,dx\\&{}=\sec x\tan x-\left(\int \sec ^{3}x\,dx-\int \sec x\,dx\right)\\&{}=\sec x\tan x-\int \sec ^{3}x\,dx+\int \sec x\,dx.\end{aligned}}}

Next add sec 3 x d x {\displaystyle \int \sec ^{3}x\,dx} to both sides of the equality just derived:

2 sec 3 x d x = sec x tan x + sec x d x = sec x tan x + ln | sec x + tan x | + C , {\displaystyle {\begin{aligned}2\int \sec ^{3}x\,dx&=\sec x\tan x+\int \sec x\,dx\\&=\sec x\tan x+\ln \left|\sec x+\tan x\right|+C,\end{aligned}}}

given that the integral of the secant function is: sec x d x = ln | sec x + tan x | + C . {\displaystyle \int \sec x\,dx=\ln |\sec x+\tan x|+C.}

Finally, divide both sides by 2:

sec 3 x d x = 1 2 ( sec x tan x + ln | sec x + tan x | ) + C . {\displaystyle \int \sec ^{3}x\,dx={\frac {1}{2}}(\sec x\tan x+\ln \left|\sec x+\tan x\right|)+C.}

Reduction to an integral of a rational function

sec 3 x d x = d x cos 3 x = cos x d x cos 4 x = cos x d x ( 1 sin 2 x ) 2 = d u ( 1 u 2 ) 2 {\displaystyle \int \sec ^{3}x\,dx=\int {\frac {dx}{\cos ^{3}x}}=\int {\frac {\cos x\,dx}{\cos ^{4}x}}=\int {\frac {\cos x\,dx}{(1-\sin ^{2}x)^{2}}}=\int {\frac {du}{(1-u^{2})^{2}}}}

where u = sin x {\displaystyle u=\sin x} , so that d u = cos x d x {\displaystyle du=\cos x\,dx} . This admits a decomposition by partial fractions:

1 ( 1 u 2 ) 2 = 1 ( 1 + u ) 2 ( 1 u ) 2 = 1 / 4 1 + u + 1 / 4 ( 1 + u ) 2 + 1 / 4 1 u + 1 / 4 ( 1 u ) 2 . {\displaystyle {\frac {1}{(1-u^{2})^{2}}}={\frac {1}{(1+u)^{2}(1-u)^{2}}}={\frac {1/4}{1+u}}+{\frac {1/4}{(1+u)^{2}}}+{\frac {1/4}{1-u}}+{\frac {1/4}{(1-u)^{2}}}.}

Antidifferentiating term by-term, one gets

sec 3 x d x = 1 4 ln | 1 + u | 1 / 4 1 + u 1 4 ln | 1 u | + 1 / 4 1 u + C = 1 4 ln | 1 + u 1 u | + 1 2 ( u 1 u 2 ) + C = 1 4 ln | 1 + sin x 1 sin x | + 1 2 ( sin x cos 2 x ) + C = 1 4 ln | 1 + sin x 1 sin x | + 1 2 sec x tan x + C = 1 4 ln | ( 1 + sin x ) 2 1 sin 2 x | + 1 2 sec x tan x + C = 1 4 ln | ( 1 + sin x ) 2 cos 2 x | + 1 2 sec x tan x + C = 1 4 ln | 1 + sin x cos x | 2 + 1 2 sec x tan x + C = 1 2 ln | 1 + sin x cos x | + 1 2 sec x tan x + C = 1 2 ( ln | sec x + tan x | + sec x tan x ) + C . {\displaystyle {\begin{aligned}\int \sec ^{3}x\,dx&={\frac {1}{4}}\ln |1+u|-{\frac {1/4}{1+u}}-{\frac {1}{4}}\ln |1-u|+{\frac {1/4}{1-u}}+C\\&={\frac {1}{4}}\ln {\Biggl |}{\frac {1+u}{1-u}}{\Biggl |}+{\frac {1}{2}}\left({\frac {u}{1-u^{2}}}\right)+C\\&={\frac {1}{4}}\ln {\Biggl |}{\frac {1+\sin x}{1-\sin x}}{\Biggl |}+{\frac {1}{2}}\left({\frac {\sin x}{\cos ^{2}x}}\right)+C\\&={\frac {1}{4}}\ln \left|{\frac {1+\sin x}{1-\sin x}}\right|+{\frac {1}{2}}\sec x\tan x+C\\&={\frac {1}{4}}\ln \left|{\frac {(1+\sin x)^{2}}{1-\sin ^{2}x}}\right|+{\frac {1}{2}}\sec x\tan x+C\\&={\frac {1}{4}}\ln \left|{\frac {(1+\sin x)^{2}}{\cos ^{2}x}}\right|+{\frac {1}{2}}\sec x\tan x+C\\&={\frac {1}{4}}\ln \left|{\frac {1+\sin x}{\cos x}}\right|^{2}+{\frac {1}{2}}\sec x\tan x+C\\&={\frac {1}{2}}\ln \left|{\frac {1+\sin x}{\cos x}}\right|+{\frac {1}{2}}\sec x\tan x+C\\&={\frac {1}{2}}(\ln |\sec x+\tan x|+\sec x\tan x)+C.\end{aligned}}}

Hyperbolic functions

Integrals of the form: sec n x tan m x d x {\displaystyle \int \sec ^{n}x\tan ^{m}x\,dx} can be reduced using the Pythagorean identity if n {\displaystyle n} is even or n {\displaystyle n} and m {\displaystyle m} are both odd. If n {\displaystyle n} is odd and m {\displaystyle m} is even, hyperbolic substitutions can be used to replace the nested integration by parts with hyperbolic power reducing formulas.

sec x = cosh u tan x = sinh u sec 2 x d x = cosh u d u  or  sec x tan x d x = sinh u d u sec x d x = d u  or  d x = sech u d u u = arcosh ( sec x ) = arsinh ( tan x ) = ln | sec x + tan x | {\displaystyle {\begin{aligned}\sec x&{}=\cosh u\\\tan x&{}=\sinh u\\\sec ^{2}x\,dx&{}=\cosh u\,du{\text{ or }}\sec x\tan x\,dx=\sinh u\,du\\\sec x\,dx&{}=\,du{\text{ or }}dx=\operatorname {sech} u\,du\\u&{}=\operatorname {arcosh} (\sec x)=\operatorname {arsinh} (\tan x)=\ln |\sec x+\tan x|\end{aligned}}}

Note that sec x d x = ln | sec x + tan x | {\displaystyle \int \sec x\,dx=\ln |\sec x+\tan x|} follows directly from this substitution.

sec 3 x d x = cosh 2 u d u = 1 2 ( cosh 2 u + 1 ) d u = 1 2 ( 1 2 sinh 2 u + u ) + C = 1 2 ( sinh u cosh u + u ) + C = 1 2 ( sec x tan x + ln | sec x + tan x | ) + C {\displaystyle {\begin{aligned}\int \sec ^{3}x\,dx&{}=\int \cosh ^{2}u\,du\\&{}={\frac {1}{2}}\int (\cosh 2u+1)\,du\\&{}={\frac {1}{2}}\left({\frac {1}{2}}\sinh 2u+u\right)+C\\&{}={\frac {1}{2}}(\sinh u\cosh u+u)+C\\&{}={\frac {1}{2}}(\sec x\tan x+\ln \left|\sec x+\tan x\right|)+C\\\end{aligned}}}

Higher odd powers of secant

Just as the integration by parts above reduced the integral of secant cubed to the integral of secant to the first power, so a similar process reduces the integral of higher odd powers of secant to lower ones. This is the secant reduction formula, which follows the syntax:

sec n x d x = sec n 2 x tan x n 1 + n 2 n 1 sec n 2 x d x  (for  n 1 ) {\displaystyle \int \sec ^{n}x\,dx={\frac {\sec ^{n-2}x\tan x}{n-1}}\,+\,{\frac {n-2}{n-1}}\int \sec ^{n-2}x\,dx\qquad {\text{ (for }}n\neq 1{\text{)}}\,\!}

Alternatively:

sec n x d x = sec n 1 x sin x n 1 + n 2 n 1 sec n 2 x d x  (for  n 1 ) {\displaystyle \int \sec ^{n}x\,dx={\frac {\sec ^{n-1}x\sin x}{n-1}}\,+\,{\frac {n-2}{n-1}}\int \sec ^{n-2}x\,dx\qquad {\text{ (for }}n\neq 1{\text{)}}\,\!}

Even powers of tangents can be accommodated by using binomial expansion to form an odd polynomial of secant and using these formulae on the largest term and combining like terms.

See also

Notes

  1. The constants of integration are absorbed in the remaining integral term.

References

  1. Spivak, Michael (2008). "Integration in Elementary Terms". Calculus. p. 382. This is a tricky and important integral that often comes up.
Category: