Misplaced Pages

List of unsolved problems in mathematics: Difference between revisions

Article snapshot taken from Wikipedia with creative commons attribution-sharealike license. Give it a read and then ask your questions in the chat. We can research this topic together.
Browse history interactively← Previous editNext edit →Content deleted Content addedVisualWikitext
Revision as of 05:40, 2 May 2022 view source220.135.64.212 (talk)No edit summaryTags: Manual revert Reverted Disambiguation links added Possible vandalism← Previous edit Revision as of 05:46, 2 May 2022 view source Nythar (talk | contribs)Extended confirmed users, Pending changes reviewers, Rollbackers142,753 edits Reverting unsourced edit.Tags: Undo RevertedNext edit →
Line 1: Line 1:
{{short description|Misplaced Pages list article}} {{Short description|None}}
{{Dynamic list}} {{Dynamic list}}


Many ] have not been solved yet. These ] occur in multiple domains, including ], ], ], ], ], ], ], ] and ], ], ], ], ], ] and ] theories, ]s, and ]s. Some problems may belong to more than one discipline of ] and be studied using techniques from different areas. Prizes are often awarded for the solution to a long-standing problem, and lists of unsolved problems, such as the list of ], receive considerable attention. Many ] have not yet been solved. These ] occur in multiple domains, including ], ], ], ], ], ], ], ] and ], ], ], ], ], ] and ] theories, ]s, and ]s. Some problems may belong to more than one discipline of ] and be studied using techniques from different areas. Prizes are often awarded for the solution to a long-standing problem, and lists of unsolved problems, such as the list of ], receive considerable attention.


This article is a composite of notable unsolved problems derived from many sources, including but not limited to lists considered authoritative. The list is not comprehensive, for at least the reason that entries may not be updated at the time of viewing. This list includes problems which are considered by the mathematical community to be widely varying in both difficulty and centrality to the science as a whole. This article is a composite of notable unsolved problems derived from many sources, including but not limited to lists considered authoritative. The list is not comprehensive, for at least the reason that entries may not be updated at the time of viewing. This list includes problems which are considered by the mathematical community to be widely varying in both difficulty and centrality to the science as a whole.
Line 11: Line 11:
{| class="wikitable sortable" {| class="wikitable sortable"
|- |-
! List !! Number of problems !! Number unresolved <br> or incompletely resolved !! Proposed by !! Proposed in ! List !! Number of<br>problems !! Number unresolved <br> or incompletely resolved !! Proposed by !! Proposed<br>in
|- |-
| ]<ref>{{citation|last=Thiele|first=Rüdiger|chapter=On Hilbert and his twenty-four problems|title=Mathematics and the historian's craft. The Kenneth O. May Lectures|pages=243–295|isbn=978-0-387-25284-1|editor-last=Van Brummelen|editor-first=Glen|year=2005|series=] Books in Mathematics/Ouvrages de Mathématiques de la SMC|volume=21|title-link=Kenneth May}}</ref> || 23 || 15 || ] || 1900 | ]<ref>{{citation|last=Thiele|first=Rüdiger|chapter=On Hilbert and his twenty-four problems|title=Mathematics and the historian's craft. The Kenneth O. May Lectures|pages=243–295|isbn=978-0-387-25284-1|editor-last=Van Brummelen|editor-first=Glen|year=2005|series=] Books in Mathematics/Ouvrages de Mathématiques de la SMC|volume=21|title-link=Kenneth May}}</ref> || 23 || 15 || ] || 1900
Line 17: Line 17:
| ]<ref>{{citation|title=Unsolved Problems in Number Theory|first=Richard|last=Guy|author-link=Richard K. Guy|edition=2nd|publisher=Springer|year=1994|page=vii|url=https://books.google.com/books?id=EbLzBwAAQBAJ&pg=PR7|isbn=978-1-4899-3585-4|access-date=2016-09-22|archive-url=https://web.archive.org/web/20190323220345/https://books.google.com/books?id=EbLzBwAAQBAJ&pg=PR7|archive-date=2019-03-23|url-status=live}}.</ref> || 4 || 4 || ] || 1912 | ]<ref>{{citation|title=Unsolved Problems in Number Theory|first=Richard|last=Guy|author-link=Richard K. Guy|edition=2nd|publisher=Springer|year=1994|page=vii|url=https://books.google.com/books?id=EbLzBwAAQBAJ&pg=PR7|isbn=978-1-4899-3585-4|access-date=2016-09-22|archive-url=https://web.archive.org/web/20190323220345/https://books.google.com/books?id=EbLzBwAAQBAJ&pg=PR7|archive-date=2019-03-23|url-status=live}}.</ref> || 4 || 4 || ] || 1912
|- |-
| ]<ref>{{cite journal | last = Shimura | first = G. | author-link = Goro Shimura | title = Yutaka Taniyama and his time | journal = Bulletin of the London Mathematical Society | volume = 21 | issue = 2 | pages = 186–196 | year = 1989 | doi = 10.1112/blms/21.2.186 }}</ref> || 36 || - || ] || 1955 | Taniyama's problems<ref>{{cite journal | last = Shimura | first = G. | author-link = Goro Shimura | title = Yutaka Taniyama and his time | journal = Bulletin of the London Mathematical Society | volume = 21 | issue = 2 | pages = 186–196 | year = 1989 | doi = 10.1112/blms/21.2.186 }}</ref> || 36 || - || ] || 1955
|- |-
| Thurston's 24 questions<ref>{{cite journal
| Thurston's 24 questions<ref>{{Cite web |url=http://www.uni-regensburg.de/Fakultaeten/nat_Fak_I/friedl/papers/dmv_091514.pdf |title=Archived copy |access-date=2016-01-22 |archive-url=https://web.archive.org/web/20160208034601/http://www.uni-regensburg.de/Fakultaeten/nat_Fak_I/friedl/papers/dmv_091514.pdf |archive-date=2016-02-08 |url-status=dead }}</ref><ref>{{cite web|url=https://www.ams.org/journals/bull/1982-06-03/S0273-0979-1982-15003-0/S0273-0979-1982-15003-0.pdf|title=THREE DIMENSIONAL MANIFOLDS, KLEINIAN GROUPS AND HYPERBOLIC GEOMETRY|access-date=2016-02-09|archive-url=https://web.archive.org/web/20160410172024/http://www.ams.org/journals/bull/1982-06-03/S0273-0979-1982-15003-0/S0273-0979-1982-15003-0.pdf|archive-date=2016-04-10|url-status=live}}</ref> || 24 || - || ] || 1982
| last = Friedl | first = Stefan
| doi = 10.1365/s13291-014-0102-x
| issue = 4
| journal = Jahresbericht der Deutschen Mathematiker-Vereinigung
| mr = 3280572
| pages = 223–241
| title = Thurston's vision and the virtual fibering theorem for 3-manifolds
| volume = 116
| year = 2014| s2cid = 56322745
}}</ref><ref>{{cite journal
| last = Thurston | first = William P.
| doi = 10.1090/S0273-0979-1982-15003-0
| issue = 3
| journal = Bulletin of the American Mathematical Society
| mr = 648524
| pages = 357–381
| series = New Series
| title = Three-dimensional manifolds, Kleinian groups and hyperbolic geometry
| volume = 6
| year = 1982}}</ref> || 24 || - || ] || 1982
|- |-
| ] || 18 || 14 || ] || 1998 | ] || 18 || 14 || ] || 1998
Line 27: Line 47:
| ] || 15 || <12<ref>{{cite web |url=http://www2.cnrs.fr/en/2435.htm?debut=8&theme1=12 |title=Fields Medal awarded to Artur Avila |website=] |date=2014-08-13 |access-date=2018-07-07 |archive-url=https://web.archive.org/web/20180710010437/http://www2.cnrs.fr/en/2435.htm?debut=8&theme1=12 |archive-date=2018-07-10 |url-status=dead }}</ref><ref name="guardian">{{cite web |url=https://www.theguardian.com/science/alexs-adventures-in-numberland/2014/aug/13/fields-medals-2014-maths-avila-bhargava-hairer-mirzakhani |title=Fields Medals 2014: the maths of Avila, Bhargava, Hairer and Mirzakhani explained |website=] |last=Bellos |first=Alex |date=2014-08-13 |access-date=2018-07-07 |archive-url=https://web.archive.org/web/20161021115900/https://www.theguardian.com/science/alexs-adventures-in-numberland/2014/aug/13/fields-medals-2014-maths-avila-bhargava-hairer-mirzakhani |archive-date=2016-10-21 |url-status=live }}</ref> || ] || 2000 | ] || 15 || <12<ref>{{cite web |url=http://www2.cnrs.fr/en/2435.htm?debut=8&theme1=12 |title=Fields Medal awarded to Artur Avila |website=] |date=2014-08-13 |access-date=2018-07-07 |archive-url=https://web.archive.org/web/20180710010437/http://www2.cnrs.fr/en/2435.htm?debut=8&theme1=12 |archive-date=2018-07-10 |url-status=dead }}</ref><ref name="guardian">{{cite web |url=https://www.theguardian.com/science/alexs-adventures-in-numberland/2014/aug/13/fields-medals-2014-maths-avila-bhargava-hairer-mirzakhani |title=Fields Medals 2014: the maths of Avila, Bhargava, Hairer and Mirzakhani explained |website=] |last=Bellos |first=Alex |date=2014-08-13 |access-date=2018-07-07 |archive-url=https://web.archive.org/web/20161021115900/https://www.theguardian.com/science/alexs-adventures-in-numberland/2014/aug/13/fields-medals-2014-maths-avila-bhargava-hairer-mirzakhani |archive-date=2016-10-21 |url-status=live }}</ref> || ] || 2000
|- |-
| ]<ref>{{cite book | last1 = Abe | first1 = Jair Minoro | last2 = Tanaka | first2 = Shotaro | title = Unsolved Problems on Mathematics for the 21st Century | publisher = IOS Press | year = 2001 | url = https://books.google.com/books?id=yHzfbqtVGLIC&q=unsolved+problems+in+mathematics | isbn = 978-9051994902}}</ref> || 22 || - || Jair Minoro Abe, Shotaro Tanaka || 2001 | Unsolved Problems on Mathematics for the 21st Century<ref>{{cite book | last1 = Abe | first1 = Jair Minoro | last2 = Tanaka | first2 = Shotaro | title = Unsolved Problems on Mathematics for the 21st Century | publisher = IOS Press | year = 2001 | url = https://books.google.com/books?id=yHzfbqtVGLIC&q=unsolved+problems+in+mathematics | isbn = 978-9051994902}}</ref> || 22 || - || Jair Minoro Abe, Shotaro Tanaka || 2001
|- |-
| ]<ref>{{cite web | title = DARPA invests in math | publisher = ] | date = 2008-10-14 | url = http://edition.cnn.com/2008/TECH/science/10/09/darpa.challenges/index.html | access-date = 2013-01-14 | archive-url = https://web.archive.org/web/20090304121240/http://edition.cnn.com/2008/TECH/science/10/09/darpa.challenges/index.html | archive-date = 2009-03-04}}</ref><ref>{{cite web | title = Broad Agency Announcement (BAA 07-68) for Defense Sciences Office (DSO) | publisher = DARPA | date = 2007-09-10 | url = http://www.math.utk.edu/~vasili/refs/darpa07.MathChallenges.html | access-date = 2013-06-25 | archive-url = https://web.archive.org/web/20121001111057/http://www.math.utk.edu/~vasili/refs/darpa07.MathChallenges.html | DARPA's math challenges<ref>{{cite web | title = DARPA invests in math | publisher = ] | date = 2008-10-14 | url = http://edition.cnn.com/2008/TECH/science/10/09/darpa.challenges/index.html | access-date = 2013-01-14 | archive-url = https://web.archive.org/web/20090304121240/http://edition.cnn.com/2008/TECH/science/10/09/darpa.challenges/index.html | archive-date = 2009-03-04}}</ref><ref>{{cite web | title = Broad Agency Announcement (BAA 07-68) for Defense Sciences Office (DSO) | publisher = DARPA | date = 2007-09-10 | url = http://www.math.utk.edu/~vasili/refs/darpa07.MathChallenges.html | access-date = 2013-06-25 | archive-url = https://web.archive.org/web/20121001111057/http://www.math.utk.edu/~vasili/refs/darpa07.MathChallenges.html
| archive-date = 2012-10-01}}</ref> || 23 || - || ] || 2007 | archive-date = 2012-10-01}}</ref> || 23 || - || ] || 2007
|} |}
], subject of the celebrated and influential unsolved problem known as the ]]] ], subject of the celebrated and influential unsolved problem known as the ]]]

=== Millennium Prize Problems === === Millennium Prize Problems ===
Of the original seven ] set by the ] in 2000, six have yet to be solved as of August, 2021:<ref name="auto1"/> Of the original seven ] set by the ] in 2000, six have yet to be solved as of August, 2021:<ref name="auto1"/>
Line 52: Line 73:


====Notebook problems==== ====Notebook problems====
* The Dneister Notebook (''Dnestrovskaya Tetrad'') collects several hundred unresolved problems in algebra, particularly ] and ].<ref>{{citation|year=1993|title=Dnestrovskaya notebook|publisher=The Russian Academy of Sciences|language=ru |url=http://math.nsc.ru/LBRT/a1/files/dnestr93.pdf}}<br/>{{citation |url=https://math.usask.ca/~bremner/research/publications/dniester.pdf |title=Dneister Notebook: Unsolved Problems in the Theory of Rings and Modules |website=] |access-date=2019-08-15}}</ref> * The Dniester Notebook (''Dnestrovskaya Tetrad'') collects several hundred unresolved problems in algebra, particularly ] and ].<ref>{{citation|year=1993|title=Dnestrovskaya notebook|publisher=The Russian Academy of Sciences|language=ru |url=http://math.nsc.ru/LBRT/a1/files/dnestr93.pdf}}<br/>{{citation |url=https://math.usask.ca/~bremner/research/publications/dniester.pdf |title=Dniester Notebook: Unsolved Problems in the Theory of Rings and Modules |website=] |access-date=2019-08-15}}</ref>
* The Erlagol Notebook (''Erlagolskaya Tetrad'') collects unresolved problems in algebra and model theory.<ref>{{citation|year=2018|title=Erlagol notebook|publisher=The Novosibirsk State University|language=ru |url=http://uamt.conf.nstu.ru/erl_note.pdf}}</ref> * The Erlagol Notebook (''Erlagolskaya Tetrad'') collects unresolved problems in algebra and model theory.<ref>{{citation|year=2018|title=Erlagol notebook|publisher=The Novosibirsk State University|language=ru |url=http://uamt.conf.nstu.ru/erl_note.pdf}}</ref>

====Conjectures and problems==== ====Conjectures and problems====
* ] on the relation between the order of the ] of the ] of the ] of a ] to the field's ].
* ]
* ]s on densities of rational points of ]s and ] defined on ] and their ]s.
* ]
* ] that the ] of a complex function <math>f</math> applied to a complex matrix <math>A</math> is at most twice the ] of <math>|f(z)|</math> over the ] of <math>A</math>.
* ]
* ] * ] on ]s of ]s over the integers.
* ] * ] that a group with ] 2 also has a 2-dimensional ] <math>K(G, 1)</math>.
* ] * ] on whether certain ]s are ].
* ] * ]: a specific case of the Farrell–Jones conjecture.
* ]<ref>{{cite journal |last1=Dowling |first1=T A |title=A class of geometric lattices based on finite groups|script-title= |trans-title= |url=https://www.sciencedirect.com/science/article/pii/S0095895673800073 |access-date=18 June 2021|department=Department of Statistics, ], Chapel Hill, NC 27514, USA & the Department of Mathematics, ], Columbus, Ohio 43210 |journal=Journal of Combinatorial Theory, Series B |type= |series=Institute of Statistics Mimeo Series No. 825 |year=1973 |language= |edition= |publication-date=February 1973 |volume=14 |issue=1 |pages=61–86 |doi=10.1016/S0095-8956(73)80007-3 |archive-url= |archive-date= |url-status=live |via=] |lay-url= |lay-source= |lay-date= |quote=Copyright © 2021 Elsevier B.V. or its licensors or contributors. https://www.elsevier.com/about/policies/open-access-licenses/elsevier-user-license, "A class of geometric lattices based on finite groups" was supported in part by the ] under Contract AFOSR-68-1415.}}</ref> * ]:<ref>{{cite journal |last1=Dowling |first1=T. A. |title=A class of geometric lattices based on finite groups|journal=] |series=Series B |date=February 1973 |volume=14 |issue=1 |pages=61–86 |doi=10.1016/S0095-8956(73)80007-3 | doi-access=free }}</ref> is every finite ] isomorphic to the ] of some finite ]?
* ] that the ] of a non-] is determined by the extent to which it, as a ], has ].
* ]
* ] * ]
* ] * ]: for every positive integer <math>k</math>, a ] of order <math>4k</math> exists.
* ] * ]: what is the largest ] of a matrix with entries all equal to 1 or -1?
* ] * ]: put ] on a rigorous foundation.
* ] * ]: what are the possible configurations of the ] of ]?
* ] * ]
* ] that the intersection of all powers of the ] of a left-and-right ] is precisely 0.
* ]
* ] * ]
* ] that if a ring has no ] other than <math>\{0\}</math>, then it has no nil ] other than <math>\{0\}</math>.
* ]
* ] that primes <math>p</math> do not divide the ] of the maximal real subfield of the <math>p</math>-th cyclotomic polynomial.
* ]
* Existence of ]s and associated ] * Existence of ]s and associated ]
* ] that every piecewise-polynomial <math>f:\mathbb{R}^{n}\rightarrow\mathbb{R}</math> is the maximum of a finite set of minimums of finite collections of polynomials.
* ]
* ] that for matroids of rank <math>n</math> with <math>n</math> disjoint bases <math>B_{i}</math>, it is possible to create an <math>n \times n</math> matrix whose rows are <math>B_{i}</math> and whose columns are also bases.
* ]
* ] that if a complex polynomial with degree at least <math>2</math> has all roots in the closed ], then each root is within distance <math>1</math> from some ].
* ]
* ] that if <math>G</math> is a ] ] over a perfect ] of ] at most <math>2</math>, then the ] set <math>H^{1}(F, G)</math> is zero.
* ]
* ] * ]
* ]: ]s of ] <math>g \geq 2</math> over ] <math>K</math> have at most some bounded number <math>N(K, g)</math> of <math>K</math>-]s.
* ]
* ]: Classification of pairs of ''n''×''n'' matrices under simultaneous conjugation and problems containing it such as a lot of classification problems * ]: classification of pairs of ''n''×''n'' matrices under simultaneous conjugation and problems containing it such as a lot of classification problems
* ] that for a ] <math>V</math> with ] <math>R</math>, if the ] of <math>R</math> are a ] over <math>R</math>, then <math>V</math> is ].
* ]
* Zauner's conjecture: existence of ]s in all dimensions * Zauner's conjecture: existence of ]s in all dimensions


Line 89: Line 111:
], which may or may not be a rational number.]] ], which may or may not be a rational number.]]
====Conjectures and problems==== ====Conjectures and problems====
* The ] on estimating the integral of powers of the moduli of the derivative of ]s into the open unit disk, on certain subsets of <math>\mathbb{C}</math>
* ]
* The ] on the transcendence of at least one of four exponentials of combinations of irrationals<ref name=waldschmidt>{{citation|pages=14, 16|url=https://books.google.com/books?id=Wrj0CAAAQBAJ&pg=PA14|title=Diophantine Approximation on Linear Algebraic Groups: Transcendence Properties of the Exponential Function in Several Variables|first=Michel|last=Waldschmidt|publisher=Springer|year=2013|isbn=9783662115695}}</ref> * The ] on the transcendence of at least one of four exponentials of combinations of irrationals<ref name=waldschmidt>{{citation|pages=14, 16|url=https://books.google.com/books?id=Wrj0CAAAQBAJ&pg=PA14|title=Diophantine Approximation on Linear Algebraic Groups: Transcendence Properties of the Exponential Function in Several Variables|first=Michel|last=Waldschmidt|publisher=Springer|year=2013|isbn=9783662115695}}</ref>
* ] – does every ] on a complex ] send some non-trivial ] subspace to itself?
* ]
* ]<ref>{{citation |last1=Kung |first1=H. T. |last2=Traub |first2=Joseph Frederick |author-link1=H. T. Kung |author-link2=Joseph F. Traub |title=Optimal order of one-point and multipoint iteration |journal=] |year=1974 |volume=21 |number=4 |pages=643–651|doi=10.1145/321850.321860 |s2cid=74921 }}</ref> * Kung–Traub conjecture on the optimal order of a multipoint iteration without memory<ref>{{citation |last1=Kung |first1=H. T. |last2=Traub |first2=Joseph Frederick |author-link1=H. T. Kung |author-link2=Joseph F. Traub |title=Optimal order of one-point and multipoint iteration |journal=] |year=1974 |volume=21 |number=4 |pages=643–651|doi=10.1145/321850.321860 |s2cid=74921 }}</ref>
* ] on the Mahler measure of non-cyclotomic polynomials<ref>{{citation | first=Chris | last=Smyth | chapter=The Mahler measure of algebraic numbers: a survey | pages=322–349 | editor1-first=James | editor1-last=McKee | editor2-last=Smyth | editor2-first=Chris | title=Number Theory and Polynomials | series=London Mathematical Society Lecture Note Series | volume=352 | publisher=] | year=2008 | isbn=978-0-521-71467-9 }}</ref> * ] on the Mahler measure of non-cyclotomic polynomials<ref>{{citation | first=Chris | last=Smyth | chapter=The Mahler measure of algebraic numbers: a survey | pages=322–349 | editor1-first=James | editor1-last=McKee | editor2-last=Smyth | editor2-first=Chris | title=Number Theory and Polynomials | series=London Mathematical Society Lecture Note Series | volume=352 | publisher=] | year=2008 | isbn=978-0-521-71467-9 }}</ref>
* The ] on the topology of domains for which some nonzero function has integrals that vanish over every congruent copy<ref>{{SpringerEOM|title=Pompeiu problem|id=Pompeiu_problem&oldid=14506|author-last1=Berenstein|author-first1=Carlos A.}}</ref> * The ] on the topology of domains for which some nonzero function has integrals that vanish over every congruent copy<ref>{{SpringerEOM|title=Pompeiu problem|id=Pompeiu_problem&oldid=14506|author-last1=Berenstein|author-first1=Carlos A.}}</ref>
* ] on the transcendence degree of exponentials of linearly independent irrationals<ref name=waldschmidt/> * ] on the transcendence degree of exponentials of linearly independent irrationals<ref name=waldschmidt/>
* ] * ] on compact subsets of <math>\mathbb{C}</math> with analytic capacity <math>0</math>


====Open questions==== ====Open questions====
* Are <math>\gamma</math> (the ]), ]&nbsp;+&nbsp;'']'', {{pi}}&nbsp;−&nbsp;''e'', {{pi}}''e'', {{pi}}/''e'', {{pi}}<sup>''e''</sup>, {{pi}}<sup>]</sup>, {{pi}}<sup>{{pi}}</sup>, ''e''<sup>{{pi}}<sup>2</sup></sup>, ]&nbsp;{{pi}}, 2<sup>''e''</sup>, ''e''<sup>''e''</sup>, ], or ]; rational, ] irrational, or ]? What is the ] of each of these numbers?<ref>For background on the numbers that are the focus of this problem, see articles by Eric W. Weisstein, on pi ( {{Webarchive|url=https://web.archive.org/web/20141206023912/http://mathworld.wolfram.com/Pi.html |date=2014-12-06 }}), e ( {{Webarchive|url=https://web.archive.org/web/20141121122615/http://mathworld.wolfram.com/e.html |date=2014-11-21 }}), Khinchin's Constant ( {{Webarchive|url=https://web.archive.org/web/20141105201509/http://mathworld.wolfram.com/KhinchinsConstant.html |date=2014-11-05 }}), irrational numbers ( {{Webarchive|url=https://web.archive.org/web/20150327024040/http://mathworld.wolfram.com/IrrationalNumber.html |date=2015-03-27 }}), transcendental numbers ( {{Webarchive|url=https://web.archive.org/web/20141113174913/http://mathworld.wolfram.com/TranscendentalNumber.html |date=2014-11-13 }}), and irrationality measures ( {{Webarchive|url=https://web.archive.org/web/20150421203736/http://mathworld.wolfram.com/IrrationalityMeasure.html |date=2015-04-21 }}) at Wolfram ''MathWorld'', all articles accessed 15 December 2014.</ref><ref>Michel Waldschmidt, 2008, "An introduction to irrationality and transcendence methods," at The University of Arizona The Southwest Center for Arithmetic Geometry 2008 Arizona Winter School, March 15–19, 2008 (Special Functions and Transcendence), see {{Webarchive|url=https://web.archive.org/web/20141216004531/http://webusers.imj-prg.fr/~michel.waldschmidt/articles/pdf/AWSLecture5.pdf |date=2014-12-16 }}, accessed 15 December 2014.</ref><ref>John Albert, posting date unknown, "Some unsolved problems in number theory" , in University of Oklahoma Math 4513 course materials, see {{Webarchive|url=https://web.archive.org/web/20140117150133/http://www2.math.ou.edu/~jalbert/courses/openprob2.pdf |date=2014-01-17 }}, accessed 15 December 2014.</ref> * Are <math>\gamma</math> (the ]), ]&nbsp;+&nbsp;'']'', {{pi}}&nbsp;−&nbsp;''e'', {{pi}}''e'', {{pi}}/''e'', {{pi}}<sup>''e''</sup>, {{pi}}<sup>]</sup>, {{pi}}<sup>{{pi}}</sup>, ''e''<sup>{{pi}}<sup>2</sup></sup>, ]&nbsp;{{pi}}, 2<sup>''e''</sup>, ''e''<sup>''e''</sup>, ], or ]; rational, ] irrational, or ]? What is the ] of each of these numbers?<ref>For background on the numbers that are the focus of this problem, see articles by Eric W. Weisstein, on pi ( {{Webarchive|url=https://web.archive.org/web/20141206023912/http://mathworld.wolfram.com/Pi.html |date=2014-12-06 }}), e ( {{Webarchive|url=https://web.archive.org/web/20141121122615/http://mathworld.wolfram.com/e.html |date=2014-11-21 }}), Khinchin's Constant ( {{Webarchive|url=https://web.archive.org/web/20141105201509/http://mathworld.wolfram.com/KhinchinsConstant.html |date=2014-11-05 }}), irrational numbers ( {{Webarchive|url=https://web.archive.org/web/20150327024040/http://mathworld.wolfram.com/IrrationalNumber.html |date=2015-03-27 }}), transcendental numbers ( {{Webarchive|url=https://web.archive.org/web/20141113174913/http://mathworld.wolfram.com/TranscendentalNumber.html |date=2014-11-13 }}), and irrationality measures ( {{Webarchive|url=https://web.archive.org/web/20150421203736/http://mathworld.wolfram.com/IrrationalityMeasure.html |date=2015-04-21 }}) at Wolfram ''MathWorld'', all articles accessed 15 December 2014.</ref><ref>Michel Waldschmidt, 2008, "An introduction to irrationality and transcendence methods," at The University of Arizona The Southwest Center for Arithmetic Geometry 2008 Arizona Winter School, March 15–19, 2008 (Special Functions and Transcendence), see {{Webarchive|url=https://web.archive.org/web/20141216004531/http://webusers.imj-prg.fr/~michel.waldschmidt/articles/pdf/AWSLecture5.pdf |date=2014-12-16 }}, accessed 15 December 2014.</ref><ref>John Albert, posting date unknown, "Some unsolved problems in number theory" , in University of Oklahoma Math 4513 course materials, see {{Webarchive|url=https://web.archive.org/web/20140117150133/http://www2.math.ou.edu/~jalbert/courses/openprob2.pdf |date=2014-01-17 }}, accessed 15 December 2014.</ref>
* What is the exact value of ], including ]? * What is the exact value of ], including ]?
* How are suspended infinite-infinitesimals paradoxes justified?


====Other==== ====Other====
Line 110: Line 133:
{{Main|Combinatorics}} {{Main|Combinatorics}}
====Conjectures and problems==== ====Conjectures and problems====
* The ]: does every finite ] that is not ] contain two elements ''x'' and ''y'' such that the probability that ''x'' appears before ''y'' in a random ] is between 1/3 and 2/3?<ref>{{citation * The ] does every finite ] that is not ] contain two elements ''x'' and ''y'' such that the probability that ''x'' appears before ''y'' in a random ] is between 1/3 and 2/3?<ref>{{citation
| last1 = Brightwell | first1 = Graham R. | last1 = Brightwell | first1 = Graham R.
| last2 = Felsner | first2 = Stefan | last2 = Felsner | first2 = Stefan
Line 124: Line 147:
| s2cid = 14793475 | s2cid = 14793475
}}.</ref> }}.</ref>
* ] - Open questions concerning ] * ] Open questions concerning ]
* The ]: if <math>k+1</math> runners with pairwise distinct speeds run round a track of unit length, will every runner be "lonely" (that is, be at least a distance <math>1/(k+1)</math> from each other runner) at some time?<ref>{{cite arxiv |first=Terence|last=Tao|author-link=Terence Tao|title=Some remarks on the lonely runner conjecture|year=2017|eprint=1701.02048|mode=cs2|class=math.CO}}</ref> * The ] if <math>k+1</math> runners with pairwise distinct speeds run round a track of unit length, will every runner be "lonely" (that is, be at least a distance <math>1/(k+1)</math> from each other runner) at some time?<ref>{{cite journal
| last=Tao | first=Terence | author-link=Terence Tao
| title=Some remarks on the lonely runner conjecture
| journal=Contributions to Discrete Mathematics
* ]
| volume=13
* Frankl's ]: for any family of sets closed under sums there exists an element (of the underlying space) belonging to half or more of the sets<ref>{{citation
| issue=2
| pages=1–31
| date=2018
| arxiv=1701.02048
| doi=10.11575/cdm.v13i2.62728 | doi-access=free}}</ref>
* The ]: can the number of <math>k</math> size sets required for the existence of a sunflower of <math>r</math> sets be bounded by an exponential function in <math>k</math> for every fixed <math>r>2</math>?
* ] – how many points can be placed in the <math>n \times n</math> grid so that no three of them lie on a line?
* Frankl's ] – for any family of sets closed under sums there exists an element (of the underlying space) belonging to half or more of the sets<ref>{{citation
| last1 = Bruhn | last1 = Bruhn
| first1 = Henning | first1 = Henning
Line 150: Line 183:


====Other==== ====Other====
* The values of the ]s <math>M(n)</math> for <math>n \ge 9</math>.<ref></ref> * The values of the ]s <math>M(n)</math> for <math>n \ge 9</math>.<ref>{{Cite web |url=http://www.sfu.ca/~tyusun/ThesisDedekind.pdf |title=Dedekind Numbers and Related Sequences |access-date=2020-04-30 |archive-date=2015-03-15 |archive-url=https://web.archive.org/web/20150315021125/http://www.sfu.ca/~tyusun/ThesisDedekind.pdf |url-status=dead }}</ref>
* Give a combinatorial interpretation of the ]s.<ref>{{citation * Give a combinatorial interpretation of the ]s.<ref>{{citation
| last = Murnaghan | first = F. D. | last = Murnaghan | first = F. D.
Line 174: Line 207:
* ] and ] – relating symplectic geometry to Morse theory * ] and ] – relating symplectic geometry to Morse theory
* ] * ]
* ] problem – is there an ] with simple Lebesgue spectrum?<ref>S. M. Ulam, Problems in Modern Mathematics. Science Editions John Wiley & Sons, Inc., New York, 1964, page 76.</ref>
* ]: if a billiard table is strictly convex and integrable, is its boundary necessarily an ellipse?<ref>{{cite journal |last1=Kaloshin |first1=Vadim |author-link1=Vadim Kaloshin |last2=Sorrentino |first2=Alfonso |title=On the local Birkhoff conjecture for convex billiards |doi=10.4007/annals.2018.188.1.6 |volume=188 |number=1 |year=2018 |pages=315–380 |journal=]|arxiv=1612.09194 |s2cid=119171182 }}</ref>
* ] conjecture – if a ] is strictly convex and integrable, is its boundary necessarily an ellipse?<ref>{{cite journal |last1=Kaloshin |first1=Vadim |author-link1=Vadim Kaloshin |last2=Sorrentino |first2=Alfonso |title=On the local Birkhoff conjecture for convex billiards |doi=10.4007/annals.2018.188.1.6 |volume=188 |number=1 |year=2018 |pages=315–380 |journal=]|arxiv=1612.09194 |s2cid=119171182 }}</ref>
* ] (3''n''&nbsp;+&nbsp;1 conjecture) * ] (3''n''&nbsp;+&nbsp;1 conjecture)
* Eremenko's conjecture that every component of the ] of an entire transcendental function is unbounded * ] conjecture that every component of the ] of an ] ] function is unbounded
* ] conjecture – Is every invariant and ] measure for the <math>\times 2,\times 3</math> action on the circle either Lebesgue or atomic? * ] conjecture – is every invariant and ] measure for the <math>\times 2,\times 3</math> action on the circle either Lebesgue or atomic?
* ] * ] on the dimension of an ] in terms of its ]s
* ] conjecture – Measure classification for diagonalizable actions in higher-rank groups * ] conjecture – measure classification for diagonalizable actions in higher-rank groups
* ] – Is the Mandelbrot set locally connected? * ] – is the Mandelbrot set locally connected?
* Many problems concerning an ], for example showing that outer billiards relative to almost every convex polygon have unbounded orbits. * Many problems concerning an ], for example showing that outer billiards relative to almost every convex polygon have unbounded orbits.
* ]<ref>{{citation |last=Sarnak |first=Peter |author-link=Peter Sarnak |title=Recent progress on the quantum unique ergodicity conjecture |journal=] |volume=48 |issue=2 |year=2011 |pages=211–228 |doi=10.1090/S0273-0979-2011-01323-4 |mr=2774090|doi-access=free }}</ref> * Quantum unique ergodicity conjecture on the distribution of large-frequency ]s of the ] on a ] ]<ref>{{citation |last=Sarnak |first=Peter |author-link=Peter Sarnak |title=Recent progress on the quantum unique ergodicity conjecture |journal=] |volume=48 |issue=2 |year=2011 |pages=211–228 |doi=10.1090/S0273-0979-2011-01323-4 |mr=2774090|doi-access=free }}</ref>
* ] multiple mixing problem – are all ] systems also strongly 3-mixing?<ref>Paul Halmos, Ergodic theory. Chelsea, New York, 1956.</ref>
* ] – Does a regular compact ] ] of a ] on a ] carry at least one periodic orbit of the Hamiltonian flow?
* ] – does a regular compact ] ] of a ] on a ] carry at least one periodic orbit of the Hamiltonian flow?


====Open questions==== ====Open questions====
Line 230: Line 265:
* ] * ]
* ] * ]
* ]<ref>{{cite journal|title=On two conjectures of Hartshorne's |last1=Barlet |first1=Daniel |last2=Peternell |first2=Thomas |last3=Schneider |first3=Michael |doi=10.1007/BF01453563 |journal=] |year=1990 |volume=286 |issue=1–3 |pages=13–25|s2cid=122151259 }}</ref> * Hartshorne's conjectures<ref>{{cite journal|title=On two conjectures of Hartshorne's |last1=Barlet |first1=Daniel |last2=Peternell |first2=Thomas |last3=Schneider |first3=Michael |doi=10.1007/BF01453563 |journal=] |year=1990 |volume=286 |issue=1–3 |pages=13–25|s2cid=122151259 }}</ref>
* The ] * ]
* ] * ]
* ] on an equivalence between ] and ]<ref>{{citation * ] on an equivalence between ] and ]<ref>{{citation
Line 249: Line 284:
* ] * ]
* ] * ]
* ]<ref>{{cite journal|last=Zariski |first=Oscar |author-link=Oscar Zariski |title=Some open questions in the theory of singularities |journal=] |volume=77 |issue=4 |year=1971 |pages=481–491 |doi=10.1090/S0002-9904-1971-12729-5 |mr=0277533|doi-access=free }}</ref> * Zariski multiplicity conjecture on the topological equisingularity and equimultiplicity of ] at ]<ref>{{cite journal|last=Zariski |first=Oscar |author-link=Oscar Zariski |title=Some open questions in the theory of singularities |journal=] |volume=77 |issue=4 |year=1971 |pages=481–491 |doi=10.1090/S0002-9904-1971-12729-5 |mr=0277533|doi-access=free }}</ref>


=====Other===== =====Other=====
* ] * Are infinite sequences of ] possible in dimensions greater than 3?
* ] in characteristic <math>p</math> * ] in characteristic <math>p</math>


Line 278: Line 313:
* ] * ]
* ] * ]
* ]: Find (explicit) necessary and sufficient conditions that determine when, given two periodic functions with the same period, the integral curve is closed.<ref>{{citation * Closed curve problem: Find (explicit) necessary and sufficient conditions that determine when, given two periodic functions with the same period, the integral curve is closed.<ref>{{citation
| last = Barros | first = Manuel | last = Barros | first = Manuel
| jstor = 2162098 | jstor = 2162098
Line 420: Line 455:
{{Main|Euclidean geometry}} {{Main|Euclidean geometry}}
=====Conjectures and problems===== =====Conjectures and problems=====
* The ]<ref>{{Citation | last1=Atiyah | first1=Michael | author1-link=Michael Atiyah | title=Configurations of points | doi=10.1098/rsta.2001.0840 | mr=1853626 | year=2001 | journal= Philosophical Transactions of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences| issn=1364-503X | volume=359 | issue=1784 | pages=1375–1387| bibcode=2001RSPTA.359.1375A | s2cid=55833332 }}</ref> * The ] on the invertibility of a certain <math>n</math>-by-<math>n</math> matrix depending on <math>n</math> points in <math>\mathbb{R}^{3}</math><ref>{{Citation | last1=Atiyah | first1=Michael | author1-link=Michael Atiyah | title=Configurations of points | doi=10.1098/rsta.2001.0840 | mr=1853626 | year=2001 | journal= Philosophical Transactions of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences| issn=1364-503X | volume=359 | issue=1784 | pages=1375–1387| bibcode=2001RSPTA.359.1375A | s2cid=55833332 }}</ref>
* ] – find the shortest route that is guaranteed to reach the boundary of a given shape, starting at an unknown point of the shape with unknown orientation<ref>{{citation|last1=Finch|first1=S. R.|last2=Wetzel|first2=J. E.|title=Lost in a forest|volume=11|issue=8|year=2004|journal=]|pages=645–654|mr=2091541|doi=10.2307/4145038|jstor=4145038}}</ref> * ] – find the shortest route that is guaranteed to reach the boundary of a given shape, starting at an unknown point of the shape with unknown orientation<ref>{{citation|last1=Finch|first1=S. R.|last2=Wetzel|first2=J. E.|title=Lost in a forest|volume=11|issue=8|year=2004|journal=]|pages=645–654|mr=2091541|doi=10.2307/4145038|jstor=4145038}}</ref>
* Danzer's problem and Conway's dead fly problem – do ]s of bounded density or bounded separation exist?<ref>{{citation|last1=Solomon|first1=Yaar|last2=Weiss|first2=Barak|arxiv=1406.3807|doi=10.24033/asens.2303|issue=5|journal=Annales Scientifiques de l'École Normale Supérieure|mr=3581810|pages=1053–1074|title=Dense forests and Danzer sets|volume=49|year=2016|s2cid=672315}}; {{citation|last=Conway|first=John H.|author-link=John Horton Conway|access-date=2019-02-12|publisher=]|title=Five $1,000 Problems (Update 2017)|url=https://oeis.org/A248380/a248380.pdf|archive-url=https://web.archive.org/web/20190213123825/https://oeis.org/A248380/a248380.pdf|archive-date=2019-02-13|url-status=live}}</ref> * Danzer's problem and Conway's dead fly problem – do ]s of bounded density or bounded separation exist?<ref>{{citation|last1=Solomon|first1=Yaar|last2=Weiss|first2=Barak|arxiv=1406.3807|doi=10.24033/asens.2303|issue=5|journal=Annales Scientifiques de l'École Normale Supérieure|mr=3581810|pages=1053–1074|title=Dense forests and Danzer sets|volume=49|year=2016|s2cid=672315}}; {{citation|last=Conway|first=John H.|author-link=John Horton Conway|access-date=2019-02-12|publisher=]|title=Five $1,000 Problems (Update 2017)|url=https://oeis.org/A248380/a248380.pdf|archive-url=https://web.archive.org/web/20190213123825/https://oeis.org/A248380/a248380.pdf|archive-date=2019-02-13|url-status=live}}</ref>
* ] that a convex body <math>K</math> in <math>n</math> dimensions containing a single lattice point in its interior as its ] cannot have volume greater than <math>(n+1)^{n}/n!</math>
* ]
* The {{not a typo|]}} – does there exist a two-dimensional shape that forms the ] for an ], but not for any periodic tiling?<ref>{{citation|last1=Socolar|first1=Joshua E. S.|last2=Taylor|first2=Joan M.|arxiv=1009.1419|doi=10.1007/s00283-011-9255-y|issue=1|journal=The Mathematical Intelligencer|mr=2902144|pages=18–28|title=Forcing nonperiodicity with a single tile|volume=34|year=2012|s2cid=10747746}}</ref> * The {{not a typo|]}} – does there exist a two-dimensional shape that forms the ] for an ], but not for any periodic tiling?<ref>{{citation|last1=Socolar|first1=Joshua E. S.|last2=Taylor|first2=Joan M.|arxiv=1009.1419|doi=10.1007/s00283-011-9255-y|issue=1|journal=The Mathematical Intelligencer|mr=2902144|pages=18–28|title=Forcing nonperiodicity with a single tile|volume=34|year=2012|s2cid=10747746}}</ref>
* ] that sets of Hausdorff dimension greater than <math>d/2</math> in <math>\mathbb{R}^d</math> must have a distance set of nonzero ]<ref>{{citation|last1=Arutyunyants|first1=G.|last2=Iosevich|first2=A.|editor-last=Pach|editor-first=János|editor-link=János Pach|contribution=Falconer conjecture, spherical averages and discrete analogs|doi=10.1090/conm/342/06127|mr=2065249|pages=15–24|publisher=Amer. Math. Soc., Providence, RI|series=Contemp. Math.|title=Towards a Theory of Geometric Graphs|volume=342|year=2004|isbn=9780821834848|doi-access=free}}</ref> * ] that sets of Hausdorff dimension greater than <math>d/2</math> in <math>\mathbb{R}^d</math> must have a distance set of nonzero ]<ref>{{citation|last1=Arutyunyants|first1=G.|last2=Iosevich|first2=A.|editor-last=Pach|editor-first=János|editor-link=János Pach|contribution=Falconer conjecture, spherical averages and discrete analogs|doi=10.1090/conm/342/06127|mr=2065249|pages=15–24|publisher=Amer. Math. Soc., Providence, RI|series=Contemp. Math.|title=Towards a Theory of Geometric Graphs|volume=342|year=2004|isbn=9780821834848|doi-access=free}}</ref>
* ], also known as ] – does every ] have an inscribed square?<ref name="matschke">{{citation|last=Matschke|first=Benjamin|date=2014|title=A survey on the square peg problem|journal=]|volume=61|issue=4|pages=346–352|doi=10.1090/noti1100|doi-access=free}}</ref> * ], also known as ] and the square peg problem – does every ] have an inscribed square?<ref name="matschke">{{citation|last=Matschke|first=Benjamin|date=2014|title=A survey on the square peg problem|journal=]|volume=61|issue=4|pages=346–352|doi=10.1090/noti1100|doi-access=free}}</ref>
* The ] –&nbsp;do <math>n</math>-dimensional sets that contain a unit line segment in every direction necessarily have ] and ] equal to <math>n</math>?<ref>{{citation|last1=Katz|first1=Nets|author1-link=Nets Katz|last2=Tao|first2=Terence|author2-link=Terence Tao|department=Proceedings of the 6th International Conference on Harmonic Analysis and Partial Differential Equations (El Escorial, 2000)|doi=10.5565/PUBLMAT_Esco02_07|issue=Vol. Extra|journal=Publicacions Matemàtiques|mr=1964819|pages=161–179|title=Recent progress on the Kakeya conjecture|year=2002|citeseerx=10.1.1.241.5335|s2cid=77088}}</ref> * The ] –&nbsp;do <math>n</math>-dimensional sets that contain a unit line segment in every direction necessarily have ] and ] equal to <math>n</math>?<ref>{{citation|last1=Katz|first1=Nets|author1-link=Nets Katz|last2=Tao|first2=Terence|author2-link=Terence Tao|department=Proceedings of the 6th International Conference on Harmonic Analysis and Partial Differential Equations (El Escorial, 2000)|doi=10.5565/PUBLMAT_Esco02_07|issue=Vol. Extra|journal=Publicacions Matemàtiques|mr=1964819|pages=161–179|title=Recent progress on the Kakeya conjecture|year=2002|citeseerx=10.1.1.241.5335|s2cid=77088}}</ref>
* The Kelvin problem on minimum-surface-area partitions of space into equal-volume cells, and the optimality of the ] as a solution to the Kelvin problem<ref>{{citation|title=The Kelvin Problem|editor-first=Denis|editor-last=Weaire|editor-link=Denis Weaire|publisher=CRC Press|year=1997|isbn=9780748406326|page=1|url=https://books.google.com/books?id=otokU4KQnXIC&pg=PA1}}</ref> * The Kelvin problem on minimum-surface-area partitions of space into equal-volume cells, and the optimality of the ] as a solution to the Kelvin problem<ref>{{citation|title=The Kelvin Problem|editor-first=Denis|editor-last=Weaire|editor-link=Denis Weaire|publisher=CRC Press|year=1997|isbn=9780748406326|page=1|url=https://books.google.com/books?id=otokU4KQnXIC&pg=PA1}}</ref>
Line 433: Line 468:
* ] – what is the smallest area of a shape that can cover every unit-length curve in the plane?<ref>{{citation|last1=Norwood|first1=Rick|author1-link=Rick Norwood|last2=Poole|first2=George|last3=Laidacker|first3=Michael|doi=10.1007/BF02187832|issue=2|journal=]|mr=1139077|pages=153–162|title=The worm problem of Leo Moser|volume=7|year=1992|doi-access=free}}</ref> * ] – what is the smallest area of a shape that can cover every unit-length curve in the plane?<ref>{{citation|last1=Norwood|first1=Rick|author1-link=Rick Norwood|last2=Poole|first2=George|last3=Laidacker|first3=Michael|doi=10.1007/BF02187832|issue=2|journal=]|mr=1139077|pages=153–162|title=The worm problem of Leo Moser|volume=7|year=1992|doi-access=free}}</ref>
* The ] – what is the largest area of a shape that can be maneuvered through a unit-width L-shaped corridor?<ref>{{citation|last=Wagner|first=Neal R.|date=1976|title=The Sofa Problem|journal=The American Mathematical Monthly|doi=10.2307/2977022|jstor=2977022|volume=83|issue=3|pages=188–189|url=http://www.cs.utsa.edu/~wagner/pubs/corner/corner_final.pdf|access-date=2014-05-14|archive-url=https://web.archive.org/web/20150420160001/http://www.cs.utsa.edu/~wagner/pubs/corner/corner_final.pdf|archive-date=2015-04-20|url-status=live}}</ref> * The ] – what is the largest area of a shape that can be maneuvered through a unit-width L-shaped corridor?<ref>{{citation|last=Wagner|first=Neal R.|date=1976|title=The Sofa Problem|journal=The American Mathematical Monthly|doi=10.2307/2977022|jstor=2977022|volume=83|issue=3|pages=188–189|url=http://www.cs.utsa.edu/~wagner/pubs/corner/corner_final.pdf|access-date=2014-05-14|archive-url=https://web.archive.org/web/20150420160001/http://www.cs.utsa.edu/~wagner/pubs/corner/corner_final.pdf|archive-date=2015-04-20|url-status=live}}</ref>
* Does every convex polyhedron have ]?<ref name=cyz>{{citation | first1=Ying | last1=Chai |first2=Liping | last2=Yuan | first3=Tudor | last3=Zamfirescu | title = Rupert Property of Archimedean Solids | journal = ] | volume = 125 | issue = 6 | pages = 497–504 | date = June–July 2018 | doi = 10.1080/00029890.2018.1449505| s2cid=125508192 }}</ref><ref name=styu>{{citation|title=An algorithmic approach to Rupert's problem|first1=Jakob|last1=Steininger|first2=Sergey|last2=Yurkevich| date = December 27, 2021 | arxiv=2112.13754}}</ref>
* ] – does every ] have a ], or simple edge-unfolding?<ref>{{citation|last1=Demaine|first1=Erik D.|author1-link=Erik Demaine|last2=O'Rourke|first2=Joseph|author2-link=Joseph O'Rourke (professor)|date=2007|title=Geometric Folding Algorithms: Linkages, Origami, Polyhedra|title-link=Geometric Folding Algorithms|publisher=Cambridge University Press|contribution=Chapter 22. Edge Unfolding of Polyhedra|pages=306–338}}</ref><ref>{{Cite journal|last=Ghomi|first=Mohammad|date=2018-01-01|title=D &quot;urer&apos;s Unfolding Problem for Convex Polyhedra|journal=Notices of the American Mathematical Society|volume=65|issue=1|pages=25–27|doi=10.1090/noti1609|issn=0002-9920|doi-access=free}}</ref> * ] – does every ] have a ], or simple edge-unfolding?<ref>{{citation|last1=Demaine|first1=Erik D.|author1-link=Erik Demaine|last2=O'Rourke|first2=Joseph|author2-link=Joseph O'Rourke (professor)|date=2007|title=Geometric Folding Algorithms: Linkages, Origami, Polyhedra|title-link=Geometric Folding Algorithms|publisher=Cambridge University Press|contribution=Chapter 22. Edge Unfolding of Polyhedra|pages=306–338}}</ref><ref>{{Cite journal|last=Ghomi|first=Mohammad|date=2018-01-01|title=D &quot;urer&apos;s Unfolding Problem for Convex Polyhedra|journal=Notices of the American Mathematical Society|volume=65|issue=1|pages=25–27|doi=10.1090/noti1609|issn=0002-9920|doi-access=free}}</ref>
* Is there a non-convex polyhedron without self-intersections with ], all of which share an edge with each other?
* The ] – what is the minimum energy configuration of <math>n</math> mutually-repelling particles on a unit sphere?<ref>{{citation|last=Whyte|first=L. L.|doi=10.2307/2306764|journal=The American Mathematical Monthly|mr=0050303|pages=606–611|title=Unique arrangements of points on a sphere|volume=59|issue=9|year=1952|jstor=2306764}}</ref> * The ] – what is the minimum energy configuration of <math>n</math> mutually-repelling particles on a unit sphere?<ref>{{citation|last=Whyte|first=L. L.|doi=10.2307/2306764|journal=The American Mathematical Monthly|mr=0050303|pages=606–611|title=Unique arrangements of points on a sphere|volume=59|issue=9|year=1952|jstor=2306764}}</ref>


Line 473: Line 510:
| title = 27th Annual European Symposium on Algorithms, ESA 2019, September 9-11, 2019, Munich/Garching, Germany | title = 27th Annual European Symposium on Algorithms, ESA 2019, September 9-11, 2019, Munich/Garching, Germany
| volume = 144 | volume = 144
| year = 2019| s2cid = 195791634 | year = 2019| isbn = 9783959771245
| s2cid = 195791634
}}</ref> }}</ref>
* The ] on coloring unions of cliques<ref>{{citation * The ] on coloring unions of cliques<ref>{{citation
Line 547: Line 585:
=====Conjectures and problems===== =====Conjectures and problems=====
* The ] that the crossing number can be lower-bounded by the crossing number of a ] with the same ]<ref>{{citation|first1=János|last1=Barát|first2=Géza|last2=Tóth|year=2010|title=Towards the Albertson Conjecture|arxiv=0909.0413|journal=Electronic Journal of Combinatorics|volume=17|issue=1|page=R73|bibcode=2009arXiv0909.0413B|doi-access=free|doi=10.37236/345}}.</ref> * The ] that the crossing number can be lower-bounded by the crossing number of a ] with the same ]<ref>{{citation|first1=János|last1=Barát|first2=Géza|last2=Tóth|year=2010|title=Towards the Albertson Conjecture|arxiv=0909.0413|journal=Electronic Journal of Combinatorics|volume=17|issue=1|page=R73|bibcode=2009arXiv0909.0413B|doi-access=free|doi=10.37236/345}}.</ref>
* ]<ref>{{citation |last1=Fulek |first1=Radoslav |last2=Pach |first2=János |authorlink2=János Pach |title=A computational approach to Conway's thrackle conjecture|journal=] |volume=44 |year=2011|issue=6–7 |pages=345–355 |mr=2785903 |doi=10.1016/j.comgeo.2011.02.001|doi-access=free|arxiv=1002.3904 }}.</ref>
* The ] on the book thickness of subdivisions<ref>{{citation|url=http://www.openproblemgarden.org/op/book_thickness_of_subdivisions|work=Open Problem Garden|title=Book Thickness of Subdivisions|access-date=2013-02-05|date=January 19, 2009|first=David|last=Wood|archive-url=https://web.archive.org/web/20130916170733/http://www.openproblemgarden.org/op/book_thickness_of_subdivisions|archive-date=September 16, 2013|url-status=live}}.</ref>
* ]<ref>{{citation |last1=Fulek |first1=R. |last2=Pach |first2=J. |title=A computational approach to Conway's thrackle conjecture|journal= Computational Geometry |volume=44 |year=2011|issue=6–7 |pages=345–355 |mr=2785903 |doi=10.1007/978-3-642-18469-7_21|arxiv=1002.3904 }}.</ref>
* ] that every planar graph can be drawn with integer edge lengths<ref>{{citation|title=Pearls in Graph Theory: A Comprehensive Introduction|title-link= Pearls in Graph Theory |series=Dover Books on Mathematics|last1=Hartsfield|first1=Nora|last2=Ringel|first2=Gerhard|author2-link=Gerhard Ringel|publisher=Courier Dover Publications|year=2013|isbn=978-0-486-31552-2|at=|mr=2047103}}.</ref> * ] that every planar graph can be drawn with integer edge lengths<ref>{{citation|title=Pearls in Graph Theory: A Comprehensive Introduction|title-link= Pearls in Graph Theory |series=Dover Books on Mathematics|last1=Hartsfield|first1=Nora|last2=Ringel|first2=Gerhard|author2-link=Gerhard Ringel|publisher=Courier Dover Publications|year=2013|isbn=978-0-486-31552-2|at=|mr=2047103}}.</ref>
* ] on projective-plane embeddings of graphs with planar covers<ref>{{citation | last = Hliněný | first = Petr | doi = 10.1007/s00373-010-0934-9 | issue = 4 | journal = ] | mr = 2669457 | pages = 525–536 | title = 20 years of Negami's planar cover conjecture | url = http://www.fi.muni.cz/~hlineny/papers/plcover20-gc.pdf | volume = 26 | year = 2010 | citeseerx = 10.1.1.605.4932 | s2cid = 121645 | access-date = 2016-10-04 | archive-url = https://web.archive.org/web/20160304030722/http://www.fi.muni.cz/~hlineny/papers/plcover20-gc.pdf | archive-date = 2016-03-04 | url-status = live }}.</ref> * ] on projective-plane embeddings of graphs with planar covers<ref>{{citation | last = Hliněný | first = Petr | doi = 10.1007/s00373-010-0934-9 | issue = 4 | journal = ] | mr = 2669457 | pages = 525–536 | title = 20 years of Negami's planar cover conjecture | url = http://www.fi.muni.cz/~hlineny/papers/plcover20-gc.pdf | volume = 26 | year = 2010 | citeseerx = 10.1.1.605.4932 | s2cid = 121645 | access-date = 2016-10-04 | archive-url = https://web.archive.org/web/20160304030722/http://www.fi.muni.cz/~hlineny/papers/plcover20-gc.pdf | archive-date = 2016-03-04 | url-status = live }}.</ref>
Line 580: Line 617:
| title = On toughness and Hamiltonicity of $2K_2$-free graphs | title = On toughness and Hamiltonicity of $2K_2$-free graphs
| volume = 75 | volume = 75
| year = 2014}}</ref> | year = 2014| s2cid = 1377980
}}</ref>
* The ] that every bridgeless graph has a family of cycles that includes each edge twice<ref>{{citation * The ] that every bridgeless graph has a family of cycles that includes each edge twice<ref>{{citation
| last = Jaeger | first = F. | last = Jaeger | first = F.
Line 622: Line 660:
*Characterise (non-)] ]s<ref name="KL15"/><ref name="K17"/><ref name="KP18"/><ref name="KP18-2"/> *Characterise (non-)] ]s<ref name="KL15"/><ref name="K17"/><ref name="KP18"/><ref name="KP18-2"/>
*Characterise ]s in terms of (induced) forbidden subgraphs.<ref name="KL15"/><ref name="K17"/><ref name="KP18"/><ref name="KP18-2"/> *Characterise ]s in terms of (induced) forbidden subgraphs.<ref name="KL15"/><ref name="K17"/><ref name="KP18"/><ref name="KP18-2"/>
*Characterise ] near-triangulations containing the complete graph ''K''<sub>4</sub> (such a characterisation is known for ''K''<sub>4</sub>-free planar graphs<ref name="Glen2019">{{cite arxiv |eprint=1605.01688|author1=Marc Elliot Glen|title=Colourability and word-representability of near-triangulations|class=math.CO|year=2016}}</ref>) *Characterise ] near-triangulations containing the complete graph ''K''<sub>4</sub> (such a characterisation is known for ''K''<sub>4</sub>-free planar graphs<ref name="Glen2019">{{cite arXiv |eprint=1605.01688|author1=Marc Elliot Glen|title=Colourability and word-representability of near-triangulations|class=math.CO|year=2016}}</ref>)
*Classify graphs with representation number 3, that is, graphs that can be ] using 3 copies of each letter, but cannot be represented using 2 copies of each letter<ref name="Kit2013-3-repr">]</ref> *Classify graphs with representation number 3, that is, graphs that can be ] using 3 copies of each letter, but cannot be represented using 2 copies of each letter<ref name="Kit2013-3-repr">]</ref>
*Is it true that out of all ]s, ]s require longest word-representants?<ref name="GKP18">{{cite journal|url = https://www.sciencedirect.com/science/article/pii/S0166218X18301045 | doi=10.1016/j.dam.2018.03.013 | volume=244 | title=On the representation number of a crown graph | year=2018 | journal=Discrete Applied Mathematics | pages=89–93 | last1 = Glen | first1 = Marc | last2 = Kitaev | first2 = Sergey | last3 = Pyatkin | first3 = Artem| arxiv=1609.00674 | s2cid=46925617 }}</ref> *Is it true that out of all ]s, ]s require longest word-representants?<ref name="GKP18">{{cite journal|url = https://www.sciencedirect.com/science/article/pii/S0166218X18301045 | doi=10.1016/j.dam.2018.03.013 | volume=244 | title=On the representation number of a crown graph | year=2018 | journal=Discrete Applied Mathematics | pages=89–93 | last1 = Glen | first1 = Marc | last2 = Kitaev | first2 = Sergey | last3 = Pyatkin | first3 = Artem| arxiv=1609.00674 | s2cid=46925617 }}</ref>
Line 630: Line 668:
==== Miscellaneous graph theory ==== ==== Miscellaneous graph theory ====
=====Conjectures and problems===== =====Conjectures and problems=====
* ]: which groups are Babai invariant groups?
* ]
* ] on upper bounds for sums of ] of ] of graphs in terms of their number of edges.
* ]: does there exist a ] with parameters (99,14,1,2)?<ref>{{citation * ]: does there exist a ] with parameters (99,14,1,2)?<ref>{{citation
| last = Conway | last = Conway
Line 688: Line 727:
| title = Graham's pebbling conjecture holds for the product of a graph and a sufficiently large complete bipartite graph | title = Graham's pebbling conjecture holds for the product of a graph and a sufficiently large complete bipartite graph
| volume = 11 | volume = 11
| year = 2019}}</ref> | year = 2019| s2cid = 204207428
}}</ref>
* The ] on the existence of implicit representations for slowly-growing ]<ref>{{citation|first=Jeremy P.|last=Spinrad|title=Efficient Graph Representations|year=2003|isbn=978-0-8218-2815-1|chapter=2. Implicit graph representation|pages=17–30|chapter-url=https://books.google.com/books?id=RrtXSKMAmWgC&pg=PA17}}.</ref> * The ] on the existence of implicit representations for slowly-growing ]<ref>{{citation|first=Jeremy P.|last=Spinrad|title=Efficient Graph Representations|year=2003|isbn=978-0-8218-2815-1|chapter=2. Implicit graph representation|pages=17–30|chapter-url=https://books.google.com/books?id=RrtXSKMAmWgC&pg=PA17}}.</ref>
* Jørgensen's conjecture that every 6-vertex-connected ''K''<sub>6</sub>-minor-free graph is an ]<ref>{{citation|url=http://www.openproblemgarden.org/op/jorgensens_conjecture|title=Jorgensen's Conjecture|work=Open Problem Garden|access-date=2016-11-13|archive-url=https://web.archive.org/web/20161114232136/http://www.openproblemgarden.org/op/jorgensens_conjecture|archive-date=2016-11-14|url-status=live}}.</ref> * Jørgensen's conjecture that every 6-vertex-connected ''K''<sub>6</sub>-minor-free graph is an ]<ref>{{citation|url=http://www.openproblemgarden.org/op/jorgensens_conjecture|title=Jorgensen's Conjecture|work=Open Problem Garden|access-date=2016-11-13|archive-url=https://web.archive.org/web/20161114232136/http://www.openproblemgarden.org/op/jorgensens_conjecture|archive-date=2016-11-14|url-status=live}}.</ref>
Line 759: Line 799:
| volume = 69 | volume = 69
| year = 2012| citeseerx = 10.1.1.159.7029 | year = 2012| citeseerx = 10.1.1.159.7029
| s2cid = 9120720
}}.</ref> }}.</ref>
* ]: how many edges can there be in a ] on a given number of vertices with no ] of a given size?
* ]


=====Open questions===== =====Open questions=====
Line 781: Line 822:


====Notebook problems==== ====Notebook problems====
* The ] is a collection of unsolved problems in group theory, first published in 1965 and updated many times since.<ref>{{citation * The Kourovka Notebook is a collection of unsolved problems in group theory, first published in 1965 and updated many times since.<ref>{{citation
| last1 = Khukhro | first1 = Evgeny I. | last1 = Khukhro | first1 = Evgeny I.
| last2 = Mazurov | first2 = Victor D. |author-link2 = Victor Mazurov | last2 = Mazurov | first2 = Victor D. |author-link2 = Victor Mazurov
Line 789: Line 830:
====Conjectures and problems==== ====Conjectures and problems====
* ] * ]
* ]<ref>{{citation |last=Aschbacher |first=Michael |author-link=Michael Aschbacher |title=On Conjectures of Guralnick and Thompson |journal=] |volume=135 |issue=2 |pages=277–343 |year=1990 |doi=10.1016/0021-8693(90)90292-V}}</ref> * Guralnick–Thompson conjecture on the composition factors of groups in genus-0 systems<ref>{{citation |last=Aschbacher |first=Michael |author-link=Michael Aschbacher |title=On Conjectures of Guralnick and Thompson |journal=] |volume=135 |issue=2 |pages=277–343 |year=1990 |doi=10.1016/0021-8693(90)90292-V}}</ref>
* ] * ]
* The ]: is every finite group the Galois group of a Galois extension of the rationals? * The ]: is every finite group the Galois group of a Galois extension of the rationals?
Line 808: Line 849:
* For which number fields does ] hold? * For which number fields does ] hold?
* Kueker's conjecture<ref>{{cite journal | last1 = Hrushovski | first1 = Ehud | year = 1989 | title = Kueker's conjecture for stable theories | journal = Journal of Symbolic Logic | volume = 54 | issue = 1| pages = 207–220 | doi=10.2307/2275025| jstor = 2275025 }}</ref> * Kueker's conjecture<ref>{{cite journal | last1 = Hrushovski | first1 = Ehud | year = 1989 | title = Kueker's conjecture for stable theories | journal = Journal of Symbolic Logic | volume = 54 | issue = 1| pages = 207–220 | doi=10.2307/2275025| jstor = 2275025 }}</ref>
* The Main Gap conjecture, e.g. for uncountable ], for ], and for <math>\aleph_1</math>-saturated models of a countable theory.<ref name=":0">Shelah S, ''Classification Theory'', North-Holland, 1990</ref> * The main gap conjecture, e.g. for uncountable ], for ], and for <math>\aleph_1</math>-saturated models of a countable theory.<ref name=":0">Shelah S, ''Classification Theory'', North-Holland, 1990</ref>
* Shelah's categoricity conjecture for <math>L_{\omega_1,\omega}</math>: If a sentence is categorical above the Hanf number then it is categorical in all cardinals above the Hanf number.<ref name=":0" /> * Shelah's categoricity conjecture for <math>L_{\omega_1,\omega}</math>: If a sentence is categorical above the Hanf number then it is categorical in all cardinals above the Hanf number.<ref name=":0" />
* Shelah's eventual categoricity conjecture: For every cardinal <math>\lambda</math> there exists a cardinal <math>\mu(\lambda)</math> such that if an ] K with LS(K)<= <math>\lambda</math> is categorical in a cardinal above <math>\mu(\lambda)</math> then it is categorical in all cardinals above <math>\mu(\lambda)</math>.<ref name=":0" /><ref>{{Cite book * Shelah's eventual categoricity conjecture: For every cardinal <math>\lambda</math> there exists a cardinal <math>\mu(\lambda)</math> such that if an ] K with LS(K)<= <math>\lambda</math> is categorical in a cardinal above <math>\mu(\lambda)</math> then it is categorical in all cardinals above <math>\mu(\lambda)</math>.<ref name=":0" /><ref>{{Cite book
Line 819: Line 860:
}}</ref> }}</ref>
* The stable field conjecture: every infinite field with a ] first-order theory is separably closed. * The stable field conjecture: every infinite field with a ] first-order theory is separably closed.
* The Stable Forking Conjecture for simple theories<ref>{{cite journal | last1 = Peretz | first1 = Assaf | year = 2006 | title = Geometry of forking in simple theories | journal = Journal of Symbolic Logic| volume = 71 | issue = 1| pages = 347–359 | doi=10.2178/jsl/1140641179| arxiv = math/0412356| s2cid = 9380215 }}</ref> * The stable forking conjecture for simple theories<ref>{{cite journal | last1 = Peretz | first1 = Assaf | year = 2006 | title = Geometry of forking in simple theories | journal = Journal of Symbolic Logic| volume = 71 | issue = 1| pages = 347–359 | doi=10.2178/jsl/1140641179| arxiv = math/0412356| s2cid = 9380215 }}</ref>
* ] * ]
* The universality problem for C-free graphs: For which finite sets C of graphs does the class of C-free countable graphs have a universal member under strong embeddings?<ref>{{cite journal |last1=Cherlin |first1=G. |last2=Shelah |first2=S. |date=May 2007 |title=Universal graphs with a forbidden subtree |journal=] |arxiv=math/0512218 |doi=10.1016/j.jctb.2006.05.008 |volume=97 |issue=3 |pages=293–333|s2cid=10425739 }}</ref> * The universality problem for C-free graphs: For which finite sets C of graphs does the class of C-free countable graphs have a universal member under strong embeddings?<ref>{{cite journal |last1=Cherlin |first1=G. |last2=Shelah |first2=S. |date=May 2007 |title=Universal graphs with a forbidden subtree |journal=] |arxiv=math/0512218 |doi=10.1016/j.jctb.2006.05.008 |volume=97 |issue=3 |pages=293–333|s2cid=10425739 }}</ref>
* The universality spectrum problem: Is there a first-order theory whose universality spectrum is minimum?<ref>Džamonja, Mirna, "Club guessing and the universal models." ''On PCF'', ed. M. Foreman, (Banff, Alberta, 2004).</ref> * The universality spectrum problem: Is there a first-order theory whose universality spectrum is minimum?<ref>Džamonja, Mirna, "Club guessing and the universal models." ''On PCF'', ed. M. Foreman, (Banff, Alberta, 2004).</ref>
* ] * ]


====Open questions==== ====Open questions====
Line 830: Line 871:
* Does a finitely presented homogeneous structure for a finite relational language have finitely many ]s? * Does a finitely presented homogeneous structure for a finite relational language have finitely many ]s?
* Does there exist an ] first order theory with a trans-exponential (rapid growth) function? * Does there exist an ] first order theory with a trans-exponential (rapid growth) function?
* If the class of atomic models of a complete first order theory is ] in the <math>\aleph_n</math>, is it categorical in every cardinal?<ref>{{cite book |last=Baldwin |first=John T. |date=July 24, 2009 |title=Categoricity |publisher=] |isbn=978-0-8218-4893-7 |url=http://www.math.uic.edu/~jbaldwin/pub/AEClec.pdf |access-date=February 20, 2014 |archive-url=https://web.archive.org/web/20100729073738/http://www.math.uic.edu/%7Ejbaldwin/pub/AEClec.pdf |archive-date=July 29, 2010 |url-status=live }}</ref><ref>{{cite journal |last=Shelah |first=Saharon |title=Introduction to classification theory for abstract elementary classes |url=http://front.math.ucdavis.edu/0903.3428|bibcode=2009arXiv0903.3428S |year=2009 |arxiv=0903.3428 }}</ref> * If the class of atomic models of a complete first order theory is ] in the <math>\aleph_n</math>, is it categorical in every cardinal?<ref>{{cite book |last=Baldwin |first=John T. |date=July 24, 2009 |title=Categoricity |publisher=] |isbn=978-0-8218-4893-7 |url=http://www.math.uic.edu/~jbaldwin/pub/AEClec.pdf |access-date=February 20, 2014 |archive-url=https://web.archive.org/web/20100729073738/http://www.math.uic.edu/%7Ejbaldwin/pub/AEClec.pdf |archive-date=July 29, 2010 |url-status=live }}</ref><ref>{{cite journal |last=Shelah |first=Saharon |title=Introduction to classification theory for abstract elementary classes |bibcode=2009arXiv0903.3428S |year=2009 |arxiv=0903.3428 }}</ref>
* Is every infinite, minimal field of characteristic zero ]? (Here, "minimal" means that every definable subset of the structure is finite or co-finite.) * Is every infinite, minimal field of characteristic zero ]? (Here, "minimal" means that every definable subset of the structure is finite or co-finite.)
* (BMTO) Is the Borel monadic theory of the real order decidable? (MTWO) Is the monadic theory of well-ordering consistently decidable?<ref>Gurevich, Yuri, "Monadic Second-Order Theories," in ], ], eds., ''Model-Theoretic Logics'' (New York: Springer-Verlag, 1985), 479–506.</ref> * (BMTO) Is the Borel monadic theory of the real order decidable? (MTWO) Is the monadic theory of well-ordering consistently decidable?<ref>Gurevich, Yuri, "Monadic Second-Order Theories," in ], ], eds., ''Model-Theoretic Logics'' (New York: Springer-Verlag, 1985), 479–506.</ref>
Line 845: Line 886:
==== General ==== ==== General ====
] because it is the sum of its proper positive divisors, 1, 2 and 3. It is not known how many perfect numbers there are, nor if any of them are odd.]] ] because it is the sum of its proper positive divisors, 1, 2 and 3. It is not known how many perfect numbers there are, nor if any of them are odd.]]

*]
=====Conjectures, problems and hypotheses=====
**]
***]
* ] * ]
** ] ** ]
** ] ** ]
*]
* ]
* ] * ]
* ]
* ] * ]
*]
**]
***]
*]
*]
* ]: existence of integers, (''n'',''m''), such that ''n''!&nbsp;+&nbsp;1&nbsp;=&nbsp;''m''<sup>2</sup> other than ''n''&nbsp;=&nbsp;4,&nbsp;5,&nbsp;7
* ] * ]
*]: if φ(''n'') divides ''n''&nbsp;−&nbsp;1, must ''n'' be prime?
* ]
* ]
* ] (a corollary to ], per ])
* Erdős–Moser problem: is 1<sup>1</sup> + 2<sup>1</sup> = 3<sup>1</sup> the only solution to the ]?
* ] * ]
* ] * ]
* ]
* ]
* The ] – how far can the number of integer points in a circle centered at the origin be from the area of the circle?
* ]
* ]
* ] * ]
* ] and its consequence, the ] for zeroes of the Riemann zeta function (see ])
* ]
* ] * ]
* Keating–Snaith conjecture concerning the asymptotics of an integral involving the Riemann zeta function<ref>{{citation
* ]
|last=Conrey |first=Brian |author-link=Brian Conrey
|doi=10.1090/bull/1525
|title=Lectures on the Riemann zeta function (book review)
|journal=]
|volume=53 |number=3 |pages=507–512 |year=2016|doi-access=free}}</ref>
* ] * ]
* ] and its consequence, the density hypothesis for zeroes of the Riemann zeta function (see ])
* ]
* Are there any 3×3 ]s with 9 positive ]s?
* Do any ]s exist?
* Find the set of ]s, exceptionally, is 10 a ]?
* ]
* Do any ] exist for ''n''&nbsp;>&nbsp;1?
* Do any ] exist for ''k''&nbsp;>&nbsp;4 and ''n''&nbsp;>&nbsp;1?
* ]
* ]
* ]: Are there any solutions other than these?

:<math>1^m+2^3=3^2\;</math>
:<math>2^5+7^2=3^4\;</math>
:<math>7^3 + 13^2=2^9\;</math>
:<math>2^7+17^3=71^2\;</math>
:<math>3^5+11^4=122^2\;</math>
:<math>33^8+1549034^2=15613^3\;</math>
:<math>1414^3+2213459^2=65^7\;</math>
:<math>9262^3+15312283^2=113^7\;</math>
:<math>17^7+76271^3=21063928^2\;</math>
:<math>43^8+96222^3=30042907^2\;</math>

* ]: existence of integers, (''n'',''m''), such that ''n''!&nbsp;+&nbsp;1&nbsp;=&nbsp;''m''<sup>2</sup> other than ''n''&nbsp;=&nbsp;4,&nbsp;5,&nbsp;7
* ]
* ] * ]
* ] * ]
* ] * ]
* ]
* ] (a corollary to ], per ])
* ]
* ]: if φ(''n'') divides ''n''−1, must ''n'' be prime?
* Are there any number ''n'' such that there is exactly one integer ''m'' such that φ(''m'') = ''n''?
* Are there infinitely many ]s?
* Are there any odd ]s?
* Are there any ]s other than powers of 2?
* Are there any ]s?
* Are there any odd ]s?
* Are there infinitely many ]?
* Are there any pairs of ] which have opposite parity?
* Are there any pairs of ] ]?
* Are there infinitely many ]?
* Are there any pairs of ] which have same parity?
* Are there infinitely many ] cycles?
* Are there any ] cycles with length 3?
* Are there any ] cycles such that not all numbers have same parity?
* Are there any quasi-] cycles with odd length?
* The ] – how far can the number of integer points in a circle centered at the origin be from the area of the circle?
* ], especially ] * ], especially ]
* ] * ]
* Is π a ] (its digits are "random")?<ref>{{cite web|url=http://www2.lbl.gov/Science-Articles/Archive/pi-random.html|title=Are the Digits of Pi Random? Berkeley Lab Researcher May Hold Key|access-date=2016-03-18|archive-url=https://web.archive.org/web/20160327035021/http://www2.lbl.gov/Science-Articles/Archive/pi-random.html|archive-date=2016-03-27|url-status=live}}</ref>
* ]
* ] * ]
* ]
* Find value of ]
* Do ]s exist?
* Which integers can be written as the ]?<ref>{{Cite arxiv |eprint = 1604.07746v1|last1 = Bruhn|first1 = Henning|title = Newer sums of three cubes|last2 = Schaudt|first2 = Oliver|class = math.NT|year = 2016}}</ref>
* Erdős–Moser problem: is 1<sup>1</sup> + 2<sup>1</sup> = 3<sup>1</sup> the only solution to the ]?
* Is there a ] with odd distinct moduli?<ref>{{citation
| last1 = Guo | first1 = Song
| last2 = Sun | first2 = Zhi-Wei
| doi = 10.1016/j.aam.2005.01.004
| issue = 2
| journal = Advances in Applied Mathematics
| mr = 2152886
| pages = 182–187
| title = On odd covering systems with distinct moduli
| volume = 35
| year = 2005| arxiv = math/0412217
| s2cid = 835158
}}</ref>
* ]: is there a finite upper bound on the multiplicities of the entries greater than 1 in ]?<ref>{{citation * ]: is there a finite upper bound on the multiplicities of the entries greater than 1 in ]?<ref>{{citation
| last = Singmaster | first = D. | author-link = David Singmaster | last = Singmaster | first = D. | author-link = David Singmaster
Line 950: Line 953:
| title = Markov's theorem and 100 years of the uniqueness conjecture | title = Markov's theorem and 100 years of the uniqueness conjecture
| year = 2013}}</ref> | year = 2013}}</ref>
* ]
* ] concerning the asymptotics of an integral involving the Riemann zeta function<ref>{{citation

|last=Conrey |first=Brian |author-link=Brian Conrey
=====Open questions=====
|doi=10.1090/bull/1525
* Are there infinitely many ]s?
|title=Lectures on the Riemann zeta function (book review)
*Do any ]s exist?
|journal=]
*Do ]s exist?
|volume=53 |number=3 |pages=507–512 |year=2016|doi-access=free}}</ref>
*Do any non-power of 2 ]s exist?
*Are there 65, 66, or 67 ]s?
* Are there any pairs of ] which have opposite parity?
* Are there any pairs of ] which have same parity?
* Are there any pairs of ] ]?
* Are there infinitely many ]?
* Are there infinitely many ]?
* Are there infinitely many ]s?
* Does every ] with an odd denominator have an ]?
* Do any ]s exist?
* Do any odd ]s exist?
* Do any odd ]s exist?
* Do any ] exist for ''n''&nbsp;>&nbsp;1?
* Is there a ] with odd distinct moduli?<ref>{{citation
| last1 = Guo | first1 = Song
| last2 = Sun | first2 = Zhi-Wei
| doi = 10.1016/j.aam.2005.01.004
| issue = 2
| journal = Advances in Applied Mathematics
| mr = 2152886
| pages = 182–187
| title = On odd covering systems with distinct moduli
| volume = 35
| year = 2005| arxiv = math/0412217
| s2cid = 835158
}}</ref>
* Is π a ] (its digits are "random")?<ref>{{cite web|url=http://www2.lbl.gov/Science-Articles/Archive/pi-random.html|title=Are the Digits of Pi Random? Berkeley Lab Researcher May Hold Key|access-date=2016-03-18|archive-url=https://web.archive.org/web/20160327035021/http://www2.lbl.gov/Science-Articles/Archive/pi-random.html|archive-date=2016-03-27|url-status=live}}</ref>
* Is 10 a ]?
* Can a 3×3 ] be constructed from 9 distinct perfect square numbers?{{cn|date=April 2022}}
* Which integers can be written as the ]?<ref>{{Cite arXiv |eprint = 1604.07746|last1 = Huisman |first1 = Sander G.|title = Newer sums of three cubes|class = math.NT|year = 2016}}</ref>
* ]

=====Other=====
* Find the value of the ]


==== Additive number theory ==== ==== Additive number theory ====
Line 1,003: Line 1,040:
{{Main|Prime numbers}} {{Main|Prime numbers}}
{{Prime number conjectures}} {{Prime number conjectures}}
] states that all even integers greater than 2 can be written as the sum of two primes. Here this is illustrated for the even integers from 4 to 28.]] ] states that all even integers greater than 2 can be written as the sum of two primes. Here this is illustrated for the even integers from 4 to 28.]]

* ]
=====Conjectures, problems and hypotheses=====
* ]
* ]
* ]
* ]
* ] * ]
* ] * ]
* ]
* The ] problem: is it possible to find an infinite sequence of distinct ]s such that the difference between consecutive numbers in the sequence is bounded?
* ], furthermore, is 127 the largest number satisfying all three conditions in New Mersenne conjecture?
* ]
* ]
* ]
* ] * ]
* ]
* ] * ]
* ]
* ]
* ]
* ]
* Fortune's conjecture: no ] is composite
* The ] problem: is it possible to find an infinite sequence of distinct ]s such that the difference between consecutive numbers in the sequence is bounded?
* ]
* ]
* ]
* Problems associated to ]
* ]
* ]
* ] * ]
* Is 78,557 the lowest ] (so-called ])?
* Are there infinitely many ]s?
* ]
* Does the ] hold for all natural numbers?

=====Open questions=====
* Are all ]s ]?
* Are all ]s ]?
* Are all ]s of prime index ]?
* Are there any composite ''c'' satisfying 2<sup>''c'' − 1</sup> ≡ 1 (mod ''c''<sup>2</sup>)?
* Are there any ]s?
* Are there any ]s in base 47?
* Are there infinitely many ]s?
* Are there infinitely many Carol primes?
* Are there infinitely many ]s?
* Are there infinitely many ]s? * Are there infinitely many ]s?
* Are there infinitely many ]s? * Are there infinitely many ]s?
* Are there infinitely many ]s?
* Are there infinitely many ]s?
* Are there infinitely many ]s?
* Are there infinitely many Kynea primes?
* Are there infinitely many ]s?
* Are there infinitely many ]s (]); equivalently, infinitely many even ]s? * Are there infinitely many ]s (]); equivalently, infinitely many even ]s?
* Are there any odd ]s? * Are there infinitely many ]s?
* Are there infinitely many ]s?
* Are there infinitely many ]s?
* Are there infinitely many ]s?
* Are there infinitely many ]s, and if so is their relative density <math>e^{-1/2}</math>?
* Are there infinitely many ]s?
* For any given (positive or negative) integer ''b'' which is not a ] and not of the form −4''k''<sup>4</sup> for integer ''k'', are there infinitely many generalized ] primes to base ''b''?
* Are there infinitely many ]s?
* Are there infinitely many ]s?
* For any given integer ''b'' ≥ 2, are there infinitely many generalized ]s base ''b'' (primes of the form ''n''×''b''<sup>''n''</sup>+1 with ''n'' ≥ ''b''−1)?
* For any given integer ''b'' ≥ 2, are there infinitely many generalized ]s base ''b'' (primes of the form ''n''×''b''<sup>''n''</sup>−1 with ''n'' ≥ ''b''−1)?
* Are there any primes ''p'' such that ''p''×2<sup>''p''</sup>+1 is also prime?
* Are there any generalized Cullen primes base 11 other than 10×11<sup>10</sup>+1?
* Are there any generalized Cullen primes base 13?
* Are there infinitely many ]s?
* Are there infinitely many ]s?
* For any given even integer ''b'' ≥ 2, are there infinitely many generalized ]s base ''b''?
* For any given even integer ''b'' ≥ 2, are there infinitely many generalized ]s base ''b''?
* Are there infinitely many ]s to every base? * Are there infinitely many ]s to every base?
* Are there infinitely many ]s?
* Are there infinitely many ]s?
* Are there infinitely many ]? * Are there infinitely many ]?
* Are there infinitely many ]s? * Are there infinitely many ]s?
* Are there infinitely many ]s? * Are there infinitely many ]s?
* Are there infinitely many ]s? * Are there infinitely many ]s?
* Are there infinitely many ]s? * Are there infinitely many ]s, and if so is their relative density <math>e^{-1/2}</math>?
* Are there infinitely many ]s? * Are there infinitely many ]s?
* Are there infinitely many ]?
* Do upper bound of lengths of ] of the 1st kind exists?
* Are there infinitely many ]s?
* Do upper bound of lengths of ] of the 2nd kind exists?
* Are all ]s of prime index ]?
* Are all ]s of prime index ]?
* Are all ]s of prime length ]?
* Are there infinitely many ]s? * Are there infinitely many ]s?
* Are there any Wieferich primes in bases 47, 72, 186, 187, 200, 203, 222, 231, ...?
* Are there any composite ''c'' satisfying 2<sup>''c'' − 1</sup> ≡ 1 (mod ''c''<sup>2</sup>)?
* For any given integer ''a'' > 0, are there infinitely many primes ''p'' such that ''a''<sup>''p'' − 1</sup> ≡ 1 (mod ''p''<sup>2</sup>)?<ref>{{cite book |last=Ribenboim |first=P. |author-link=Paulo Ribenboim |date=2006 |title=Die Welt der Primzahlen |edition=2nd |language=de |publisher=Springer |doi=10.1007/978-3-642-18079-8 |isbn=978-3-642-18078-1 |pages=242–243 |url=https://books.google.com/books?id=XMyzh-2SClUC&q=die+folgenden+probleme+sind+ungel%C3%B6st&pg=PA242|series=Springer-Lehrbuch }}</ref>
* Can a prime ''p'' satisfy 2<sup>''p''&nbsp;−&nbsp;1</sup> ≡ 1 (mod ''p''<sup>2</sup>) and 3<sup>''p''&nbsp;−&nbsp;1</sup>&nbsp;≡&nbsp;1&nbsp;(mod&nbsp;''p''<sup>2</sup>) simultaneously?<ref>{{cite arxiv |last=Dobson |first= J. B. |date=1 April 2017 |title=On Lerch's formula for the Fermat quotient |eprint=1103.3907v6|page=23|mode=cs2|class= math.NT }}</ref>
* Are there infinitely many ]s? * Are there infinitely many ]s?
* Are there infinitely many ]s? * Are there infinitely many ]s?
* Are there any ]s? * Are there infinitely many ]s?
* Can a prime ''p'' satisfy 2<sup>''p''&nbsp;−&nbsp;1</sup> ≡ 1 (mod ''p''<sup>2</sup>) and 3<sup>''p''&nbsp;−&nbsp;1</sup>&nbsp;≡&nbsp;1&nbsp;(mod&nbsp;''p''<sup>2</sup>) simultaneously?<ref>{{cite arXiv |last=Dobson |first= J. B. |date=1 April 2017 |title=On Lerch's formula for the Fermat quotient |eprint=1103.3907v6|page=23|mode=cs2|class= math.NT }}</ref>
* Are there infinitely many Wieferich-non-Wilson primes?
* Does every prime number appear in the ]?
* Are there infinitely many non-general primes?
* Find the smallest ]
* For any given integer ''a'' > 0, are there infinitely many ]s associated with the pair (''a'', −1)? (Specially, when ''a'' = 1, this is the Fibonacci-Wieferich primes, and when ''a'' = 2, this is the Pell-Wieferich primes) * For any given integer ''a'' > 0, are there infinitely many ]s associated with the pair (''a'', −1)? (Specially, when ''a'' = 1, this is the Fibonacci-Wieferich primes, and when ''a'' = 2, this is the Pell-Wieferich primes)
* For any given integer ''a'' > 0, are there infinitely many primes ''p'' such that ''a''<sup>''p'' − 1</sup> ≡ 1 (mod ''p''<sup>2</sup>)?<ref>{{cite book |last=Ribenboim |first=P. |author-link=Paulo Ribenboim |date=2006 |title=Die Welt der Primzahlen |edition=2nd |language=de |publisher=Springer |doi=10.1007/978-3-642-18079-8 |isbn=978-3-642-18078-1 |pages=242–243 |url=https://books.google.com/books?id=XMyzh-2SClUC&q=die+folgenden+probleme+sind+ungel%C3%B6st&pg=PA242|series=Springer-Lehrbuch }}</ref>
* For any given integer ''a'' which is not a square and does not equal to −1, are there infinitely many primes with ''a'' as a primitive root?
* For any given integer ''b'' which is not a perfect power and not of the form −4''k''<sup>4</sup> for integer ''k'', are there infinitely many ] primes to base ''b''?
* For any given integers ''k'' ≥ 1, ''b'' ≥ 2, ''c'' ≠ 0, with {{nowrap|1=gcd(''k'', ''c'') = 1}} and {{nowrap|1=gcd(''b'', ''c'') = 1,}} are there infinitely many primes of the form (''k''×''b''<sup>''n''</sup>+''c'')/gcd(''k''+''c'',''b''−1) with integer ''n'' ≥ 1?
* Is every ] 2<sup>2<sup>''n''</sup></sup>&nbsp;+&nbsp;1 composite for <math>n > 4</math>? * Is every ] 2<sup>2<sup>''n''</sup></sup>&nbsp;+&nbsp;1 composite for <math>n > 4</math>?
* Is generalized Fermat number 10<sup>2<sup>''n''</sup></sup>&nbsp;+&nbsp;1 composite for all <math>n > 1</math>?
* Is generalized half Fermat number (3<sup>2<sup>''n''</sup></sup>&nbsp;+&nbsp;1)/2 composite for all <math>n > 6</math>?
* Are all Fermat numbers ]?
* Is every ] 2<sup>2<sup>''n''</sup>−1</sup>&nbsp;−&nbsp;1 composite for <math>n > 7</math>?
* Are there any primes of the form “concatenate first ''n'' numbers in base 10”? Also for bases 4, 13, 18, 19, 22, 25.
* Are there infinitely many primes of the form “concatenate first ''n'' primes in base 10” (]s)?
* For any given integer ''a'' which is not a square and does not equal to −1, are there infinitely many primes with ''a'' as a primitive root?
* For any given positive integer ''a'' which is not a perfect power, are there infinitely many primes with ''a'' as smallest positive primitive root? Especially, are there any primes with 108, 150, or 160 as smallest positive primitive root?
* For any given negative integer ''a'' which is not a perfect power, are there infinitely many primes with ''a'' as largest negative primitive root?
* ]
* Is 991 the largest non-repunit ]?
* Is 999331 the largest non-repunit ]?
* Find and prove the set of non-repunit ]s in bases 4 to 160 (such set is proven only for bases 2 and 3)
* Find and prove the set of non-repunit ]s in bases 4 to 160 (such set is proven only for bases 2 and 3)
* Find the set of ]s in bases 30, 36, 40, 42, 44-46, 48, 50, 52, 54, 56-58, 60, 62-64, 66, 68-70, 72, 74-78, 80-82, 84-88, 90-160, ... (such set is known only for bases 2-29, 31-35, 37-39, 41, 43, 47, 49, 51, 53, 55, 59, 61, 65, 67, 71, 73, 79, 83, 89)
* Find the set of ]s in bases 17, 19, 21, 25-29, 31-41, 43-59, 61-160, ... (such set is known only for bases 2-16, 18, 20, 22-24, 30, 42, 60 (bases 13 and 23 need ] of ]s))
* Find the smallest ] in bases 30 and 36 to 160.
* Is 78,557 the lowest ] (so-called ])?
* Is 509,203 the lowest ]? * Is 509,203 the lowest ]?
* Is 271,129 the lowest ] which is prime?
* Is 125,050,976,086 the lowest ] to base 3?
* Is 63,064,644,938 the lowest ] to base 3?
* Is 66,741 the lowest ] to base 4?
* Is 39,939 the lowest ] to base 4 which is not square?
* Is 159,986 the lowest ] to base 5?
* Is 346,802 the lowest ] to base 5?
* Is 174,308 the lowest ] to base 6?
* Is 1,597 ] to base 6? (Equivalently, is 84,687 the lowest ] to base 6?)
* Find the smallest ] to base 2 to 160.
* Find the smallest ] to base 2 to 160.
* Is 3,316,923,598,096,294,713,661 the lowest ]?
* Is 237 the smallest ''k'' divisible by 3 such that ''k''×2<sup>''n''</sup>±1 are not twin primes for all ''n''?
* Are these ''n'' consecutive integers with exactly ''n'' divisors for ''n'' = 24 and 120? (such numbers are known not exist for all ''n'' except 1, 2, 12, 24, and 120, and for ''n'' = 1, 2, 12, there are known numbers starts with 1, 2, 99949636937406199604777509122843, respectively) (this would follow from ])
* Consider the prime race mod q (where q ≥ 2) between qn+1 and qn-1. Find the first value where qn+1 first takes lead over qn-1 for q = 12 and 24 (such values are known for all q≤1000 except 12 and 24)
* Is 3<sup>541</sup>−1 the largest number ''n'' such that all of ''n'' and ''n''±1 have ]s?
* For any given integers ''k'' ≥ 1, ''b'' ≥ 2, ''c'' ≠ 0, with gcd(''k'', ''c'') = 1 and gcd(''b'', ''c'') = 1, are there infinitely many primes of the form (''k''×''b''<sup>''n''</sup>+''c'')/gcd(''k''+''c'',''b''−1) with integer ''n'' ≥ 1?
* Fortune's conjecture (that no ] is composite)
* ]
* ]
* Does every prime number appear in the ]?
* Does the ] hold for all natural numbers?
* ]
* Problems associated to ]
* Find the smallest ]


=== Set theory === === Set theory ===
{{Main|Set theory}} {{Main|Set theory}}


Note: These conjectures are about ] of ] with ], and may not be able to be expressed in models of other set theories such as the various ] or ]. Note: These conjectures are about ] of ] with ], and may not be able to be expressed in models of other set theories such as the various ] or ].


====Conjectures, problems, and hypotheses==== ====Conjectures, problems, and hypotheses====
* (]) Does the ] below a ] imply the ] everywhere? * (]) Does the ] below a ] imply the ] everywhere?
* Does the ] entail ] for every ] <math>\lambda</math>? * Does the ] entail ] for every ] <math>\lambda</math>?
* Does the ] imply the existence of an ]? * Does the ] imply the existence of an ]?
* If ℵ<sub>ω</sub> is a strong limit cardinal, then 2<sup>ℵ<sub>ω</sub></sup> < ℵ<sub>ω<sub>1</sub></sub> (see ]). The best bound, ℵ<sub>ω<sub>4</sub></sub>, was obtained by ] using his ]. * If ℵ<sub>ω</sub> is a strong limit cardinal, then 2<sup>ℵ<sub>ω</sub></sup> < ℵ<sub>ω<sub>1</sub></sub> (see ]). The best bound, ℵ<sub>ω<sub>4</sub></sub>, was obtained by ] using his ].
* The problem of finding the ultimate ], one that contains all ]. * The problem of finding the ultimate ], one that contains all ].
Line 1,128: Line 1,125:
* Does the ] of the existence of a ] imply the consistent existence of a ]? * Does the ] of the existence of a ] imply the consistent existence of a ]?
* Does there exist a ] on ℵ<sub>ω</sub>? * Does there exist a ] on ℵ<sub>ω</sub>?
* Is OCA (]) consistent with <math>2^{\aleph_{0}}>\aleph_{2}</math>? * Is OCA (the ]) consistent with <math>2^{\aleph_{0}}>\aleph_{2}</math>?
* Without assuming the ], can a ] ''V''→''V'' exist? * Without assuming the ], can a ] ''V''→''V'' exist?


Line 1,140: Line 1,137:
* ] * ]
* ] * ]
* ]<ref>{{citation |last=Mazur |first=Barry |author-link=Barry Mazur |title=The topology of rational points |journal=] |volume=1 |number=1 |year=1992 |pages=35–45 |doi=10.1080/10586458.1992.10504244 |url=https://projecteuclid.org/euclid.em/1048709114 |access-date=2019-04-07 |archive-url=https://web.archive.org/web/20190407161124/https://projecteuclid.org/euclid.em/1048709114 |archive-date=2019-04-07 |url-status=live |doi-broken-date=31 May 2021 }}</ref> * Mazur's conjectures<ref>{{citation |last=Mazur |first=Barry |author-link=Barry Mazur |title=The topology of rational points |journal=] |volume=1 |number=1 |year=1992 |pages=35–45 |doi=10.1080/10586458.1992.10504244 |url=https://projecteuclid.org/euclid.em/1048709114 |access-date=2019-04-07 |archive-url=https://web.archive.org/web/20190407161124/https://projecteuclid.org/euclid.em/1048709114 |archive-date=2019-04-07 |url-status=live |doi-broken-date=28 February 2022 }}</ref>
* ] * ]
* ] * ]
Line 1,156: Line 1,153:
===Analysis=== ===Analysis===
* ] (], ] and ], 2013)<ref name=Casazza2006>{{cite book|last1=Casazza|first1=Peter G.|last2=Fickus|first2=Matthew|last3=Tremain|first3=Janet C.|last4=Weber|first4=Eric|editor1-last=Han|editor1-first=Deguang|editor2-last=Jorgensen|editor2-first=Palle E. T.|editor3-last=Larson|editor3-first=David Royal|contribution=The Kadison-Singer problem in mathematics and engineering: A detailed account|series=Contemporary Mathematics|date=2006|volume=414|pages=299–355|contribution-url=https://books.google.com/books?id=9b-4uqEGJdoC&pg=PA299|access-date=24 April 2015|title=Large Deviations for Additive Functionals of Markov Chains: The 25th Great Plains Operator Theory Symposium, June 7–12, 2005, University of Central Florida, Florida|publisher=American Mathematical Society.|isbn=978-0-8218-3923-2|doi=10.1090/conm/414/07820}}</ref><ref name=SIAM02.2014>{{cite news|last1=Mackenzie|first1=Dana|title=Kadison–Singer Problem Solved|url=https://www.siam.org/pdf/news/2123.pdf|access-date=24 April 2015|work=SIAM News|issue=January/February 2014|publisher=]|archive-url=https://web.archive.org/web/20141023120958/http://www.siam.org/pdf/news/2123.pdf|archive-date=23 October 2014|url-status=live}}</ref> (and the ], Anderson’s paving conjectures, Weaver’s discrepancy theoretic <math>KS_r</math> and <math>KS'_r</math> conjectures, Bourgain-Tzafriri conjecture and <math>R_\epsilon</math>-conjecture) * ] (], ] and ], 2013)<ref name=Casazza2006>{{cite book|last1=Casazza|first1=Peter G.|last2=Fickus|first2=Matthew|last3=Tremain|first3=Janet C.|last4=Weber|first4=Eric|editor1-last=Han|editor1-first=Deguang|editor2-last=Jorgensen|editor2-first=Palle E. T.|editor3-last=Larson|editor3-first=David Royal|contribution=The Kadison-Singer problem in mathematics and engineering: A detailed account|series=Contemporary Mathematics|date=2006|volume=414|pages=299–355|contribution-url=https://books.google.com/books?id=9b-4uqEGJdoC&pg=PA299|access-date=24 April 2015|title=Large Deviations for Additive Functionals of Markov Chains: The 25th Great Plains Operator Theory Symposium, June 7–12, 2005, University of Central Florida, Florida|publisher=American Mathematical Society.|isbn=978-0-8218-3923-2|doi=10.1090/conm/414/07820}}</ref><ref name=SIAM02.2014>{{cite news|last1=Mackenzie|first1=Dana|title=Kadison–Singer Problem Solved|url=https://www.siam.org/pdf/news/2123.pdf|access-date=24 April 2015|work=SIAM News|issue=January/February 2014|publisher=]|archive-url=https://web.archive.org/web/20141023120958/http://www.siam.org/pdf/news/2123.pdf|archive-date=23 October 2014|url-status=live}}</ref> (and the ], Anderson’s paving conjectures, Weaver’s discrepancy theoretic <math>KS_r</math> and <math>KS'_r</math> conjectures, Bourgain-Tzafriri conjecture and <math>R_\epsilon</math>-conjecture)
* ] (], 2004)<ref name="Agol">{{cite arXiv | eprint = math/0405568|last1 = Agol |first1 = Ian|title = Tameness of hyperbolic 3-manifolds|year = 2004}}</ref>
* ] (Krzysztof Kurdyka, Tadeusz Mostowski, Adam Parusinski, 1999)<ref>{{Cite journal
| arxiv=math/9906212
| last1=Kurdyka | first1=Krzysztof
| last2=Mostowski | first2=Tadeusz
| last3=Parusiński | first3=Adam
| title = Proof of the gradient conjecture of R. Thom
| journal=Annals of Mathematics
| pages=763–792
| volume=152
| date=2000
| issue=3
| doi=10.2307/2661354| jstor=2661354 | s2cid=119137528 }}</ref>


===Combinatorics=== ===Combinatorics===
* ] (Joel Moreira, Florian Richter, Donald Robertson, 2018)<ref>{{Cite journal |last1=Moreira |first1=Joel |last2=Richter |first2=Florian K. |last3=Robertson |first3=Donald |title=A proof of a sumset conjecture of Erdős |journal=] |doi=10.4007/annals.2019.189.2.4 |volume=189 |number=2 |pages=605–652 |language=en-US|year=2019 |arxiv=1803.00498 |s2cid=119158401 }}</ref> * ] (Joel Moreira, Florian Richter, Donald Robertson, 2018)<ref>{{Cite journal |last1=Moreira |first1=Joel |last2=Richter |first2=Florian K. |last3=Robertson |first3=Donald |title=A proof of a sumset conjecture of Erdős |journal=] |doi=10.4007/annals.2019.189.2.4 |volume=189 |number=2 |pages=605–652 |language=en-US|year=2019 |arxiv=1803.00498 |s2cid=119158401 }}</ref>
* ] on the possible numbers of faces of different dimensions in a simplicial sphere (also Grünbaum conjecture, several conjectures of Kühnel) (Karim Adiprasito, 2018)<ref>{{citation|last=Stanley|first=Richard P.|editor1-last=Bisztriczky|editor1-first=T.|editor2-last=McMullen|editor2-first=P.|editor3-last=Schneider|editor3-first=R.|editor4-last=Weiss|editor4-first=A. Ivić|contribution=A survey of Eulerian posets|location=Dordrecht|mr=1322068|pages=301–333|publisher=Kluwer Academic Publishers|series=NATO Advanced Science Institutes Series C: Mathematical and Physical Sciences|title=Polytopes: abstract, convex and computational (Scarborough, ON, 1993)|volume=440|year=1994}}. See in particular .</ref><ref>{{cite web |last1=Kalai |first1=Gil |title=Amazing: Karim Adiprasito proved the g-conjecture for spheres! |url=https://gilkalai.wordpress.com/2018/12/25/amazing-karim-adiprasito-proved-the-g-conjecture-for-spheres/ |access-date=2019-02-15 |archive-url=https://web.archive.org/web/20190216031650/https://gilkalai.wordpress.com/2018/12/25/amazing-karim-adiprasito-proved-the-g-conjecture-for-spheres/ |archive-date=2019-02-16 |url-status=live |date=2018-12-25 }}</ref> * ] on the possible numbers of faces of different dimensions in a simplicial sphere (also Grünbaum conjecture, several conjectures of Kühnel) (Karim Adiprasito, 2018)<ref>{{citation|last=Stanley|first=Richard P.|editor1-last=Bisztriczky|editor1-first=T.|editor2-last=McMullen|editor2-first=P.|editor3-last=Schneider|editor3-first=R.|editor4-last=Weiss|editor4-first=A. Ivić|contribution=A survey of Eulerian posets|location=Dordrecht|mr=1322068|pages=301–333|publisher=Kluwer Academic Publishers|series=NATO Advanced Science Institutes Series C: Mathematical and Physical Sciences|title=Polytopes: abstract, convex and computational (Scarborough, ON, 1993)|volume=440|year=1994}}. See in particular .</ref><ref>{{cite web |last1=Kalai |first1=Gil |title=Amazing: Karim Adiprasito proved the g-conjecture for spheres! |url=https://gilkalai.wordpress.com/2018/12/25/amazing-karim-adiprasito-proved-the-g-conjecture-for-spheres/ |access-date=2019-02-15 |archive-url=https://web.archive.org/web/20190216031650/https://gilkalai.wordpress.com/2018/12/25/amazing-karim-adiprasito-proved-the-g-conjecture-for-spheres/ |archive-date=2019-02-16 |url-status=live |date=2018-12-25 }}</ref>
* ] (], 2010)<ref>{{cite journal |last=Santos |first=Franciscos |date=2012 |title=A counterexample to the Hirsch conjecture |journal=Annals of Mathematics |volume=176 |issue=1 |pages=383–412 |doi=10.4007/annals.2012.176.1.7 |arxiv=1006.2814 |s2cid=15325169 }}</ref><ref>{{cite journal |last=Ziegler |first=Günter M. |date=2012 |title=Who solved the Hirsch conjecture? |journal=Documenta Mathematica |volume=Extra Volume "Optimization Stories" |pages=75–85 |url=http://www.math.uiuc.edu/documenta/vol-ismp/22_ziegler-guenter.html |access-date=2015-03-25 |archive-url=https://web.archive.org/web/20150402161541/http://www.math.uiuc.edu/documenta/vol-ismp/22_ziegler-guenter.html |archive-date=2015-04-02 |url-status=dead }}</ref> * ] (], 2010)<ref>{{cite journal |last=Santos |first=Franciscos |date=2012 |title=A counterexample to the Hirsch conjecture |journal=Annals of Mathematics |volume=176 |issue=1 |pages=383–412 |doi=10.4007/annals.2012.176.1.7 |arxiv=1006.2814 |s2cid=15325169 }}</ref><ref>{{cite journal |last=Ziegler |first=Günter M. |date=2012 |title=Who solved the Hirsch conjecture? |journal=Documenta Mathematica |volume=Extra Volume "Optimization Stories" |pages=75–85 | url=https://www.math.uni-bielefeld.de/documenta/vol-ismp/22_ziegler-guenter.html}}</ref>
* ] (] and ], 2004)<ref>{{cite journal |last1=Chung |first1=Fan |last2=Greene |first2=Curtis |last3=Hutchinson |first3=Joan |date=April 2015 |title=Herbert S. Wilf (1931–2012) |journal=] |volume=62 |issue=4 |page=358 |issn=1088-9477 |oclc=34550461 |quote=The conjecture was finally given an exceptionally elegant proof by A. Marcus and G. Tardos in 2004. |doi=10.1090/noti1247 |doi-access=free }}</ref> (and also the Alon–Friedgut conjecture)
* ] (], 2003, Carlos di Fiore, 2003)<ref>{{cite journal|title=Kemnitz' conjecture revisited | doi=10.1016/j.disc.2005.02.018 |doi-access=free| volume=297|issue=1–3 |journal=Discrete Mathematics|pages=196–201|year=2005 | last1 = Savchev | first1 = Svetoslav}}</ref>
* ] (], 2003, Alexander Sapozhenko, 2003)<ref>{{cite journal | last = Green | first = Ben | author-link = Ben J. Green | arxiv = math.NT/0304058 | doi = 10.1112/S0024609304003650 | issue = 6 | journal = The Bulletin of the London Mathematical Society | mr = 2083752 | pages = 769–778 | title = The Cameron–Erdős conjecture | volume = 36 | year = 2004| s2cid = 119615076 }}</ref><ref>{{cite web |url=https://www.ams.org/news?news_id=155 |title=News from 2007 |author=<!--Staff writer(s); no by-line.--> |date=31 December 2007 |website=American Mathematical Society |publisher=AMS |access-date=2015-11-13 |quote=The 2007 prize also recognizes Green for "his many outstanding results including his resolution of the Cameron-Erdős conjecture..." |archive-url=https://web.archive.org/web/20151117030726/http://www.ams.org/news?news_id=155 |archive-date=17 November 2015 |url-status=live }}</ref>


===Dynamical systems=== ===Dynamical systems===
* ] (Jinxin Xue, 2014)<ref name="Xue1">{{Cite document|title=Noncollision Singularities in a Planar Four-body Problem|last=Xue|first=Jinxin|date=2014|arxiv = 1409.0048}}</ref><ref name="Xue2">{{Cite journal|title=Non-collision singularities in a planar 4-body problem|last=Xue|first=Jinxin|date=2020|journal=]|volume=224|issue=2|pages=253–388|doi=10.4310/ACTA.2020.v224.n2.a2}}</ref> * ] (Jinxin Xue, 2014)<ref name="Xue1">{{Cite document|title=Noncollision Singularities in a Planar Four-body Problem|last=Xue|first=Jinxin|date=2014|arxiv = 1409.0048}}</ref><ref name="Xue2">{{Cite journal|title=Non-collision singularities in a planar 4-body problem|last=Xue|first=Jinxin|date=2020|journal=]|volume=224|issue=2|pages=253–388|doi=10.4310/ACTA.2020.v224.n2.a2|s2cid=226420221}}</ref>


===Game theory=== ===Game theory===
* The ] (Various independent proofs, 2006)<ref>{{Cite web |url=http://homepages.warwick.ac.uk/~masgak/papers/bhb-angel.pdf |title=The angel game in the plane |first=Brian H. |last=Bowditch|date=2006|location=School of Mathematics, ] |publisher=warwick.ac.uk ]|access-date=2016-03-18 |archive-url=https://web.archive.org/web/20160304185616/http://homepages.warwick.ac.uk/~masgak/papers/bhb-angel.pdf |archive-date=2016-03-04 |url-status=live }}</ref><ref>{{Cite web |url=http://home.broadpark.no/~oddvark/angel/Angel.pdf |title=A Solution to the Angel Problem |first=Oddvar |last=Kloster |location=<small>SINTEF ICT</small>, Postboks 124 Blindern, 0314 Oslo, Norway|access-date=2016-03-18 |archive-url=https://web.archive.org/web/20160107125925/http://home.broadpark.no/~oddvark/angel/Angel.pdf |archive-date=2016-01-07 |url-status=dead }}</ref><ref>{{Cite journal |url=http://homepages.warwick.ac.uk/~masibe/angel-mathe.pdf |title=The Angel of power 2 wins |first=Andras |last=Mathe |date=2007|journal=] |volume=16 |number=3|pages= 363–374|doi=10.1017/S0963548306008303 |s2cid=16892955 |access-date=2016-03-18 |archive-url=https://web.archive.org/web/20161013034302/http://homepages.warwick.ac.uk/~masibe/angel-mathe.pdf |archive-date=2016-10-13 |url-status=live }}</ref><ref>{{Cite web |url=http://www.cs.bu.edu/~gacs/papers/angel.pdf |title=<small>THE ANGEL WINS</small> |first=Peter |last=Gacs |access-date=2016-03-18 |archive-url=https://web.archive.org/web/20160304030433/http://www.cs.bu.edu/~gacs/papers/angel.pdf |archive-date=2016-03-04 |url-status=live }}</ref> * The ] (Various independent proofs, 2006)<ref>{{Cite web |url=http://homepages.warwick.ac.uk/~masgak/papers/bhb-angel.pdf |title=The angel game in the plane |first=Brian H. |last=Bowditch|date=2006|location=School of Mathematics, ] |publisher=warwick.ac.uk ]|access-date=2016-03-18 |archive-url=https://web.archive.org/web/20160304185616/http://homepages.warwick.ac.uk/~masgak/papers/bhb-angel.pdf |archive-date=2016-03-04 |url-status=live }}</ref><ref>{{Cite web |url=http://home.broadpark.no/~oddvark/angel/Angel.pdf |title=A Solution to the Angel Problem |first=Oddvar |last=Kloster |location=SINTEF ICT, Postboks 124 Blindern, 0314 Oslo, Norway|access-date=2016-03-18 |archive-url=https://web.archive.org/web/20160107125925/http://home.broadpark.no/~oddvark/angel/Angel.pdf |archive-date=2016-01-07 |url-status=dead }}</ref><ref>{{Cite journal |url=http://homepages.warwick.ac.uk/~masibe/angel-mathe.pdf |title=The Angel of power 2 wins |first=Andras |last=Mathe |date=2007|journal=] |volume=16 |number=3|pages= 363–374|doi=10.1017/S0963548306008303 |s2cid=16892955 |access-date=2016-03-18 |archive-url=https://web.archive.org/web/20161013034302/http://homepages.warwick.ac.uk/~masibe/angel-mathe.pdf |archive-date=2016-10-13 |url-status=live }}</ref><ref>{{Cite web |url=http://www.cs.bu.edu/~gacs/papers/angel.pdf |title=THE ANGEL WINS |first=Peter |last=Gacs |access-date=2016-03-18 |archive-url=https://web.archive.org/web/20160304030433/http://www.cs.bu.edu/~gacs/papers/angel.pdf |archive-date=2016-03-04 |url-status=live }}</ref>


===Geometry=== ===Geometry===
Line 1,180: Line 1,193:
| accessdate = 19 June 2021}}</ref><ref>{{Cite web|url=https://www.claymath.org/people/antoine-song|title = Antoine Song &#124; Clay Mathematics Institute|quote="...Building on work of Codá Marques and Neves, in 2018 Song proved Yau's conjecture in complete generality"}}</ref> | accessdate = 19 June 2021}}</ref><ref>{{Cite web|url=https://www.claymath.org/people/antoine-song|title = Antoine Song &#124; Clay Mathematics Institute|quote="...Building on work of Codá Marques and Neves, in 2018 Song proved Yau's conjecture in complete generality"}}</ref>
* ] (Michaël Rao, 2017)<ref>{{citation|url=https://www.quantamagazine.org/pentagon-tiling-proof-solves-century-old-math-problem-20170711/|magazine=]|title=Pentagon Tiling Proof Solves Century-Old Math Problem|first=Natalie|last=Wolchover|date=July 11, 2017|access-date=July 18, 2017|archive-url=https://web.archive.org/web/20170806093353/https://www.quantamagazine.org/pentagon-tiling-proof-solves-century-old-math-problem-20170711/|archive-date=August 6, 2017|url-status=dead}}</ref> * ] (Michaël Rao, 2017)<ref>{{citation|url=https://www.quantamagazine.org/pentagon-tiling-proof-solves-century-old-math-problem-20170711/|magazine=]|title=Pentagon Tiling Proof Solves Century-Old Math Problem|first=Natalie|last=Wolchover|date=July 11, 2017|access-date=July 18, 2017|archive-url=https://web.archive.org/web/20170806093353/https://www.quantamagazine.org/pentagon-tiling-proof-solves-century-old-math-problem-20170711/|archive-date=August 6, 2017|url-status=dead}}</ref>
* ] (] and ], 2012)<ref>{{cite journal|last1=Marques |first1=Fernando C.|first2=André|last2=Neves|title=Min-max theory and the Willmore conjecture|journal=Annals of Mathematics |year=2013|arxiv=1202.6036|doi=10.4007/annals.2014.179.2.6|volume=179|issue=2|pages=683–782|s2cid=50742102}}</ref>
* ] (Larry Guth, Netz Hawk Katz, 2011)<ref>{{Cite arxiv |eprint = 1011.4105v3|last1 = Bruhn|first1 = Henning|title = On the Erdos distinct distance problem in the plane|last2 = Schaudt|first2 = Oliver|class = math.CO|year = 2010}}</ref>
* ] (], ], 2011)<ref>{{cite journal
| arxiv=1011.4105
| last1=Guth | first1=Larry
| last2=Katz | first2=Nets Hawk
| title=On the Erdos distinct distance problem in the plane
| journal=Annals of Mathematics
| pages=155–190
| volume=181
| date=2015
| issue=1
| doi=10.4007/annals.2015.181.1.2 | doi-access=free}}</ref>
* ] (Frederick V. Henle and James M. Henle, 2008)<ref>{{Cite web |url=http://www.ww.amc12.org/sites/default/files/pdf/pubs/SquaringThePlane.pdf |title=Squaring the Plane |first1=Frederick V. |last1=Henle |first2=James M. |last2=Henle |access-date=2016-03-18 |publisher=www.maa.org ]|archive-url=https://web.archive.org/web/20160324074609/http://www.ww.amc12.org/sites/default/files/pdf/pubs/SquaringThePlane.pdf |archive-date=2016-03-24 |url-status=live }}</ref> * ] (Frederick V. Henle and James M. Henle, 2008)<ref>{{Cite web |url=http://www.ww.amc12.org/sites/default/files/pdf/pubs/SquaringThePlane.pdf |title=Squaring the Plane |first1=Frederick V. |last1=Henle |first2=James M. |last2=Henle |access-date=2016-03-18 |publisher=www.maa.org ]|archive-url=https://web.archive.org/web/20160324074609/http://www.ww.amc12.org/sites/default/files/pdf/pubs/SquaringThePlane.pdf |archive-date=2016-03-24 |url-status=live }}</ref>
* ] (], 2004)<ref name="Agol"/>
* ] (], ], ], 2004)<ref>{{Cite journal
| arxiv=math/0412006
| last1=Brock | first1=Jeffrey F.
| last2=Canary | first2=Richard D.
| last3=Minsky | first3=Yair N. | authorlink3=Yair Minsky
| title=The classification of Kleinian surface groups, II: The Ending Lamination Conjecture
| date=2012
| journal=Annals of Mathematics
| volume=176
| issue=1
| pages=1–149
| doi=10.4007/annals.2012.176.1.1 | doi-access=free}}</ref>
* ] (], ], Günter Rote, 2003)<ref>{{citation
| last1 = Connelly | first1 = Robert | author1-link = Robert Connelly
| last2 = Demaine | first2 = Erik D. | author2-link = Erik Demaine
| last3 = Rote | first3 = Günter
| doi = 10.1007/s00454-003-0006-7 | doi-access = free
| issue = 2
| journal = ]
| mr = 1931840
| pages = 205–239
| title = Straightening polygonal arcs and convexifying polygonal cycles
| url = http://page.mi.fu-berlin.de/~rote/Papers/pdf/Straightening+polygonal+arcs+and+convexifying+polygonal+cycles-DCG.pdf
| volume = 30
| year = 2003| s2cid = 40382145 }}</ref>
* ] (Ivan Shestakov, Ualbai Umirbaev, 2003)<ref>{{cite journal
| last1 = Shestakov | first1 = Ivan P.
| last2 = Umirbaev | first2 = Ualbai U.
| doi = 10.1090/S0894-0347-03-00440-5
| issue = 1
| journal = Journal of the American Mathematical Society
| mr = 2015334
| pages = 197–227
| title = The tame and the wild automorphisms of polynomial rings in three variables
| volume = 17
| year = 2004}}</ref>
* ] (], ], Manuel Ritoré, Antonio Ros, 2002)<ref>{{cite journal
| last1 = Hutchings | first1 = Michael
| last2 = Morgan | first2 = Frank
| last3 = Ritoré | first3 = Manuel
| last4 = Ros | first4 = Antonio
| doi = 10.2307/3062123
| issue = 2
| journal = Annals of Mathematics
| mr = 1906593
| pages = 459–489
| series = Second Series
| title = Proof of the double bubble conjecture
| volume = 155
| year = 2002| jstor = 3062123
| hdl = 10481/32449
}}</ref>


====20th century==== ====20th century====
* ] (], 1999)<ref>{{Cite journal
* ] (Ferguson, Hales, 1998)<ref>{{Cite arxiv |eprint = 1501.02155|last1 = Bruhn|first1 = Henning|title = A formal proof of the Kepler conjecture|last2 = Schaudt|first2 = Oliver|class = math.MG|year = 2015}}</ref>
| arxiv=math/9906042
* ] (Hales, McLaughlin, 1998)<ref>{{Cite arxiv |eprint = math/9811079|last1 = Bruhn|first1 = Henning|title = A proof of the dodecahedral conjecture|last2 = Schaudt|first2 = Oliver|year = 1998}}</ref>
| last1=Hales | first1=Thomas C. | authorlink1=Thomas Callister Hales
| title=The Honeycomb Conjecture
| journal=]
| volume=25
| pages=1–22
| date=2001
| doi=10.1007/s004540010071 | doi-access=free}}</ref>
* ] (], 1998, ], 1998)<ref>{{cite journal | last1 = Ullmo | first1 = E | year = 1998 | title = Positivité et Discrétion des Points Algébriques des Courbes | journal = Annals of Mathematics | volume = 147 | issue = 1| pages = 167–179 | doi = 10.2307/120987 | zbl= 0934.14013| jstor = 120987 | arxiv = alg-geom/9606017 | s2cid = 119717506 }}</ref><ref>{{cite journal | last1 = Zhang | first1 = S.-W. | year = 1998 | title = Equidistribution of small points on abelian varieties | journal = Annals of Mathematics | volume = 147 | issue = 1| pages = 159–165 | doi = 10.2307/120986 | jstor = 120986 }}</ref>
* ] (Samuel Ferguson, ], 1998)<ref>{{cite journal
| arxiv=1501.02155
| last1=Hales | first1=Thomas
| last2=Adams | first2=Mark
| last3=Bauer | first3=Gertrud
| last4=Dang | first4=Dat Tat
| last5=Harrison | first5=John
| last6=Hoang | first6=Le Truong
| last7=Kaliszyk | first7=Cezary
| last8=Magron | first8=Victor
| last9=McLaughlin | first9=Sean
| last10=Nguyen | first10=Tat Thang
| last11=Nguyen | first11=Quang Truong
| last12=Nipkow | first12=Tobias
| last13=Obua | first13=Steven
| last14=Pleso | first14=Joseph
| last15=Rute | first15=Jason
| last16=Solovyev | first16=Alexey
| last17=Ta | first17=Thi Hoai An
| last18=Tran | first18=Nam Trung
| last19=Trieu | first19=Thi Diep
| last20=Urban | first20=Josef
| last21=Ky | first21=Vu
| last22=Zumkeller | first22=Roland
| title=A formal proof of the Kepler conjecture
| journal=Forum of Mathematics, Pi
| volume=5
| date=2017
| pages=e2
| doi=10.1017/fmp.2017.1 | doi-access=free}}</ref>
* ] (], Sean McLaughlin, 1998)<ref>{{Cite journal
| arxiv=math/9811079
| last1=Hales | first1=Thomas C.
| last2=McLaughlin | first2=Sean
| title=The dodecahedral conjecture
| journal=Journal of the American Mathematical Society
| volume=23
| date=2010
| issue=2 | pages=299–344
| doi=10.1090/S0894-0347-09-00647-X | bibcode=2010JAMS...23..299H | doi-access=free}}</ref>


===Graph theory=== ===Graph theory===
* ] on the book thickness of subdivisions (], ], Robert Hickingbotham, ], and ], 2021)<ref>{{cite journal
*] on graceful labeling of trees (Richard Montgomery, Benny Sudakov, Alexey Pokrovskiy, 2020)<ref>{{citation|last1=Huang|first1=C.|title=Further results on tree labellings|journal=Utilitas Mathematica|volume=21|pages=31–48|year=1982|mr=668845|last2=Kotzig|first2=A.|last3=Rosa|first3=A.|author2-link=Anton Kotzig}}.</ref><ref>{{Cite web|url=https://www.quantamagazine.org/mathematicians-prove-ringels-graph-theory-conjecture-20200219/|title=Rainbow Proof Shows Graphs Have Uniform Parts|last=Hartnett|first=Kevin|website=Quanta Magazine|date=19 February 2020|language=en|access-date=2020-02-29}}</ref>
| last1 = Dujmović | first1 = Vida | author1-link = Vida Dujmović
*] on the chromatic number of tensor products of graphs (Yaroslav Shitov, 2019)<ref>{{cite journal |last1=Shitov |first1=Yaroslav |date=2019-09-01 |df=dmy-all |title=Counterexamples to Hedetniemi's conjecture |url=https://annals.math.princeton.edu/2019/190-2/p06 |journal=Annals of Mathematics |volume=190 |issue=2 |pages=663–667 |arxiv=1905.02167 |doi=10.4007/annals.2019.190.2.6 |jstor=10.4007/annals.2019.190.2.6 |mr= 3997132 |zbl=1451.05087 |s2cid=146120733 |access-date=2021-07-19}}</ref>
| last2 = Eppstein | first2 = David | author2-link = David Eppstein
* ] (Problem 3.3 in "Spectra of Cayley graphs") (Alireza Abdollahi, Maysam Zallaghi, 2015)<ref>{{cite journal | first= Zallaghi M.|last= Abdollahi A. | year = 2015 | journal = Communications in Algebra | title = Character sums for Cayley graphs | volume = 43| issue = 12| pages = 5159–5167 | doi = 10.1080/00927872.2014.967398 |s2cid= 117651702 }}</ref>
| last3 = Hickingbotham | first3 = Robert
| last4 = Morin | first4 = Pat | author4-link = Pat Morin
| last5 = Wood | first5 = David R. | author5-link = David Wood (mathematician)
| arxiv = 2011.04195
| date = August 2021
| doi = 10.1007/s00493-021-4585-7
| journal = ]
| title = Stack-number is not bounded by queue-number| s2cid = 226281691 }}</ref>
*] on graceful labeling of trees (Richard Montgomery, ], Alexey Pokrovskiy, 2020)<ref>{{cite journal|last1=Huang|first1=C.|title=Further results on tree labellings|journal=Utilitas Mathematica|volume=21|pages=31–48|year=1982|mr=668845|last2=Kotzig|first2=A.|last3=Rosa|first3=A.|author2-link=Anton Kotzig}}.</ref><ref>{{Cite web|url=https://www.quantamagazine.org/mathematicians-prove-ringels-graph-theory-conjecture-20200219/|title=Rainbow Proof Shows Graphs Have Uniform Parts|last=Hartnett|first=Kevin|website=Quanta Magazine|date=19 February 2020|language=en|access-date=2020-02-29}}</ref>
*Disproof of ] on the chromatic number of tensor products of graphs (Yaroslav Shitov, 2019)<ref>{{cite journal |last1=Shitov |first1=Yaroslav |date=2019-09-01 |df=dmy-all |title=Counterexamples to Hedetniemi's conjecture |url=https://annals.math.princeton.edu/2019/190-2/p06 |journal=Annals of Mathematics |volume=190 |issue=2 |pages=663–667 |arxiv=1905.02167 |doi=10.4007/annals.2019.190.2.6 |jstor=10.4007/annals.2019.190.2.6 |mr= 3997132 |zbl=1451.05087 |s2cid=146120733 |access-date=2021-07-19}}</ref>
* ] (Alireza Abdollahi, Maysam Zallaghi, 2015)<ref>{{cite journal | first= Zallaghi M.|last= Abdollahi A. | year = 2015 | journal = Communications in Algebra | title = Character sums for Cayley graphs | volume = 43| issue = 12| pages = 5159–5167 | doi = 10.1080/00927872.2014.967398 |s2cid= 117651702 }}</ref>
* ] (Darryn Bryant, Daniel Horsley, William Pettersson, 2014) * ] (Darryn Bryant, Daniel Horsley, William Pettersson, 2014)
* ] (Jeremie Chalopin and Daniel Gonçalves, 2009)<ref>{{Cite web |url=http://www.csie.ntu.edu.tw/~hil/bib/ChalopinG09.pdf |title=Archived copy |access-date=2016-03-18 |archive-url=https://web.archive.org/web/20160303185241/http://www.csie.ntu.edu.tw/~hil/bib/ChalopinG09.pdf |archive-date=2016-03-03 |url-status=dead }}</ref> * ] (Jeremie Chalopin and Daniel Gonçalves, 2009)<ref>{{cite conference
| last1 = Chalopin | first1 = Jérémie
* ] (Aharoni, Berger 2007)<ref>{{Cite arxiv |eprint = math/0509397|last1 = Bruhn|first1 = Henning|title = Menger's theorem for infinite graphs|last2 = Schaudt|first2 = Oliver|year = 2005}}</ref>
| last2 = Gonçalves | first2 = Daniel
| editor-last = Mitzenmacher | editor-first = Michael
| contribution = Every planar graph is the intersection graph of segments in the plane: extended abstract
| doi = 10.1145/1536414.1536500
| pages = 631–638
| publisher = ACM
| title = Proceedings of the 41st Annual ACM Symposium on Theory of Computing, STOC 2009, Bethesda, MD, USA, May 31 - June 2, 2009
| year = 2009}}</ref>
* ] (], Eli Berger 2007)<ref>{{Cite journal
| arxiv=math/0509397
| last1=Aharoni | first1=Ron | author1-link=Ron Aharoni
| last2=Berger | first2=Eli
| title = Menger's theorem for infinite graphs
| journal=Inventiones Mathematicae
| volume=176
| pages=1–62
| date=2009
| issue=1 | doi=10.1007/s00222-008-0157-3 | bibcode=2009InMat.176....1A | doi-access=free}}</ref>
* ] (], 2007)<ref>{{cite news | last =Seigel-Itzkovich | first =Judy | title =Russian immigrant solves math puzzle | newspaper =The Jerusalem Post | date = 2008-02-08 | * ] (], 2007)<ref>{{cite news | last =Seigel-Itzkovich | first =Judy | title =Russian immigrant solves math puzzle | newspaper =The Jerusalem Post | date = 2008-02-08 |
url =http://www.jpost.com/Home/Article.aspx?id=91431 | access-date = 2015-11-12}}</ref> url =http://www.jpost.com/Home/Article.aspx?id=91431 | access-date = 2015-11-12}}</ref>
* ] (], ], 2004)<ref>{{cite web|url=http://www.flooved.com/reader/3447#348|title=Graph Theory|access-date=2016-03-18|archive-url=https://web.archive.org/web/20160308022407/http://www.flooved.com/reader/3447#348|archive-date=2016-03-08|url-status=live}}</ref>
* ] (], ], ] and ], 2002)<ref>{{cite journal|url=https://annals.math.princeton.edu/2006/164-1/p02|title=The strong perfect graph theorem|last1=Chudnovsky|first1=Maria|last2=Robertson|first2=Neil|last3=Seymour|first3=Paul|last4=Thomas|first4=Robin|journal=Annals of Mathematics|year=2002|volume=164|pages=51–229|arxiv=math/0212070 |doi=10.4007/annals.2006.164.51|bibcode=2002math.....12070C|s2cid=119151552}}</ref>


===Group theory=== ===Group theory===
* ] (Joel Friedman, 2011, Igor Mineyev, 2011)<ref>Joel Friedman,
* ] (Mineyev, 2011)<ref>{{Cite web |url=http://www.math.uiuc.edu/~mineyev/math/art/submult-shnc.pdf |title=Archived copy |access-date=2016-03-18 |archive-url=https://web.archive.org/web/20161007091758/http://www.math.uiuc.edu/~mineyev/math/art/submult-shnc.pdf |archive-date=2016-10-07 |url-status=live }}</ref>
* ] (Namazi, Souto, 2010)<ref>{{Cite journal |url=https://www.researchgate.net/publication/228365532 |doi=10.1007/s11511-012-0088-0|title=Non-realizability and ending laminations: Proof of the density conjecture|journal=Acta Mathematica|volume=209|issue=2|pages=323–395|year=2012|last1=Namazi|first1=Hossein|last2=Souto|first2=Juan|doi-access=free}}</ref>
Mem. Amer. Math. Soc., 233 (2015), no. 1100.</ref><ref>{{cite journal
* Full ] (Harada, Solomon, 2008)
| last = Mineyev | first = Igor
| doi = 10.4007/annals.2012.175.1.11
| issue = 1
| journal = Annals of Mathematics
| mr = 2874647
| pages = 393–414
| series = Second Series
| title = Submultiplicativity and the Hanna Neumann conjecture
| volume = 175
| year = 2012}}</ref>
* ] (Hossein Namazi, Juan Souto, 2010)<ref>{{Cite journal |url=https://www.researchgate.net/publication/228365532 |doi=10.1007/s11511-012-0088-0|title=Non-realizability and ending laminations: Proof of the density conjecture|journal=Acta Mathematica|volume=209|issue=2|pages=323–395|year=2012|last1=Namazi|first1=Hossein|last2=Souto|first2=Juan|doi-access=free}}</ref>
* Full ] (], ], 2008)


===Number theory=== ===Number theory===
====21st century==== ====21st century====
*] (Dimitris Koukoulopoulos, James Maynard, 2019) *] (Dimitris Koukoulopoulos, ], 2019)
* ] (], Ciprian Demeter, ], 2015)<ref>{{cite journal|last1=Bourgain |first1=Jean|first2=Demeter|last2=Ciprian|first3=Guth|last3=Larry|title=Proof of the main conjecture in Vinogradov's Mean Value Theorem for degrees higher than three|journal=Annals of Mathematics |year=2015|doi=10.4007/annals.2016.184.2.7|volume=184|issue=2|pages=633–682|hdl=1721.1/115568|bibcode=2015arXiv151201565B|arxiv=1512.01565|s2cid=43929329}}</ref> * ] (], Ciprian Demeter, ], 2015)<ref>{{cite journal|last1=Bourgain |first1=Jean|first2=Demeter|last2=Ciprian|first3=Guth|last3=Larry|title=Proof of the main conjecture in Vinogradov's Mean Value Theorem for degrees higher than three|journal=Annals of Mathematics |year=2015|doi=10.4007/annals.2016.184.2.7|volume=184|issue=2|pages=633–682|hdl=1721.1/115568|bibcode=2015arXiv151201565B|arxiv=1512.01565|s2cid=43929329}}</ref>
* ] (], 2013)<ref>{{cite arXiv |eprint=1305.2897 |title = Major arcs for Goldbach's theorem|last = Helfgott|first = Harald A. |class=math.NT |year=2013}}</ref><ref>{{cite arXiv |eprint=1205.5252 |title = Minor arcs for Goldbach's problem |last = Helfgott|first = Harald A.|class=math.NT |year=2012}}</ref><ref>{{cite arXiv |eprint=1312.7748 |title = The ternary Goldbach conjecture is true|last = Helfgott|first = Harald A. |class=math.NT |year=2013}}</ref> * ] (], 2013)<ref>{{cite arXiv |eprint=1305.2897 |title = Major arcs for Goldbach's theorem|last = Helfgott|first = Harald A. |class=math.NT |year=2013}}</ref><ref>{{cite arXiv |eprint=1205.5252 |title = Minor arcs for Goldbach's problem |last = Helfgott|first = Harald A.|class=math.NT |year=2012}}</ref><ref>{{cite arXiv |eprint=1312.7748 |title = The ternary Goldbach conjecture is true|last = Helfgott|first = Harald A. |class=math.NT |year=2013}}</ref>
* ] (] and ], 2008)<ref>{{Citation |last1=Khare |first1=Chandrashekhar |last2=Wintenberger |first2=Jean-Pierre |year=2009 |title=Serre's modularity conjecture (I) |journal=Inventiones Mathematicae |volume=178 |issue=3 |pages=485–504 |doi=10.1007/s00222-009-0205-7 |bibcode=2009InMat.178..485K |citeseerx=10.1.1.518.4611 |s2cid=14846347 }}</ref><ref>{{Citation |last1=Khare |first1=Chandrashekhar |last2=Wintenberger |first2=Jean-Pierre |year=2009 |title=Serre's modularity conjecture (II) |journal=Inventiones Mathematicae |volume=178 |issue=3 |pages=505–586 |doi=10.1007/s00222-009-0206-6 |bibcode=2009InMat.178..505K |citeseerx=10.1.1.228.8022 |s2cid=189820189 }}</ref><ref>{{cite journal |author=<!--Staff writer(s); no by-line.--> |title=2011 Cole Prize in Number Theory |url=https://www.ams.org/notices/201104/rtx110400610p.pdf |journal=] |volume=58 |issue=4 |pages=610–611 |issn=1088-9477 |oclc=34550461 |access-date=2015-11-12 |archive-url=https://web.archive.org/web/20151106051835/http://www.ams.org/notices/201104/rtx110400610p.pdf |archive-date=2015-11-06 |url-status=live }}</ref>
*] (], ], ], 2013)<ref>{{Cite journal|last=Zhang|first=Yitang|date=2014-05-01|title=Bounded gaps between primes|url=https://doi.org/10.4007/annals.2014.179.3.7|journal=Annals of Mathematics|volume=179|issue=3|pages=1121–1174|doi=10.4007/annals.2014.179.3.7|issn=0003-486X}}</ref><ref>{{Cite web|title=Bounded gaps between primes - Polymath Wiki|url=https://asone.ai/polymath/index.php?title=Bounded_gaps_between_primes|access-date=2021-08-27|website=asone.ai}}</ref><ref>{{Cite journal|last=Maynard|first=James|date=2015-01-01|title=Small gaps between primes|url=https://doi.org/10.4007/annals.2015.181.1.7|journal=Annals of Mathematics|pages=383–413|doi=10.4007/annals.2015.181.1.7|arxiv=1311.4600|s2cid=55175056|issn=0003-486X}}</ref> *] (], ], ], 2013)<ref>{{Cite journal|last=Zhang|first=Yitang|date=2014-05-01|title=Bounded gaps between primes|url=https://doi.org/10.4007/annals.2014.179.3.7|journal=Annals of Mathematics|volume=179|issue=3|pages=1121–1174|doi=10.4007/annals.2014.179.3.7|issn=0003-486X}}</ref><ref>{{Cite web|title=Bounded gaps between primes - Polymath Wiki|url=https://asone.ai/polymath/index.php?title=Bounded_gaps_between_primes|access-date=2021-08-27|website=asone.ai}}</ref><ref>{{Cite journal|last=Maynard|first=James|date=2015-01-01|title=Small gaps between primes|url=https://doi.org/10.4007/annals.2015.181.1.7|journal=Annals of Mathematics|pages=383–413|doi=10.4007/annals.2015.181.1.7|arxiv=1311.4600|s2cid=55175056|issn=0003-486X}}</ref>
* ] (Javier Cilleruelo, ], and Carlos Vinuesa, 2010)<ref>{{cite journal|title=Generalized Sidon sets|doi=10.1016/j.aim.2010.05.010 | volume=225|issue=5|journal=]|pages=2786–2807|year=2010 | last1 = Cilleruelo | first1 = Javier|hdl=10261/31032|s2cid=7385280|doi-access=free|hdl-access=free}}</ref>
* ] (] and ], 2008)<ref>{{Citation |last1=Khare |first1=Chandrashekhar |last2=Wintenberger |first2=Jean-Pierre |year=2009 |title=Serre's modularity conjecture (I) |journal=Inventiones Mathematicae |volume=178 |issue=3 |pages=485–504 |doi=10.1007/s00222-009-0205-7 |bibcode=2009InMat.178..485K |citeseerx=10.1.1.518.4611 |s2cid=14846347 }}</ref><ref>{{Citation |last1=Khare |first1=Chandrashekhar |last2=Wintenberger |first2=Jean-Pierre |year=2009 |title=Serre's modularity conjecture (II) |journal=Inventiones Mathematicae |volume=178 |issue=3 |pages=505–586 |doi=10.1007/s00222-009-0206-6 |bibcode=2009InMat.178..505K |citeseerx=10.1.1.228.8022 |s2cid=189820189 }}</ref><ref>{{cite journal |author=<!--Staff writer(s); no by-line.--> |title=2011 Cole Prize in Number Theory |url=https://www.ams.org/notices/201104/rtx110400610p.pdf |journal=] |volume=58 |issue=4 |pages=610–611 |issn=1088-9477 |oclc=34550461 |access-date=2015-11-12 |archive-url=https://web.archive.org/web/20151106051835/http://www.ams.org/notices/201104/rtx110400610p.pdf |archive-date=2015-11-06 |url-status=live }}</ref>
* ] (] and ], 2004)<ref>{{cite journal |author=<!--Staff writer(s); no by-line.--> |date=May 2010 |title=Bombieri and Tao Receive King Faisal Prize |url=https://www.ams.org/notices/201005/rtx100500642p.pdf |journal=] |volume=57 |issue=5 |pages=642–643 |issn=1088-9477 |oclc=34550461 |quote=Working with Ben Green, he proved there are arbitrarily long arithmetic progressions of prime numbers—a result now known as the Green–Tao theorem. |access-date=2016-03-18 |archive-url=https://web.archive.org/web/20160304063504/http://www.ams.org/notices/201005/rtx100500642p.pdf |archive-date=2016-03-04 |url-status=live }}</ref>
* ] (], 2002)<ref>{{cite journal |last=Metsänkylä |first=Tauno |date=5 September 2003 |title=Catalan's conjecture: another old diophantine problem solved |url=https://www.ams.org/journals/bull/2004-41-01/S0273-0979-03-00993-5/S0273-0979-03-00993-5.pdf |journal=] |volume=41 |issue=1 |pages=43–57 |issn=0273-0979 |quote=The conjecture, which dates back to 1844, was recently proven by the Swiss mathematician Preda Mihăilescu. |doi=10.1090/s0273-0979-03-00993-5 |access-date=13 November 2015 |archive-url=https://web.archive.org/web/20160304082755/http://www.ams.org/journals/bull/2004-41-01/S0273-0979-03-00993-5/S0273-0979-03-00993-5.pdf |archive-date=4 March 2016 |url-status=live }}</ref>
* ] (], 2000)<ref>{{cite book | last = Croot | first = Ernest S., III | author-link = Ernest S. Croot III | publisher = ], Athens | series = Ph.D. thesis | title = Unit Fractions | year = 2000}} {{cite journal | last = Croot | first = Ernest S., III | author-link = Ernest S. Croot III | arxiv = math.NT/0311421 | doi = 10.4007/annals.2003.157.545 | issue = 2 | journal = ] | pages = 545–556 | title = On a coloring conjecture about unit fractions | volume = 157 | year = 2003| bibcode = 2003math.....11421C | s2cid = 13514070 }}</ref>


====20th century==== ====20th century====
* ] (], 1998)<ref>{{Citation | last1=Lafforgue | first1=Laurent | title=Chtoucas de Drinfeld et applications | language=fr | trans-title=Drinfelʹd shtukas and applications | url=http://www.math.uni-bielefeld.de/documenta/xvol-icm/07/Lafforgue.MAN.html | mr=1648105 | year=1998 | journal=Documenta Mathematica | issn=1431-0635 | volume=II | pages=563–570 | access-date=2016-03-18 | archive-url=https://web.archive.org/web/20180427200241/https://www.math.uni-bielefeld.de/documenta/xvol-icm/07/Lafforgue.MAN.html | archive-date=2018-04-27 | url-status=live }}</ref>
* ] (] and ], 1995)<ref>{{cite journal|last=Wiles|first=Andrew|author-link=Andrew Wiles|year=1995|title=Modular elliptic curves and Fermat's Last Theorem|url=http://math.stanford.edu/~lekheng/flt/wiles.pdf|journal=Annals of Mathematics|volume=141|issue=3|pages=443–551|oclc=37032255|doi=10.2307/2118559|jstor=2118559|citeseerx=10.1.1.169.9076|access-date=2016-03-06|archive-url=https://web.archive.org/web/20110510062158/http://math.stanford.edu/%7Elekheng/flt/wiles.pdf|archive-date=2011-05-10|url-status=live}}</ref><ref>{{cite journal | author = ], ] | year = 1995 | journal = Annals of Mathematics | title = Ring theoretic properties of certain Hecke algebras | volume = 141 | issue = 3| pages = 553–572 | oclc = 37032255 | url = https://web.archive.org/web/20050301000000*/http://www.math.harvard.edu/~rtaylor/hecke.ps | doi = 10.2307/2118560 | jstor = 2118560 | citeseerx = 10.1.1.128.531 }}</ref> * ] (] and ], 1995)<ref>{{cite journal|last=Wiles|first=Andrew|author-link=Andrew Wiles|year=1995|title=Modular elliptic curves and Fermat's Last Theorem|url=http://math.stanford.edu/~lekheng/flt/wiles.pdf|journal=Annals of Mathematics|volume=141|issue=3|pages=443–551|oclc=37032255|doi=10.2307/2118559|jstor=2118559|citeseerx=10.1.1.169.9076|access-date=2016-03-06|archive-url=https://web.archive.org/web/20110510062158/http://math.stanford.edu/%7Elekheng/flt/wiles.pdf|archive-date=2011-05-10|url-status=live}}</ref><ref>{{cite journal | author = ], ] | year = 1995 | journal = Annals of Mathematics | title = Ring theoretic properties of certain Hecke algebras | volume = 141 | issue = 3| pages = 553–572 | oclc = 37032255 | url = https://web.archive.org/web/20050301000000*/http://www.math.harvard.edu/~rtaylor/hecke.ps | doi = 10.2307/2118560 | jstor = 2118560 | citeseerx = 10.1.1.128.531 }}</ref>


===Ramsey theory=== ===Ramsey theory===
* ] (Choongbum Lee, 2017)<ref>{{cite journal | last1 = Lee | first1 = Choongbum | year = 2017 | title = Ramsey numbers of degenerate graphs | journal = Annals of Mathematics | volume = 185 | issue = 3| pages = 791–829 | doi = 10.4007/annals.2017.185.3.2 | arxiv = 1505.04773 | s2cid = 7974973 }}</ref> * ] (Choongbum Lee, 2017)<ref>{{cite journal | last1 = Lee | first1 = Choongbum | year = 2017 | title = Ramsey numbers of degenerate graphs | journal = Annals of Mathematics | volume = 185 | issue = 3| pages = 791–829 | doi = 10.4007/annals.2017.185.3.2 | arxiv = 1505.04773 | s2cid = 7974973 }}</ref>
* ] (], Oliver Kullmann, Victor Marek, 2016)<ref>{{cite journal |last=Lamb |first=Evelyn |date=26 May 2016 |title=Two-hundred-terabyte maths proof is largest ever |journal=Nature |doi=10.1038/nature.2016.19990 |volume=534 |issue=7605 |pages=17–18 |pmid=27251254 |bibcode=2016Natur.534...17L|doi-access=free }}</ref><ref>{{cite book * ] (], Oliver Kullmann, ], 2016)<ref>{{cite journal |last=Lamb |first=Evelyn |date=26 May 2016 |title=Two-hundred-terabyte maths proof is largest ever |journal=Nature |doi=10.1038/nature.2016.19990 |volume=534 |issue=7605 |pages=17–18 |pmid=27251254 |bibcode=2016Natur.534...17L|doi-access=free }}</ref><ref>{{cite book
| last1 = Heule | first1 = Marijn J. H. | last1 = Heule | first1 = Marijn J. H. | author1-link=Marijn Heule
| last2 = Kullmann | first2 = Oliver | last2 = Kullmann | first2 = Oliver
| last3 = Marek | first3 = Victor W. | last3 = Marek | first3 = Victor W. | author3-link=Victor W. Marek
| editor-last1 = Creignou | editor-first1 = N. | editor-last1 = Creignou | editor-first1 = N.
| editor-last2 = Le Berre | editor-first2 = D. | editor-last2 = Le Berre | editor-first2 = D.
Line 1,235: Line 1,408:


===Theoretical computer science=== ===Theoretical computer science===
*] for Boolean functions (], 2019) <ref>{{cite web *] for Boolean functions (], 2019) <ref>{{cite web
| url = https://www.popularmechanics.com/science/math/g30346822/biggest-math-breakthroughs-2019/ | url = https://www.popularmechanics.com/science/math/g30346822/biggest-math-breakthroughs-2019/
|author =Linkletter, David |author =Linkletter, David
Line 1,248: Line 1,421:
===Topology=== ===Topology===
*Deciding whether the ] is a ] (], 2020)<ref>, ], volume 191, issue 2, pp. 581–591</ref><ref>, ] 19 May 2020</ref> *Deciding whether the ] is a ] (], 2020)<ref>, ], volume 191, issue 2, pp. 581–591</ref><ref>, ] 19 May 2020</ref>
* ] (Agol, Groves, Manning, 2012)<ref>{{Cite arxiv |eprint = 1204.2810v1|last1 = Bruhn|first1 = Henning|title = The virtual Haken conjecture|last2 = Schaudt|first2 = Oliver|class = math.GT|year = 2012}}</ref> (and by work of Wise also ]) * ] (], Daniel Groves, Jason Manning, 2012)<ref>{{Cite journal
| arxiv = 1204.2810v1
* ] (Brendle, 2012)<ref>{{Cite arXiv |eprint = 1203.6597v2|last1 = Lee|first1 = Choongbum|title = Embedded minimal tori in S^3 and the Lawson conjecture|class = math.DG|year = 2012}}</ref>
| last1 = Agol | first1 = Ian
* ] (Kahn, Markovic, 2011)<ref>{{Cite arxiv |eprint = 1101.1330v4|last1 = Bruhn|first1 = Henning|title = The good pants homology and the Ehrenpreis conjecture|last2 = Schaudt|first2 = Oliver|class = math.GT|year = 2011}}</ref>
| title = The virtual Haken conjecture (with an appendix by Ian Agol, Daniel Groves, and Jason Manning)
* ] (Austin, 2009)<ref>{{Cite journal |arxiv = 0909.2360|last1 = Bruhn|first1 = Henning|title = Rational group ring elements with kernels having irrational dimension|journal = Proceedings of the London Mathematical Society|volume = 107|issue = 6|pages = 1424–1448|last2 = Schaudt|first2 = Oliver|year = 2009|doi = 10.1112/plms/pdt029|bibcode = 2009arXiv0909.2360A|s2cid = 115160094}}</ref>
| journal=Documenta Mathematica
| volume=18
| date=2013
| pages=1045–1087
| url=https://www.math.uni-bielefeld.de/documenta/vol-18/33.pdf}}</ref> (and by work of ] also ])
* ] (], 2012)<ref>{{Cite journal
| arxiv=1203.6597
| last1 = Brendle | first1 = Simon | author1-link=Simon Brendle
| title = Embedded minimal tori in <math>S^3</math> and the Lawson conjecture
| journal=Acta Mathematica
| volume=211
| issue=2
| pages=177–190
| date=2013
| doi=10.1007/s11511-013-0101-2 | doi-access=free}}</ref>
* ] (], ], 2011)<ref>{{Cite journal
| arxiv=1101.1330
| last1=Kahn | first1=Jeremy | author1-link=Jeremy Kahn
| last2=Markovic | first2=Vladimir | author2-link=Vladimir Markovic
| title=The good pants homology and the Ehrenpreis conjecture
| journal=Annals of Mathematics
| pages=1–72
| volume=182
| date=2015
| issue=1
| doi=10.4007/annals.2015.182.1.1 | doi-access=free}}</ref>
* ] (Austin, 2009)<ref>{{cite journal
| arxiv = 0909.2360
| last1 = Austin |first1 = Tim
| title = Rational group ring elements with kernels having irrational dimension
| journal = Proceedings of the London Mathematical Society
| volume = 107
| issue = 6
| pages = 1424–1448
| date = December 2013
| doi = 10.1112/plms/pdt029 | bibcode = 2009arXiv0909.2360A|s2cid = 115160094}}</ref>
* ] (], 2008)<ref>{{cite journal | last1 = Lurie | first1 = Jacob | year = 2009 | title = On the classification of topological field theories | journal = Current Developments in Mathematics | volume = 2008 | pages = 129–280 | doi=10.4310/cdm.2008.v2008.n1.a3| bibcode = 2009arXiv0905.0465L | arxiv = 0905.0465 | s2cid = 115162503 }}</ref> * ] (], 2008)<ref>{{cite journal | last1 = Lurie | first1 = Jacob | year = 2009 | title = On the classification of topological field theories | journal = Current Developments in Mathematics | volume = 2008 | pages = 129–280 | doi=10.4310/cdm.2008.v2008.n1.a3| bibcode = 2009arXiv0905.0465L | arxiv = 0905.0465 | s2cid = 115162503 }}</ref>
* ], proven by ]<ref name="auto">{{cite press release | publisher=] | date=March 18, 2010 | title=Prize for Resolution of the Poincaré Conjecture Awarded to Dr. Grigoriy Perelman | url=http://www.claymath.org/sites/default/files/millenniumprizefull.pdf | access-date=November 13, 2015 | quote=The Clay Mathematics Institute hereby awards the Millennium Prize for resolution of the Poincaré conjecture to Grigoriy Perelman. | archive-url=https://web.archive.org/web/20100322192115/http://www.claymath.org/poincare/ | archive-date=March 22, 2010 | url-status=live }}</ref> in a series of preprints in 2002–2003.<ref>{{Cite arxiv |eprint = 0809.4040|last1 = Bruhn|first1 = Henning|title = Completion of the Proof of the Geometrization Conjecture|last2 = Schaudt|first2 = Oliver|class = math.DG|year = 2008}}</ref>
* ] (], 2006) * ] (], 2006)
* ] (], 2002)<ref name="auto">{{cite press release | publisher=] | date=March 18, 2010 | title=Prize for Resolution of the Poincaré Conjecture Awarded to Dr. Grigoriy Perelman | url=http://www.claymath.org/sites/default/files/millenniumprizefull.pdf | access-date=November 13, 2015 | quote=The Clay Mathematics Institute hereby awards the Millennium Prize for resolution of the Poincaré conjecture to Grigoriy Perelman. | archive-url=https://web.archive.org/web/20100322192115/http://www.claymath.org/poincare/ | archive-date=March 22, 2010 | url-status=live }}</ref>
* ], proven by ]<ref name="auto" /> in a series of preprints in 2002–2003.<ref>{{Cite arXiv |eprint = 0809.4040|last1 = Morgan |first1 = John |title = Completion of the Proof of the Geometrization Conjecture|last2 = Tian|first2 = Gang|class = math.DG|year = 2008}}</ref>
* Disproof of the ] (Iwase, 1997)<ref>{{cite web|url=https://www.researchgate.net/publication/220032558|title=Ganea's Conjecture on Lusternik-Schnirelmann Category|author=Norio Iwase|date=1 November 1998|work=ResearchGate}}</ref>


===Uncategorised=== ===Uncategorised===
====21st century==== ====21st century====
=====2010s===== =====2010s=====
* ] (], 2015)<ref>{{Cite arxiv |eprint = 1509.05363v5|last1 = Bruhn|first1 = Henning|title = The Erdos discrepancy problem|last2 = Schaudt|first2 = Oliver|class = math.CO|year = 2015}}</ref> * ] (], 2015)<ref>{{Cite arXiv |eprint = 1509.05363v5|last1 = Tao|first1 = Terence | authorlink1=Terence Tao|title = The Erdős discrepancy problem|class = math.CO|year = 2015}}</ref>
* ] conjecture (John F. R. Duncan, Michael J. Griffin, Ken Ono, 2015)<ref>{{cite journal|title=Proof of the umbral moonshine conjecture|first1=John F. R.|last1=Duncan|first2=Michael J.|last2=Griffin|first3=Ken|last3=Ono|date=1 December 2015|journal=Research in the Mathematical Sciences|volume=2|issue=1|pages=26|doi=10.1186/s40687-015-0044-7|bibcode=2015arXiv150301472D|arxiv=1503.01472|s2cid=43589605}}</ref> * ] conjecture (John F. R. Duncan, Michael J. Griffin, ], 2015)<ref>{{cite journal|title=Proof of the umbral moonshine conjecture|first1=John F. R.|last1=Duncan|first2=Michael J.|last2=Griffin|first3=Ken|last3=Ono|date=1 December 2015|journal=Research in the Mathematical Sciences|volume=2|issue=1|pages=26|doi=10.1186/s40687-015-0044-7|bibcode=2015arXiv150301472D|arxiv=1503.01472|s2cid=43589605}}</ref>
* Anderson conjecture on the finite number of diffeomorphism classes of the collection of 4-manifolds satisfying certain properties (], Aaron Naber, 2014)<ref>{{cite journal
* ] (Cheeger, Naber, 2014)<ref>{{Cite arxiv |eprint = 1406.6534v10|last1 = Bruhn|first1 = Henning|title = Regularity of Einstein Manifolds and the Codimension 4 Conjecture|last2 = Schaudt|first2 = Oliver|class = math.DG|year = 2014}}</ref>
| arxiv=1406.6534
| last1=Cheeger | first1=Jeff
| last2=Naber | first2=Aaron
| title=Regularity of Einstein Manifolds and the Codimension 4 Conjecture
| journal=Annals of Mathematics
| pages=1093–1165
| volume=182
| issue=3
| date=2015
| doi=10.4007/annals.2015.182.3.5 | doi-access=free}}</ref>
* ] (], 2014)<ref>{{Cite magazine |date=March 28, 2017 |title=A Long-Sought Proof, Found and Almost Lost |url=https://www.quantamagazine.org/20170328-statistician-proves-gaussian-correlation-inequality/ |publisher=Natalie Wolchover |access-date=May 2, 2017 |magazine=] |archive-url=https://web.archive.org/web/20170424133433/https://www.quantamagazine.org/20170328-statistician-proves-gaussian-correlation-inequality/ |archive-date=April 24, 2017 |url-status=live }}</ref> * ] (], 2014)<ref>{{Cite magazine |date=March 28, 2017 |title=A Long-Sought Proof, Found and Almost Lost |url=https://www.quantamagazine.org/20170328-statistician-proves-gaussian-correlation-inequality/ |publisher=Natalie Wolchover |access-date=May 2, 2017 |magazine=] |archive-url=https://web.archive.org/web/20170424133433/https://www.quantamagazine.org/20170328-statistician-proves-gaussian-correlation-inequality/ |archive-date=April 24, 2017 |url-status=live }}</ref>
* Beck's conjecture on discrepancies of set systems constructed from three permutations (Alantha Newman, ], 2011)<ref>{{Cite arXiv |eprint = 1104.2922|last1=Newman |first1=Alantha | last2=Nikolov | first2=Aleksandar |title = A counterexample to Beck's conjecture on the discrepancy of three permutations|class = cs.DM|year = 2011}}</ref>
* ] (] and ], 2012)<ref>{{cite journal|last1=Marques |first1=Fernando C.|first2=André|last2=Neves|title=Min-max theory and the Willmore conjecture|journal=Annals of Mathematics |year=2013|arxiv=1202.6036|doi=10.4007/annals.2014.179.2.6|volume=179|issue=2|pages=683–782|s2cid=50742102}}</ref>
* ] (], 2011)<ref>{{Cite web |url=https://annals.math.princeton.edu/wp-content/uploads/annals-v174-n1-p11-p.pdf |title=On motivic cohomology with Z/''l''-coefficients |last=Voevodsky |first=Vladimir |access-date=2016-03-18 |archive-url=https://web.archive.org/web/20160327035457/http://annals.math.princeton.edu/wp-content/uploads/annals-v174-n1-p11-p.pdf |location=School of Mathematics Institute for Advanced Study Einstein Drive Princeton, NJ 08540|publisher=annals.math.princeton.edu (])|date=1 July 2011|volume=174|issue=1|pages=401–438|archive-date=2016-03-27 |url-status=live }}</ref> (and ] and by work of ] and ] (2001) also ]<ref>{{cite journal
* ] (Newman, Nikolov, 2011)<ref>{{Cite arXiv |eprint = 1104.2922|last1 = Lee|first1 = Choongbum|title = A counterexample to Beck's conjecture on the discrepancy of three permutations|class = cs.DM|year = 2011}}</ref>
| last1 = Geisser | first1 = Thomas
* ] (Voevodsky, 2011)<ref>{{Cite web |url=https://annals.math.princeton.edu/wp-content/uploads/annals-v174-n1-p11-p.pdf |title=On motivic cohomology with Z/''l''-coefficients |last=Voevodsky |first=Vladimir |access-date=2016-03-18 |archive-url=https://web.archive.org/web/20160327035457/http://annals.math.princeton.edu/wp-content/uploads/annals-v174-n1-p11-p.pdf |location=School of Mathematics Institute for Advanced Study Einstein Drive Princeton, NJ 08540|publisher=annals.math.princeton.edu (])|date=1 July 2011|volume=174|issue=1|pages=401–438|archive-date=2016-03-27 |url-status=live }}</ref> (and ] and by work of Geisser and Levine (2001) also ]<ref>{{Cite web |url=https://www.uni-due.de/~bm0032/publ/BlochKato.pdf |title=Archived copy |access-date=2016-03-18 |archive-url=https://web.archive.org/web/20161007091626/https://www.uni-due.de/~bm0032/publ/BlochKato.pdf |archive-date=2016-10-07 |url-status=live }}</ref><ref>{{cite web|url=https://webusers.imj-prg.fr/~bruno.kahn/preprints/kcag.pdf|title=page 359|access-date=2016-03-18|archive-url=https://web.archive.org/web/20160327035553/https://webusers.imj-prg.fr/~bruno.kahn/preprints/kcag.pdf|archive-date=2016-03-27|url-status=live}}</ref><ref>{{cite web|url=https://mathoverflow.net/q/87162 |title=motivic cohomology – Milnor–Bloch–Kato conjecture implies the Beilinson-Lichtenbaum conjecture – MathOverflow|access-date=2016-03-18 }}</ref>)
| last2 = Levine | first2 = Marc
* ] (J. Cilleruelo, I. Ruzsa and C. Vinuesa, 2010)<ref>{{cite journal|title=Generalized Sidon sets|doi=10.1016/j.aim.2010.05.010 | volume=225|issue=5|journal=]|pages=2786–2807|year=2010 | last1 = Cilleruelo | first1 = Javier|hdl=10261/31032|s2cid=7385280|doi-access=free|hdl-access=free}}</ref>
| doi = 10.1515/crll.2001.006
| journal = Journal für die Reine und Angewandte Mathematik
| mr = 1807268
| pages = 55–103
| title = The Bloch-Kato conjecture and a theorem of Suslin-Voevodsky
| volume = 2001
| year = 2001| issue = 530
}}</ref><ref>{{cite web|url=https://webusers.imj-prg.fr/~bruno.kahn/preprints/kcag.pdf|title=page 359|access-date=2016-03-18|archive-url=https://web.archive.org/web/20160327035553/https://webusers.imj-prg.fr/~bruno.kahn/preprints/kcag.pdf|archive-date=2016-03-27|url-status=live}}</ref><ref>{{cite web|url=https://mathoverflow.net/q/87162 |title=motivic cohomology – Milnor–Bloch–Kato conjecture implies the Beilinson-Lichtenbaum conjecture – MathOverflow|access-date=2016-03-18 }}</ref>)


=====2000s===== =====2000s=====
* ] (Thomas Mattman, Pablo Solis, 2009)<ref>{{Cite journal
* ] (Matmann, Solis, 2009)<ref>{{Cite journal |arxiv = 0906.1612|last1 = Bruhn|first1 = Henning|title = A proof of the Kauffman-Harary Conjecture|journal = Algebr. Geom. Topol.|volume = 9|issue = 4|pages = 2027–2039|last2 = Schaudt|first2 = Oliver|year = 2009|doi = 10.2140/agt.2009.9.2027|bibcode = 2009arXiv0906.1612M|s2cid = 8447495}}</ref>
| arxiv = 0906.1612
* ] (Kahn, Markovic, 2009)<ref>{{Cite arxiv |eprint = 0910.5501v5|last1 = Bruhn|first1 = Henning|title = Immersing almost geodesic surfaces in a closed hyperbolic three manifold|last2 = Schaudt|first2 = Oliver|class = math.GT|year = 2009}}</ref>
| last1 = Mattman |first1 = Thomas W.
* ] and the ] (Lu, 2007)<ref>{{cite arXiv |first=Zhiqin |last=Lu |date=2007 |title=Proof of the normal scalar curvature conjecture |eprint=0711.3510 |class=math.DG}}</ref>
| last2 = Solis | first2 = Pablo
* ] (], 2005)<ref>{{citation |last=Dencker |first=Nils |author-link=Nils Dencker |title=The resolution of the Nirenberg–Treves conjecture |journal=] |volume=163 |issue=2 |year=2006 |pages=405–444 |url=https://annals.math.princeton.edu/wp-content/uploads/annals-v163-n2-p02.pdf |doi=10.4007/annals.2006.163.405 |s2cid=16630732 |access-date=2019-04-07 |archive-url=https://web.archive.org/web/20180720145723/http://annals.math.princeton.edu/wp-content/uploads/annals-v163-n2-p02.pdf |archive-date=2018-07-20 |url-status=live }}</ref><ref>{{citation |url=https://www.claymath.org/research |title=Research Awards |website=] |access-date=2019-04-07 |archive-url=https://web.archive.org/web/20190407160116/https://www.claymath.org/research |archive-date=2019-04-07 |url-status=live }}</ref>
| title = A proof of the Kauffman-Harary Conjecture
* ] (Lewis, Parrilo, Ramana, 2005)<ref>{{Cite web |url=https://www.ams.org/journals/proc/2005-133-09/S0002-9939-05-07752-X/S0002-9939-05-07752-X.pdf |title=Archived copy |access-date=2016-03-22 |archive-url=https://web.archive.org/web/20160406184603/http://www.ams.org/journals/proc/2005-133-09/S0002-9939-05-07752-X/S0002-9939-05-07752-X.pdf |archive-date=2016-04-06 |url-status=live }}</ref>
| journal = Algebraic & Geometric Topology
| volume = 9
| issue = 4
| pages = 2027–2039
| year = 2009
| doi = 10.2140/agt.2009.9.2027 | bibcode = 2009arXiv0906.1612M | s2cid = 8447495}}</ref>
* ] (], ], 2009)<ref>{{cite journal
| arxiv=0910.5501
| last1 = Kahn | first1 = Jeremy
| last2 = Markovic | first2 = Vladimir
| title = Immersing almost geodesic surfaces in a closed hyperbolic three manifold
| journal = Annals of Mathematics
| pages=1127–1190
| volume=175
| issue=3
| year=2012
| doi=10.4007/annals.2012.175.3.4 | doi-access=free}}</ref>
* ] and the ] (Zhiqin Lu, 2007)<ref>{{cite journal
| first=Zhiqin | last=Lu
| orig-year=2007
| title=Normal Scalar Curvature Conjecture and its applications
| arxiv=0711.3510
| journal=Journal of Functional Analysis
| volume=261
| issue=5
| date=September 2011
| pages=1284–1308
| doi=10.1016/j.jfa.2011.05.002 | doi-access=free}}</ref>
* ] (], 2005)<ref>{{citation |last=Dencker |first=Nils |author-link=Nils Dencker |title=The resolution of the Nirenberg–Treves conjecture |journal=] |volume=163 |issue=2 |year=2006 |pages=405–444 |url=https://annals.math.princeton.edu/wp-content/uploads/annals-v163-n2-p02.pdf |doi=10.4007/annals.2006.163.405 |s2cid=16630732 |access-date=2019-04-07 |archive-url=https://web.archive.org/web/20180720145723/http://annals.math.princeton.edu/wp-content/uploads/annals-v163-n2-p02.pdf |archive-date=2018-07-20 |url-status=live }}</ref><ref>{{cite web |url=https://www.claymath.org/research |title=Research Awards |website=] |access-date=2019-04-07 |archive-url=https://web.archive.org/web/20190407160116/https://www.claymath.org/research |archive-date=2019-04-07 |url-status=live }}</ref>
* ] (], ], Motakuri Ramana, 2005)<ref>{{cite journal
| last1 = Lewis | first1 = A. S.
| last2 = Parrilo | first2 = P. A.
| last3 = Ramana | first3 = M. V.
| doi = 10.1090/S0002-9939-05-07752-X
| issue = 9
| journal = Proceedings of the American Mathematical Society
| mr = 2146191
| pages = 2495–2499
| title = The Lax conjecture is true
| volume = 133
| year = 2005| s2cid = 17436983
}}</ref>
* The ] (] and ], 2004)<ref>{{cite web |url=http://www.icm2010.in/prize-winners-2010/fields-medal-ngo-bao-chau |title=Fields Medal – Ngô Bảo Châu |author=<!--Staff writer(s); no by-line.--> |date=19 August 2010 |website=International Congress of Mathematicians 2010 |publisher=ICM |access-date=2015-11-12 |quote=Ngô Bảo Châu is being awarded the 2010 Fields Medal for his proof of the Fundamental Lemma in the theory of automorphic forms through the introduction of new algebro-geometric methods. |archive-url=https://web.archive.org/web/20150924032610/http://www.icm2010.in/prize-winners-2010/fields-medal-ngo-bao-chau |archive-date=24 September 2015 |url-status=live }}</ref> * The ] (] and ], 2004)<ref>{{cite web |url=http://www.icm2010.in/prize-winners-2010/fields-medal-ngo-bao-chau |title=Fields Medal – Ngô Bảo Châu |author=<!--Staff writer(s); no by-line.--> |date=19 August 2010 |website=International Congress of Mathematicians 2010 |publisher=ICM |access-date=2015-11-12 |quote=Ngô Bảo Châu is being awarded the 2010 Fields Medal for his proof of the Fundamental Lemma in the theory of automorphic forms through the introduction of new algebro-geometric methods. |archive-url=https://web.archive.org/web/20150924032610/http://www.icm2010.in/prize-winners-2010/fields-medal-ngo-bao-chau |archive-date=24 September 2015 |url-status=live }}</ref>
* ] and ] (], 2004)<ref>{{Cite arxiv |eprint = math/0405568|last1 = Bruhn|first1 = Henning|title = Tameness of hyperbolic 3-manifolds|last2 = Schaudt|first2 = Oliver|year = 2004}}</ref>
* ] (Robertson, Seymour, 2004)<ref>{{cite web|url=http://www.flooved.com/reader/3447#348|title=Graph Theory|access-date=2016-03-18|archive-url=https://web.archive.org/web/20160308022407/http://www.flooved.com/reader/3447#348|archive-date=2016-03-08|url-status=live}}</ref>
* ] (] and ], 2004)<ref>{{cite journal |last1=Chung |first1=Fan |last2=Greene |first2=Curtis |last3=Hutchinson |first3=Joan |date=April 2015 |title=Herbert S. Wilf (1931–2012) |journal=] |volume=62 |issue=4 |page=358 |issn=1088-9477 |oclc=34550461 |quote=The conjecture was finally given an exceptionally elegant proof by A. Marcus and G. Tardos in 2004. |doi=10.1090/noti1247 |doi-access=free }}</ref> (and also ])
* ] (] and ], 2004)<ref>{{cite journal |author=<!--Staff writer(s); no by-line.--> |date=May 2010 |title=Bombieri and Tao Receive King Faisal Prize |url=https://www.ams.org/notices/201005/rtx100500642p.pdf |journal=] |volume=57 |issue=5 |pages=642–643 |issn=1088-9477 |oclc=34550461 |quote=Working with Ben Green, he proved there are arbitrarily long arithmetic progressions of prime numbers—a result now known as the Green–Tao theorem. |access-date=2016-03-18 |archive-url=https://web.archive.org/web/20160304063504/http://www.ams.org/notices/201005/rtx100500642p.pdf |archive-date=2016-03-04 |url-status=live }}</ref>
* ] (Jeffrey F. Brock, Richard D. Canary, Yair N. Minsky, 2004)<ref>{{Cite arxiv |eprint = math/0412006|last1 = Bruhn|first1 = Henning|title = The classification of Kleinian surface groups, II: The Ending Lamination Conjecture|last2 = Schaudt|first2 = Oliver|year = 2004}}</ref>
* ] (Connelly, Demaine, Rote, 2003)<ref>{{citation
| last1 = Connelly | first1 = Robert | author1-link = Robert Connelly
| last2 = Demaine | first2 = Erik D. | author2-link = Erik Demaine
| last3 = Rote | first3 = Günter
| doi = 10.1007/s00454-003-0006-7
| issue = 2
| journal = ]
| mr = 1931840
| pages = 205–239
| title = Straightening polygonal arcs and convexifying polygonal cycles
| url = http://page.mi.fu-berlin.de/~rote/Papers/pdf/Straightening+polygonal+arcs+and+convexifying+polygonal+cycles-DCG.pdf
| volume = 30
| year = 2003| s2cid = 40382145 }}</ref>
* ] (], 2003, Alexander Sapozhenko, 2003)<ref>{{citation | last = Green | first = Ben | author-link = Ben J. Green | arxiv = math.NT/0304058 | doi = 10.1112/S0024609304003650
| issue = 6 | journal = The Bulletin of the London Mathematical Society | mr = 2083752 | pages = 769–778 | title = The Cameron–Erdős conjecture | volume = 36 | year = 2004| s2cid = 119615076 }}</ref><ref>{{cite web |url=https://www.ams.org/news?news_id=155 |title=News from 2007 |author=<!--Staff writer(s); no by-line.--> |date=31 December 2007 |website=American Mathematical Society |publisher=AMS |access-date=2015-11-13 |quote=The 2007 prize also recognizes Green for "his many outstanding results including his resolution of the Cameron-Erdős conjecture..." |archive-url=https://web.archive.org/web/20151117030726/http://www.ams.org/news?news_id=155 |archive-date=17 November 2015 |url-status=live }}</ref>
* ] (], 2003)<ref>{{cite journal|url=http://archive.numdam.org/ARCHIVE/PMIHES/PMIHES_2003__98_/PMIHES_2003__98__1_0/PMIHES_2003__98__1_0.pdf|title=Reduced power operations in motivic cohomology|pages=1–57|journal=Publications Mathématiques de l'IHÉS|volume=98|year=2003|last1=Voevodsky|first1=Vladimir|doi=10.1007/s10240-003-0009-z|citeseerx=10.1.1.170.4427|access-date=2016-03-18|archive-url=https://web.archive.org/web/20170728114725/http://archive.numdam.org/item/PMIHES_2003__98__1_0|archive-date=2017-07-28|url-status=live|arxiv=math/0107109|s2cid=8172797}}</ref> * ] (], 2003)<ref>{{cite journal|url=http://archive.numdam.org/ARCHIVE/PMIHES/PMIHES_2003__98_/PMIHES_2003__98__1_0/PMIHES_2003__98__1_0.pdf|title=Reduced power operations in motivic cohomology|pages=1–57|journal=Publications Mathématiques de l'IHÉS|volume=98|year=2003|last1=Voevodsky|first1=Vladimir|doi=10.1007/s10240-003-0009-z|citeseerx=10.1.1.170.4427|access-date=2016-03-18|archive-url=https://web.archive.org/web/20170728114725/http://archive.numdam.org/item/PMIHES_2003__98__1_0|archive-date=2017-07-28|url-status=live|arxiv=math/0107109|s2cid=8172797}}</ref>
* ] (Ehud Baruch, 2003)<ref>{{cite journal
* ] (Reiher, 2003, di Fiore, 2003)<ref>{{cite journal|title=Kemnitz' conjecture revisited | doi=10.1016/j.disc.2005.02.018 | volume=297|issue=1–3 |journal=Discrete Mathematics|pages=196–201|year=2005 | last1 = Savchev | first1 = Svetoslav}}</ref>
| last = Baruch | first = Ehud Moshe
* ] (Shestakov, Umirbaev, 2003)<ref>{{Cite web |url=https://www.ams.org/journals/jams/2004-17-01/S0894-0347-03-00440-5/S0894-0347-03-00440-5.pdf |title=Archived copy |access-date=2016-03-23 |archive-url=https://web.archive.org/web/20160308201215/http://www.ams.org/journals/jams/2004-17-01/S0894-0347-03-00440-5/S0894-0347-03-00440-5.pdf |archive-date=2016-03-08 |url-status=live }}</ref>
| doi = 10.4007/annals.2003.158.207
* ] (Baruch, 2003)<ref>{{Cite web |url=https://annals.math.princeton.edu/wp-content/uploads/annals-v158-n1-p04.pdf |title=Archived copy |access-date=2016-03-20 |archive-url=https://web.archive.org/web/20160403094319/http://annals.math.princeton.edu/wp-content/uploads/annals-v158-n1-p04.pdf |archive-date=2016-04-03 |url-status=live }}</ref>
| issue = 1
* ] (], 2002)<ref name="auto" />
| journal = Annals of Mathematics
* ] (], ], ] and ], 2002)<ref>{{cite journal|url=https://annals.math.princeton.edu/2006/164-1/p02|title=The strong perfect graph theorem|last1=Chudnovsky|first1=Maria|last2=Robertson|first2=Neil|last3=Seymour|first3=Paul|last4=Thomas|first4=Robin|journal=Annals of Mathematics|year=2002|volume=164|pages=51–229|arxiv=math/0212070 |doi=10.4007/annals.2006.164.51|bibcode=2002math.....12070C|s2cid=119151552}}</ref>
| mr = 1999922
* ] (Haas, 2002)<ref>{{Cite web |url=https://www.emis.de/journals/BAG/vol.43/no.1/b43h1haa.pdf |title=A Simple Counterexample to Kouchnirenko's Conjecture |first=Bertrand |last=Haas |access-date=2016-03-18 |archive-url=https://web.archive.org/web/20161007091417/http://www.emis.de/journals/BAG/vol.43/no.1/b43h1haa.pdf |archive-date=2016-10-07 |url-status=live }}</ref>
| pages = 207–252
* ] (Knight, 2002)<ref>Knight, R. W. (2002), The Vaught Conjecture: A Counterexample, manuscript</ref>
| series = Second Series
* ] (Hutchings, Morgan, Ritoré, Ros, 2002)<ref>{{Cite web |url=http://www.ugr.es/~ritore/preprints/0406017.pdf |title=Archived copy |access-date=2016-03-22 |archive-url=https://web.archive.org/web/20160303183909/http://www.ugr.es/~ritore/preprints/0406017.pdf |archive-date=2016-03-03 |url-status=live }}</ref>
| title = A proof of Kirillov's conjecture
* ] (], 2002)<ref>{{cite journal |last=Metsänkylä |first=Tauno |date=5 September 2003 |title=Catalan's conjecture: another old diophantine problem solved |url=https://www.ams.org/journals/bull/2004-41-01/S0273-0979-03-00993-5/S0273-0979-03-00993-5.pdf |journal=] |volume=41 |issue=1 |pages=43–57 |issn=0273-0979 |quote=The conjecture, which dates back to 1844, was recently proven by the Swiss mathematician Preda Mihăilescu. |doi=10.1090/s0273-0979-03-00993-5 |access-date=13 November 2015 |archive-url=https://web.archive.org/web/20160304082755/http://www.ams.org/journals/bull/2004-41-01/S0273-0979-03-00993-5/S0273-0979-03-00993-5.pdf |archive-date=4 March 2016 |url-status=live }}</ref>
| volume = 158
* ] (Haiman, 2001)<ref>{{Cite web |url=https://www.ams.org/journals/jams/2001-14-04/S0894-0347-01-00373-3/S0894-0347-01-00373-3.pdf |title=Archived copy |access-date=2016-03-18 |archive-url=https://web.archive.org/web/20161007102814/http://www.ams.org/journals/jams/2001-14-04/S0894-0347-01-00373-3/S0894-0347-01-00373-3.pdf |archive-date=2016-10-07 |url-status=live }}</ref> (and also ])
| year = 2003}}</ref>
* ] (Auscher, Hofmann, Lacey, McIntosh and Tchamitchian, 2001)<ref>{{Cite web |url=http://junon.u-3mrs.fr/monniaux/AHLMT02.pdf |title=Archived copy |access-date=2016-03-18 |archive-url=https://web.archive.org/web/20150908215443/http://junon.u-3mrs.fr/monniaux/AHLMT02.pdf |archive-date=2015-09-08 |url-status=dead }}</ref>
* ] (Bertrand Haas, 2002)<ref>{{Cite web |url=https://www.emis.de/journals/BAG/vol.43/no.1/b43h1haa.pdf |title=A Simple Counterexample to Kouchnirenko's Conjecture |first=Bertrand |last=Haas |access-date=2016-03-18 |archive-url=https://web.archive.org/web/20161007091417/http://www.emis.de/journals/BAG/vol.43/no.1/b43h1haa.pdf |archive-date=2016-10-07 |url-status=live }}</ref>
* ] (Luca Barbieri-Viale, Andreas Rosenschon, Morihiko Saito, 2001)<ref>{{Cite arxiv |eprint = math/0102150|last1 = Bruhn|first1 = Henning|title = Deligne's Conjecture on 1-Motives|last2 = Schaudt|first2 = Oliver|year = 2001}}</ref>
* ] (], 2001)<ref>{{cite journal
* ] (Breuil, Conrad, Diamond and Taylor, 2001)<ref>{{Citation | last1=Breuil | first1=Christophe | last2=Conrad | first2=Brian | last3=Diamond | first3=Fred | last4=Taylor | first4=Richard | title=On the modularity of elliptic curves over '''Q''': wild 3-adic exercises | doi=10.1090/S0894-0347-01-00370-8 | mr=1839918 | year=2001 | journal=] | issn=0894-0347 | volume=14 | issue=4 | pages=843–939| doi-access=free }}</ref>
| last = Haiman | first = Mark
* ] (Florian Luca, 2001)<ref>{{Cite journal|url=https://www.ams.org/journals/mcom/2001-70-234/S0025-5718-00-01178-9/S0025-5718-00-01178-9.pdf|doi=10.1090/s0025-5718-00-01178-9|title=On a conjecture of Erdős and Stewart|journal=Mathematics of Computation|volume=70|issue=234|pages=893–897|year=2000|last1=Luca|first1=Florian|access-date=2016-03-18|archive-url=https://web.archive.org/web/20160402030443/http://www.ams.org/journals/mcom/2001-70-234/S0025-5718-00-01178-9/S0025-5718-00-01178-9.pdf|archive-date=2016-04-02|url-status=live|bibcode=2001MaCom..70..893L}}</ref>
| doi = 10.1090/S0894-0347-01-00373-3
* ] (Atiyah, 2000)<ref>{{Cite web |url=http://intlpress.com/site/pub/files/_fulltext/journals/sdg/2002/0007/0001/SDG-2002-0007-0001-a001.pdf |title=Archived copy |access-date=2016-03-20 |archive-url=https://web.archive.org/web/20160402010819/http://intlpress.com/site/pub/files/_fulltext/journals/sdg/2002/0007/0001/SDG-2002-0007-0001-a001.pdf |archive-date=2016-04-02 |url-status=live }}</ref>
| issue = 4
* ] (Croot, 2000)<ref>{{citation | last = Croot | first = Ernest S., III | author-link = Ernest S. Croot III | publisher = ], Athens | series = Ph.D. thesis | title = Unit Fractions | year = 2000}}. {{citation | last = Croot | first = Ernest S., III | author-link = Ernest S. Croot III | arxiv = math.NT/0311421 | doi = 10.4007/annals.2003.157.545 | issue = 2 | journal = ] | pages = 545–556 | title = On a coloring conjecture about unit fractions | volume = 157 | year = 2003| bibcode = 2003math.....11421C | s2cid = 13514070 }}</ref>
| journal = Journal of the American Mathematical Society
| mr = 1839919
| pages = 941–1006
| title = Hilbert schemes, polygraphs and the Macdonald positivity conjecture
| volume = 14
| year = 2001| s2cid = 9253880
}}</ref> (and also ])
* ] (], ], ], ], and Philipp Tchamitchian, 2001)<ref>{{cite journal
| last1 = Auscher | first1 = Pascal
| last2 = Hofmann | first2 = Steve
| last3 = Lacey | first3 = Michael
| last4 = McIntosh | first4 = Alan
| last5 = Tchamitchian | first5 = Ph.
| doi = 10.2307/3597201
| issue = 2
| journal = Annals of Mathematics
| mr = 1933726
| pages = 633–654
| series = Second Series
| title = The solution of the Kato square root problem for second order elliptic operators on <math>\mathbb{R}^n</math>
| volume = 156
| year = 2002| jstor = 3597201
}}</ref>
* ] (Luca Barbieri-Viale, Andreas Rosenschon, ], 2001)<ref>{{cite journal
| arxiv=math/0102150
| last1=Barbieri-Viale |first1=Luca
| last2=Rosenschon | first2=Andreas
| last3=Saito | first3=Morihiko
| title = Deligne's Conjecture on 1-Motives
| journal=Annals of Mathematics
| pages=593–633
| volume=158
| date=2003
| issue=2
| doi=10.4007/annals.2003.158.593 | doi-access=free}}</ref>
* ] (], ], ], and ], 2001)<ref>{{Citation | last1=Breuil | first1=Christophe | last2=Conrad | first2=Brian | last3=Diamond | first3=Fred | last4=Taylor | first4=Richard | title=On the modularity of elliptic curves over '''Q''': wild 3-adic exercises | doi=10.1090/S0894-0347-01-00370-8 | mr=1839918 | year=2001 | journal=] | issn=0894-0347 | volume=14 | issue=4 | pages=843–939| doi-access=free }}</ref>
* ] (], 2001)<ref>{{Cite journal|url=https://www.ams.org/journals/mcom/2001-70-234/S0025-5718-00-01178-9/S0025-5718-00-01178-9.pdf|doi=10.1090/s0025-5718-00-01178-9|title=On a conjecture of Erdős and Stewart|journal=Mathematics of Computation|volume=70|issue=234|pages=893–897|year=2000|last1=Luca|first1=Florian|access-date=2016-03-18|archive-url=https://web.archive.org/web/20160402030443/http://www.ams.org/journals/mcom/2001-70-234/S0025-5718-00-01178-9/S0025-5718-00-01178-9.pdf|archive-date=2016-04-02|url-status=live|bibcode=2001MaCom..70..893L}}</ref>
* ] (], 2000)<ref>{{cite book
| last = Atiyah | first = Michael | author-link = Michael Atiyah
| editor-last = Yau | editor-first = Shing-Tung | editor-link = Shing-Tung Yau
| contribution = The geometry of classical particles
| doi = 10.4310/SDG.2002.v7.n1.a1
| mr = 1919420
| pages = 1–15
| publisher = International Press | location = Somerville, Massachusetts
| series = Surveys in Differential Geometry
| title = Papers dedicated to Atiyah, Bott, Hirzebruch, and Singer
| volume = 7
| year = 2000}}</ref>


====20th century==== ====20th century====
* ] (], 1996)<ref>{{cite journal | last1 = Merel | first1 = Loïc | year = 1996 | title = "Bornes pour la torsion des courbes elliptiques sur les corps de nombres" | journal = Inventiones Mathematicae | volume = 124 | issue = 1| pages = 437–449 | doi = 10.1007/s002220050059 | mr = 1369424| bibcode = 1996InMat.124..437M| s2cid = 3590991 }}</ref>
* ] (Thomas Hales, 1999)<ref>{{Cite arxiv |eprint = math/9906042|last1 = Bruhn|first1 = Henning|title = The Honeycomb Conjecture|last2 = Schaudt|first2 = Oliver|year = 1999}}</ref>
* Harary's conjecture on the integral sum number of complete graphs (Zhibo Chen, 1996)<ref>{{Cite journal |url=https://www.researchgate.net/publication/220188021 |doi=10.1016/0012-365X(95)00163-Q|doi-access=free|title=Harary's conjectures on integral sum graphs|journal=]|volume=160|issue=1–3|pages=241–244|year=1996|last1=Chen|first1=Zhibo}}</ref>
* ] (Krzysztof Kurdyka, Tadeusz Mostowski, Adam Parusinski, 1999)<ref>{{Cite arxiv |eprint = math/9906212|last1 = Bruhn|first1 = Henning|title = Proof of the gradient conjecture of R. Thom|last2 = Schaudt|first2 = Oliver|year = 1999}}</ref>
* ] (], 1998, ], 1998)<ref>{{cite journal | last1 = Ullmo | first1 = E | year = 1998 | title = Positivité et Discrétion des Points Algébriques des Courbes | journal = Annals of Mathematics | volume = 147 | issue = 1| pages = 167–179 | doi = 10.2307/120987 | zbl= 0934.14013| jstor = 120987 | arxiv = alg-geom/9606017 | s2cid = 119717506 }}</ref><ref>{{cite journal | last1 = Zhang | first1 = S.-W. | year = 1998 | title = Equidistribution of small points on abelian varieties | journal = Annals of Mathematics | volume = 147 | issue = 1| pages = 159–165 | doi = 10.2307/120986 | jstor = 120986 }}</ref>
* ] (Laurent Lafforgue, 1998)<ref>{{Citation | last1=Lafforgue | first1=Laurent | title=Chtoucas de Drinfeld et applications | language=fr | trans-title=Drinfelʹd shtukas and applications | url=http://www.math.uni-bielefeld.de/documenta/xvol-icm/07/Lafforgue.MAN.html | mr=1648105 | year=1998 | journal=Documenta Mathematica | issn=1431-0635 | volume=II | pages=563–570 | access-date=2016-03-18 | archive-url=https://web.archive.org/web/20180427200241/https://www.math.uni-bielefeld.de/documenta/xvol-icm/07/Lafforgue.MAN.html | archive-date=2018-04-27 | url-status=live }}</ref>
* ] (Iwase, 1997)<ref>{{cite web|url=https://www.researchgate.net/publication/220032558|title=Ganea's Conjecture on Lusternik-Schnirelmann Category|author=Norio Iwase|date=1 November 1998|work=ResearchGate}}</ref>
* ] (Merel, 1996)<ref>{{cite journal | last1 = Merel | first1 = Loïc | year = 1996 | title = "Bornes pour la torsion des courbes elliptiques sur les corps de nombres" | journal = Inventiones Mathematicae | volume = 124 | issue = 1| pages = 437–449 | doi = 10.1007/s002220050059 | mr = 1369424| bibcode = 1996InMat.124..437M| s2cid = 3590991 }}</ref>
* ] (Chen, 1996)<ref>{{Cite journal |url=https://www.researchgate.net/publication/220188021 |doi=10.1016/0012-365X(95)00163-Q|title=Harary's conjectures on integral sum graphs|journal=Discrete Mathematics|volume=160|issue=1–3|pages=241–244|year=1996|last1=Chen|first1=Zhibo}}</ref>


== See also == == See also ==
Line 1,356: Line 1,651:
* {{cite journal |last=Waldschmidt |first=Michel |author-link=Michel Waldschmidt |date=2004 |title=Open Diophantine Problems |journal=Moscow Mathematical Journal |issn=1609-3321 |zbl=1066.11030 |volume=4 |number=1 |pages=245–305 |url=http://www.math.jussieu.fr/~miw/articles/pdf/odp.pdf |doi=10.17323/1609-4514-2004-4-1-245-305 |arxiv=math/0312440 |s2cid=11845578 }} * {{cite journal |last=Waldschmidt |first=Michel |author-link=Michel Waldschmidt |date=2004 |title=Open Diophantine Problems |journal=Moscow Mathematical Journal |issn=1609-3321 |zbl=1066.11030 |volume=4 |number=1 |pages=245–305 |url=http://www.math.jussieu.fr/~miw/articles/pdf/odp.pdf |doi=10.17323/1609-4514-2004-4-1-245-305 |arxiv=math/0312440 |s2cid=11845578 }}
* {{cite arXiv |last1=Mazurov |first1=V. D. |author-link1=Victor Mazurov |last2=Khukhro |first2=E. I. |eprint=1401.0300v6 |title= Unsolved Problems in Group Theory. The Kourovka Notebook. No. 18 (English version) |date= 1 Jun 2015|class=math.GR }} * {{cite arXiv |last1=Mazurov |first1=V. D. |author-link1=Victor Mazurov |last2=Khukhro |first2=E. I. |eprint=1401.0300v6 |title= Unsolved Problems in Group Theory. The Kourovka Notebook. No. 18 (English version) |date= 1 Jun 2015|class=math.GR }}
* The ] is a collection of unsolved problems in semigroup theory.<ref>{{citation
| title = The Sverdlovsk Notebook: collects unsolved problems in semigroup theory
| publisher = ]
| year = 1979}}</ref><ref>{{citation
| title = The Sverdlovsk Notebook: collects unsolved problems in semigroup theory
| publisher = ]
| year = 1989}}</ref>
* Formulation of <math>50</math> unresloved problems for infinite ]s are depicted in the book{{sfn|Fuks|p=47, 88, 116, 134, 158, 159, 186, 210, 242, 243, 292, 318|1974}}
* The list of <math>17</math> unresolved problems for Combinatorial Geometry are depicted in the book.{{sfn|Boltiansky|1965|p=83}}
* Several dozens of unresolved problems for Combinatorial Geometry are depicted in the book.{{sfn|Grunbaum|p=6|1971}}
* Many unresolved problems for Graph theory are depicted in the article.<ref>''V. G. Vizing'' // ], 23:6(144) (1968), 117–134; Russian Math. Surveys, 23:6 (1968), 125–141</ref>
* The list of several unresolved problems converning ] are depicted in the book.{{sfn|Sprinjuk|p=150—154|1967}}


== External links == == External links ==
Line 1,380: Line 1,663:
* *
* *
*
* , discrete and computational geometry problems * , discrete and computational geometry problems
* *

Revision as of 05:46, 2 May 2022

This is a dynamic list and may never be able to satisfy particular standards for completeness. You can help by adding missing items with reliable sources.

Many mathematical problems have not yet been solved. These unsolved problems occur in multiple domains, including theoretical physics, computer science, algebra, analysis, combinatorics, algebraic, differential, discrete and Euclidean geometries, graph, group, model, number, set and Ramsey theories, dynamical systems, and partial differential equations. Some problems may belong to more than one discipline of mathematics and be studied using techniques from different areas. Prizes are often awarded for the solution to a long-standing problem, and lists of unsolved problems, such as the list of Millennium Prize Problems, receive considerable attention.

This article is a composite of notable unsolved problems derived from many sources, including but not limited to lists considered authoritative. The list is not comprehensive, for at least the reason that entries may not be updated at the time of viewing. This list includes problems which are considered by the mathematical community to be widely varying in both difficulty and centrality to the science as a whole.

Lists of unsolved problems in mathematics

Various mathematicians and organizations have published and promoted lists of unsolved mathematical problems. In some cases, the lists have been associated with prizes for the discoverers of solutions.

List Number of
problems
Number unresolved
or incompletely resolved
Proposed by Proposed
in
Hilbert's problems 23 15 David Hilbert 1900
Landau's problems 4 4 Edmund Landau 1912
Taniyama's problems 36 - Yutaka Taniyama 1955
Thurston's 24 questions 24 - William Thurston 1982
Smale's problems 18 14 Stephen Smale 1998
Millennium Prize problems 7 6 Clay Mathematics Institute 2000
Simon problems 15 <12 Barry Simon 2000
Unsolved Problems on Mathematics for the 21st Century 22 - Jair Minoro Abe, Shotaro Tanaka 2001
DARPA's math challenges 23 - DARPA 2007
The Riemann zeta function, subject of the celebrated and influential unsolved problem known as the Riemann hypothesis

Millennium Prize Problems

Of the original seven Millennium Prize Problems set by the Clay Mathematics Institute in 2000, six have yet to be solved as of August, 2021:

The seventh problem, the Poincaré conjecture, has been solved; however, a generalization called the smooth four-dimensional Poincaré conjecture—that is, whether a four-dimensional topological sphere can have two or more inequivalent smooth structures—is still unsolved.

Unsolved problems

Algebra

Main article: Algebra
In the Bloch sphere representation of a qubit, a SIC-POVM forms a regular tetrahedron. Zauner conjectured that analogous structures exist in complex Hilbert spaces of all finite dimensions.

Notebook problems

  • The Dniester Notebook (Dnestrovskaya Tetrad) collects several hundred unresolved problems in algebra, particularly ring theory and modulus theory.
  • The Erlagol Notebook (Erlagolskaya Tetrad) collects unresolved problems in algebra and model theory.

Conjectures and problems

Analysis

Main article: Mathematical analysis
The area of the blue region converges to the Euler–Mascheroni constant, which may or may not be a rational number.

Conjectures and problems

Open questions

Other

Combinatorics

Main article: Combinatorics

Conjectures and problems

  • The 1/3–2/3 conjecture – does every finite partially ordered set that is not totally ordered contain two elements x and y such that the probability that x appears before y in a random linear extension is between 1/3 and 2/3?
  • Problems in Latin squares – Open questions concerning Latin squares
  • The lonely runner conjecture – if k + 1 {\displaystyle k+1} runners with pairwise distinct speeds run round a track of unit length, will every runner be "lonely" (that is, be at least a distance 1 / ( k + 1 ) {\displaystyle 1/(k+1)} from each other runner) at some time?
  • The sunflower conjecture: can the number of k {\displaystyle k} size sets required for the existence of a sunflower of r {\displaystyle r} sets be bounded by an exponential function in k {\displaystyle k} for every fixed r > 2 {\displaystyle r>2} ?
  • No-three-in-line problem – how many points can be placed in the n × n {\displaystyle n\times n} grid so that no three of them lie on a line?
  • Frankl's union-closed sets conjecture – for any family of sets closed under sums there exists an element (of the underlying space) belonging to half or more of the sets

Other

Dynamical systems

Main article: Dynamical system
A detail of the Mandelbrot set. It is not known whether the Mandelbrot set is locally connected or not.

Conjectures and problems

Open questions

Games and puzzles

Main article: Game theory

Combinatorial games

Main article: Combinatorial game theory

Games with imperfect information

Geometry

Main article: Geometry

Algebraic geometry

Main article: Algebraic geometry
Conjectures
Other

Covering and packing

Conjectures and problems
  • Borsuk's problem on upper and lower bounds for the number of smaller-diameter subsets needed to cover a bounded n-dimensional set.
  • The covering problem of Rado: if the union of finitely many axis-parallel squares has unit area, how small can the largest area covered by a disjoint subset of squares be?
  • The Erdős–Oler conjecture that when n {\displaystyle n} is a triangular number, packing n 1 {\displaystyle n-1} circles in an equilateral triangle requires a triangle of the same size as packing n {\displaystyle n} circles
  • The kissing number problem for dimensions other than 1, 2, 3, 4, 8 and 24
  • Reinhardt's conjecture that the smoothed octagon has the lowest maximum packing density of all centrally-symmetric convex plane sets
  • Sphere packing problems, including the density of the densest packing in dimensions other than 1, 2, 3, 8 and 24, and its asymptotic behavior for high dimensions.
  • Square packing in a square: what is the asymptotic growth rate of wasted space?
  • Ulam's packing conjecture about the identity of the worst-packing convex solid

Differential geometry

Main article: Differential geometry
Conjectures and problems

Discrete geometry

Main article: Discrete geometry
In three dimensions, the kissing number is 12, because 12 non-overlapping unit spheres can be put into contact with a central unit sphere. (Here, the centers of outer spheres form the vertices of a regular icosahedron.) Kissing numbers are only known exactly in dimensions 1, 2, 3, 4, 8 and 24.
Conjectures and problems
Open questions
Other

Euclidean geometry

Main article: Euclidean geometry
Conjectures and problems
Open questions
Other

Graph theory

Main article: Graph theory

Graph coloring and labeling

An instance of the Erdős–Faber–Lovász conjecture: a graph formed from four cliques of four vertices each, any two of which intersect in a single vertex, can be four-colored.
Conjectures and problems

Graph drawing

Conjectures and problems
Other

Paths and cycles in graphs

Conjectures and problems

Word-representation of graphs

Miscellaneous graph theory

Conjectures and problems
Open questions

Group theory

Main article: Group theory
The free Burnside group B ( 2 , 3 ) {\displaystyle B(2,3)} is finite; in its Cayley graph, shown here, each of its 27 elements is represented by a vertex. The question of which other groups B ( m , n ) {\displaystyle B(m,n)} are finite remains open.

Notebook problems

  • The Kourovka Notebook is a collection of unsolved problems in group theory, first published in 1965 and updated many times since.

Conjectures and problems

Open questions

Model theory and formal languages

Main articles: Model theory and formal languages

Conjectures and problems

  • The Cherlin–Zilber conjecture: A simple group whose first-order theory is stable in 0 {\displaystyle \aleph _{0}} is a simple algebraic group over an algebraically closed field.
  • Generalized star height problem
  • For which number fields does Hilbert's tenth problem hold?
  • Kueker's conjecture
  • The main gap conjecture, e.g. for uncountable first order theories, for AECs, and for 1 {\displaystyle \aleph _{1}} -saturated models of a countable theory.
  • Shelah's categoricity conjecture for L ω 1 , ω {\displaystyle L_{\omega _{1},\omega }} : If a sentence is categorical above the Hanf number then it is categorical in all cardinals above the Hanf number.
  • Shelah's eventual categoricity conjecture: For every cardinal λ {\displaystyle \lambda } there exists a cardinal μ ( λ ) {\displaystyle \mu (\lambda )} such that if an AEC K with LS(K)<= λ {\displaystyle \lambda } is categorical in a cardinal above μ ( λ ) {\displaystyle \mu (\lambda )} then it is categorical in all cardinals above μ ( λ ) {\displaystyle \mu (\lambda )} .
  • The stable field conjecture: every infinite field with a stable first-order theory is separably closed.
  • The stable forking conjecture for simple theories
  • Tarski's exponential function problem
  • The universality problem for C-free graphs: For which finite sets C of graphs does the class of C-free countable graphs have a universal member under strong embeddings?
  • The universality spectrum problem: Is there a first-order theory whose universality spectrum is minimum?
  • Vaught conjecture

Open questions

  • Assume K is the class of models of a countable first order theory omitting countably many types. If K has a model of cardinality ω 1 {\displaystyle \aleph _{\omega _{1}}} does it have a model of cardinality continuum?
  • Do the Henson graphs have the finite model property?
  • Does a finitely presented homogeneous structure for a finite relational language have finitely many reducts?
  • Does there exist an o-minimal first order theory with a trans-exponential (rapid growth) function?
  • If the class of atomic models of a complete first order theory is categorical in the n {\displaystyle \aleph _{n}} , is it categorical in every cardinal?
  • Is every infinite, minimal field of characteristic zero algebraically closed? (Here, "minimal" means that every definable subset of the structure is finite or co-finite.)
  • (BMTO) Is the Borel monadic theory of the real order decidable? (MTWO) Is the monadic theory of well-ordering consistently decidable?
  • Is the theory of the field of Laurent series over Z p {\displaystyle \mathbb {Z} _{p}} decidable? of the field of polynomials over C {\displaystyle \mathbb {C} } ?
  • Is there a logic L which satisfies both the Beth property and Δ-interpolation, is compact but does not satisfy the interpolation property?

Other

  • Determine the structure of Keisler's order

Number theory

Main page: Category:Unsolved problems in number theory See also: Number theory

General

6 is a perfect number because it is the sum of its proper positive divisors, 1, 2 and 3. It is not known how many perfect numbers there are, nor if any of them are odd.
Conjectures, problems and hypotheses
Open questions
Other

Additive number theory

Main article: Additive number theory
Conjectures and problems
See also: Problems involving arithmetic progressions
Open questions
Other

Algebraic number theory

Main article: Algebraic number theory
Conjectures and problems
Other
  • Characterize all algebraic number fields that have some power basis.

Computational number theory

Main article: Computational number theory

Prime numbers

Main article: Prime numbers
Prime number conjectures
Goldbach's conjecture states that all even integers greater than 2 can be written as the sum of two primes. Here this is illustrated for the even integers from 4 to 28.
Conjectures, problems and hypotheses
Open questions

Set theory

Main article: Set theory

Note: These conjectures are about models of Zermelo-Frankel set theory with choice, and may not be able to be expressed in models of other set theories such as the various constructive set theories or non-wellfounded set theory.

Conjectures, problems, and hypotheses

Open questions

Topology

Main article: Topology
The unknotting problem asks whether there is an efficient algorithm to identify when the shape presented in a knot diagram is actually the unknot.

Conjectures and problems

Problems solved since 1995

Ricci flow, here illustrated with a 2D manifold, was the key tool in Grigori Perelman's solution of the Poincaré conjecture.

Algebra

Analysis

Combinatorics

Dynamical systems

Game theory

Geometry

21st century

20th century

Graph theory

Group theory

Number theory

21st century

20th century

Ramsey theory

Theoretical computer science

Topology

Uncategorised

21st century

2010s
2000s

20th century

See also

References

  1. Thiele, Rüdiger (2005), "On Hilbert and his twenty-four problems", in Van Brummelen, Glen (ed.), Mathematics and the historian's craft. The Kenneth O. May Lectures, CMS Books in Mathematics/Ouvrages de Mathématiques de la SMC, vol. 21, pp. 243–295, ISBN 978-0-387-25284-1
  2. Guy, Richard (1994), Unsolved Problems in Number Theory (2nd ed.), Springer, p. vii, ISBN 978-1-4899-3585-4, archived from the original on 2019-03-23, retrieved 2016-09-22.
  3. Shimura, G. (1989). "Yutaka Taniyama and his time". Bulletin of the London Mathematical Society. 21 (2): 186–196. doi:10.1112/blms/21.2.186.
  4. Friedl, Stefan (2014). "Thurston's vision and the virtual fibering theorem for 3-manifolds". Jahresbericht der Deutschen Mathematiker-Vereinigung. 116 (4): 223–241. doi:10.1365/s13291-014-0102-x. MR 3280572. S2CID 56322745.
  5. Thurston, William P. (1982). "Three-dimensional manifolds, Kleinian groups and hyperbolic geometry". Bulletin of the American Mathematical Society. New Series. 6 (3): 357–381. doi:10.1090/S0273-0979-1982-15003-0. MR 0648524.
  6. ^ "Millennium Problems". Archived from the original on 2017-06-06. Retrieved 2015-01-20.
  7. "Fields Medal awarded to Artur Avila". Centre national de la recherche scientifique. 2014-08-13. Archived from the original on 2018-07-10. Retrieved 2018-07-07.
  8. Bellos, Alex (2014-08-13). "Fields Medals 2014: the maths of Avila, Bhargava, Hairer and Mirzakhani explained". The Guardian. Archived from the original on 2016-10-21. Retrieved 2018-07-07.
  9. Abe, Jair Minoro; Tanaka, Shotaro (2001). Unsolved Problems on Mathematics for the 21st Century. IOS Press. ISBN 978-9051994902.
  10. "DARPA invests in math". CNN. 2008-10-14. Archived from the original on 2009-03-04. Retrieved 2013-01-14.
  11. "Broad Agency Announcement (BAA 07-68) for Defense Sciences Office (DSO)". DARPA. 2007-09-10. Archived from the original on 2012-10-01. Retrieved 2013-06-25.
  12. "Poincaré Conjecture". Clay Mathematics Institute. Archived from the original on 2013-12-15.
  13. "Smooth 4-dimensional Poincare conjecture". Archived from the original on 2018-01-25. Retrieved 2019-08-06.
  14. Dnestrovskaya notebook (PDF) (in Russian), The Russian Academy of Sciences, 1993
    "Dniester Notebook: Unsolved Problems in the Theory of Rings and Modules" (PDF), University of Saskatchewan, retrieved 2019-08-15
  15. Erlagol notebook (PDF) (in Russian), The Novosibirsk State University, 2018
  16. Dowling, T. A. (February 1973). "A class of geometric lattices based on finite groups". Journal of Combinatorial Theory. Series B. 14 (1): 61–86. doi:10.1016/S0095-8956(73)80007-3.
  17. ^ Waldschmidt, Michel (2013), Diophantine Approximation on Linear Algebraic Groups: Transcendence Properties of the Exponential Function in Several Variables, Springer, pp. 14, 16, ISBN 9783662115695
  18. Kung, H. T.; Traub, Joseph Frederick (1974), "Optimal order of one-point and multipoint iteration", Journal of the ACM, 21 (4): 643–651, doi:10.1145/321850.321860, S2CID 74921
  19. Smyth, Chris (2008), "The Mahler measure of algebraic numbers: a survey", in McKee, James; Smyth, Chris (eds.), Number Theory and Polynomials, London Mathematical Society Lecture Note Series, vol. 352, Cambridge University Press, pp. 322–349, ISBN 978-0-521-71467-9
  20. Berenstein, Carlos A. (2001) , "Pompeiu problem", Encyclopedia of Mathematics, EMS Press
  21. For background on the numbers that are the focus of this problem, see articles by Eric W. Weisstein, on pi ( Archived 2014-12-06 at the Wayback Machine), e ( Archived 2014-11-21 at the Wayback Machine), Khinchin's Constant ( Archived 2014-11-05 at the Wayback Machine), irrational numbers ( Archived 2015-03-27 at the Wayback Machine), transcendental numbers ( Archived 2014-11-13 at the Wayback Machine), and irrationality measures ( Archived 2015-04-21 at the Wayback Machine) at Wolfram MathWorld, all articles accessed 15 December 2014.
  22. Michel Waldschmidt, 2008, "An introduction to irrationality and transcendence methods," at The University of Arizona The Southwest Center for Arithmetic Geometry 2008 Arizona Winter School, March 15–19, 2008 (Special Functions and Transcendence), see Archived 2014-12-16 at the Wayback Machine, accessed 15 December 2014.
  23. John Albert, posting date unknown, "Some unsolved problems in number theory" , in University of Oklahoma Math 4513 course materials, see Archived 2014-01-17 at the Wayback Machine, accessed 15 December 2014.
  24. Brightwell, Graham R.; Felsner, Stefan; Trotter, William T. (1995), "Balancing pairs and the cross product conjecture", Order, 12 (4): 327–349, CiteSeerX 10.1.1.38.7841, doi:10.1007/BF01110378, MR 1368815, S2CID 14793475.
  25. Tao, Terence (2018). "Some remarks on the lonely runner conjecture". Contributions to Discrete Mathematics. 13 (2): 1–31. arXiv:1701.02048. doi:10.11575/cdm.v13i2.62728.
  26. Bruhn, Henning; Schaudt, Oliver (2015), "The journey of the union-closed sets conjecture" (PDF), Graphs and Combinatorics, 31 (6): 2043–2074, arXiv:1309.3297, doi:10.1007/s00373-014-1515-0, MR 3417215, S2CID 17531822, archived (PDF) from the original on 2017-08-08, retrieved 2017-07-18
  27. "Dedekind Numbers and Related Sequences" (PDF). Archived from the original (PDF) on 2015-03-15. Retrieved 2020-04-30.
  28. Murnaghan, F. D. (1938), "The Analysis of the Direct Product of Irreducible Representations of the Symmetric Groups", American Journal of Mathematics, 60 (1): 44–65, doi:10.2307/2371542, JSTOR 2371542, MR 1507301, PMC 1076971, PMID 16577800
  29. Liśkiewicz, Maciej; Ogihara, Mitsunori; Toda, Seinosuke (2003-07-28). "The complexity of counting self-avoiding walks in subgraphs of two-dimensional grids and hypercubes". Theoretical Computer Science. 304 (1): 129–156. doi:10.1016/S0304-3975(03)00080-X.
  30. S. M. Ulam, Problems in Modern Mathematics. Science Editions John Wiley & Sons, Inc., New York, 1964, page 76.
  31. Kaloshin, Vadim; Sorrentino, Alfonso (2018). "On the local Birkhoff conjecture for convex billiards". Annals of Mathematics. 188 (1): 315–380. arXiv:1612.09194. doi:10.4007/annals.2018.188.1.6. S2CID 119171182.
  32. Sarnak, Peter (2011), "Recent progress on the quantum unique ergodicity conjecture", Bulletin of the American Mathematical Society, 48 (2): 211–228, doi:10.1090/S0273-0979-2011-01323-4, MR 2774090
  33. Paul Halmos, Ergodic theory. Chelsea, New York, 1956.
  34. Kari, Jarkko (2009), "Structure of reversible cellular automata", Unconventional Computation: 8th International Conference, UC 2009, Ponta Delgada, Portugal, September 7ÔÇô11, 2009, Proceedings, Lecture Notes in Computer Science, vol. 5715, Springer, p. 6, Bibcode:2009LNCS.5715....6K, doi:10.1007/978-3-642-03745-0_5, ISBN 978-3-642-03744-3
  35. ^ http://english.log-it-ex.com Archived 2017-11-10 at the Wayback Machine Ten open questions about Sudoku (2012-01-21).
  36. "Higher-Dimensional Tic-Tac-Toe". PBS Infinite Series. YouTube. 2017-09-21. Archived from the original on 2017-10-11. Retrieved 2018-07-29.
  37. Barlet, Daniel; Peternell, Thomas; Schneider, Michael (1990). "On two conjectures of Hartshorne's". Mathematische Annalen. 286 (1–3): 13–25. doi:10.1007/BF01453563. S2CID 122151259.
  38. Maulik, Davesh; Nekrasov, Nikita; Okounov, Andrei; Pandharipande, Rahul (2004-06-05), Gromov–Witten theory and Donaldson–Thomas theory, I, arXiv:math/0312059, Bibcode:2003math.....12059M
  39. Zariski, Oscar (1971). "Some open questions in the theory of singularities". Bulletin of the American Mathematical Society. 77 (4): 481–491. doi:10.1090/S0002-9904-1971-12729-5. MR 0277533.
  40. Bereg, Sergey; Dumitrescu, Adrian; Jiang, Minghui (2010), "On covering problems of Rado", Algorithmica, 57 (3): 538–561, doi:10.1007/s00453-009-9298-z, MR 2609053, S2CID 6511998
  41. Melissen, Hans (1993), "Densest packings of congruent circles in an equilateral triangle", American Mathematical Monthly, 100 (10): 916–925, doi:10.2307/2324212, JSTOR 2324212, MR 1252928
  42. Conway, John H.; Neil J.A. Sloane (1999), Sphere Packings, Lattices and Groups (3rd ed.), New York: Springer-Verlag, pp. 21–22, ISBN 978-0-387-98585-5
  43. Hales, Thomas (2017), The Reinhardt conjecture as an optimal control problem, arXiv:1703.01352
  44. Brass, Peter; Moser, William; Pach, János (2005), Research Problems in Discrete Geometry, New York: Springer, p. 45, ISBN 978-0387-23815-9, MR 2163782
  45. Gardner, Martin (1995), New Mathematical Diversions (Revised Edition), Washington: Mathematical Association of America, p. 251
  46. Barros, Manuel (1997), "General Helices and a Theorem of Lancret", Proceedings of the American Mathematical Society, 125 (5): 1503–1509, doi:10.1090/S0002-9939-97-03692-7, JSTOR 2162098
  47. Katz, Mikhail G. (2007), Systolic geometry and topology, Mathematical Surveys and Monographs, vol. 137, American Mathematical Society, Providence, RI, p. 57, doi:10.1090/surv/137, ISBN 978-0-8218-4177-8, MR 2292367
  48. Rosenberg, Steven (1997), The Laplacian on a Riemannian Manifold: An introduction to analysis on manifolds, London Mathematical Society Student Texts, vol. 31, Cambridge: Cambridge University Press, pp. 62–63, doi:10.1017/CBO9780511623783, ISBN 978-0-521-46300-3, MR 1462892
  49. Boltjansky, V.; Gohberg, I. (1985), "11. Hadwiger's Conjecture", Results and Problems in Combinatorial Geometry, Cambridge University Press, pp. 44–46.
  50. Morris, Walter D.; Soltan, Valeriu (2000), "The Erdős-Szekeres problem on points in convex position—a survey", Bull. Amer. Math. Soc., 37 (4): 437–458, doi:10.1090/S0273-0979-00-00877-6, MR 1779413; Suk, Andrew (2016), "On the Erdős–Szekeres convex polygon problem", J. Amer. Math. Soc., 30 (4): 1047–1053, arXiv:1604.08657, doi:10.1090/jams/869, S2CID 15732134
  51. Kalai, Gil (1989), "The number of faces of centrally-symmetric polytopes", Graphs and Combinatorics, 5 (1): 389–391, doi:10.1007/BF01788696, MR 1554357, S2CID 8917264.
  52. Weisstein, Eric W. "Kobon Triangle". MathWorld.
  53. Guy, Richard K. (1983), "An olla-podrida of open problems, often oddly posed", American Mathematical Monthly, 90 (3): 196–200, doi:10.2307/2975549, JSTOR 2975549, MR 1540158
  54. Matoušek, Jiří (2002), Lectures on discrete geometry, Graduate Texts in Mathematics, vol. 212, Springer-Verlag, New York, p. 206, doi:10.1007/978-1-4613-0039-7, ISBN 978-0-387-95373-1, MR 1899299
  55. Brass, Peter; Moser, William; Pach, János (2005), "5.1 The Maximum Number of Unit Distances in the Plane", Research problems in discrete geometry, Springer, New York, pp. 183–190, ISBN 978-0-387-23815-9, MR 2163782
  56. Dey, Tamal K. (1998), "Improved bounds for planar k-sets and related problems", Discrete Comput. Geom., 19 (3): 373–382, doi:10.1007/PL00009354, MR 1608878; Tóth, Gábor (2001), "Point sets with many k-sets", Discrete Comput. Geom., 26 (2): 187–194, doi:10.1007/s004540010022, MR 1843435.
  57. Aronov, Boris; Dujmović, Vida; Morin, Pat; Ooms, Aurélien; Schultz Xavier da Silveira, Luís Fernando (2019), "More Turán-type theorems for triangles in convex point sets", Electronic Journal of Combinatorics, 26 (1): P1.8, arXiv:1706.10193, Bibcode:2017arXiv170610193A, doi:10.37236/7224, archived from the original on 2019-02-18, retrieved 2019-02-18
  58. Atiyah, Michael (2001), "Configurations of points", Philosophical Transactions of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences, 359 (1784): 1375–1387, Bibcode:2001RSPTA.359.1375A, doi:10.1098/rsta.2001.0840, ISSN 1364-503X, MR 1853626, S2CID 55833332
  59. Finch, S. R.; Wetzel, J. E. (2004), "Lost in a forest", American Mathematical Monthly, 11 (8): 645–654, doi:10.2307/4145038, JSTOR 4145038, MR 2091541
  60. Solomon, Yaar; Weiss, Barak (2016), "Dense forests and Danzer sets", Annales Scientifiques de l'École Normale Supérieure, 49 (5): 1053–1074, arXiv:1406.3807, doi:10.24033/asens.2303, MR 3581810, S2CID 672315; Conway, John H., Five $1,000 Problems (Update 2017) (PDF), On-Line Encyclopedia of Integer Sequences, archived (PDF) from the original on 2019-02-13, retrieved 2019-02-12
  61. Socolar, Joshua E. S.; Taylor, Joan M. (2012), "Forcing nonperiodicity with a single tile", The Mathematical Intelligencer, 34 (1): 18–28, arXiv:1009.1419, doi:10.1007/s00283-011-9255-y, MR 2902144, S2CID 10747746
  62. Arutyunyants, G.; Iosevich, A. (2004), "Falconer conjecture, spherical averages and discrete analogs", in Pach, János (ed.), Towards a Theory of Geometric Graphs, Contemp. Math., vol. 342, Amer. Math. Soc., Providence, RI, pp. 15–24, doi:10.1090/conm/342/06127, ISBN 9780821834848, MR 2065249
  63. Matschke, Benjamin (2014), "A survey on the square peg problem", Notices of the American Mathematical Society, 61 (4): 346–352, doi:10.1090/noti1100
  64. Katz, Nets; Tao, Terence (2002), "Recent progress on the Kakeya conjecture", Proceedings of the 6th International Conference on Harmonic Analysis and Partial Differential Equations (El Escorial, 2000), Publicacions Matemàtiques (Vol. Extra): 161–179, CiteSeerX 10.1.1.241.5335, doi:10.5565/PUBLMAT_Esco02_07, MR 1964819, S2CID 77088 {{citation}}: |issue= has extra text (help)
  65. Weaire, Denis, ed. (1997), The Kelvin Problem, CRC Press, p. 1, ISBN 9780748406326
  66. Brass, Peter; Moser, William; Pach, János (2005), Research problems in discrete geometry, New York: Springer, p. 457, ISBN 9780387299297, MR 2163782
  67. Mahler, Kurt (1939). "Ein Minimalproblem für konvexe Polygone". Mathematica (Zutphen) B: 118–127.
  68. Norwood, Rick; Poole, George; Laidacker, Michael (1992), "The worm problem of Leo Moser", Discrete and Computational Geometry, 7 (2): 153–162, doi:10.1007/BF02187832, MR 1139077
  69. Wagner, Neal R. (1976), "The Sofa Problem" (PDF), The American Mathematical Monthly, 83 (3): 188–189, doi:10.2307/2977022, JSTOR 2977022, archived (PDF) from the original on 2015-04-20, retrieved 2014-05-14
  70. Chai, Ying; Yuan, Liping; Zamfirescu, Tudor (June–July 2018), "Rupert Property of Archimedean Solids", The American Mathematical Monthly, 125 (6): 497–504, doi:10.1080/00029890.2018.1449505, S2CID 125508192
  71. Steininger, Jakob; Yurkevich, Sergey (December 27, 2021), An algorithmic approach to Rupert's problem, arXiv:2112.13754
  72. Demaine, Erik D.; O'Rourke, Joseph (2007), "Chapter 22. Edge Unfolding of Polyhedra", Geometric Folding Algorithms: Linkages, Origami, Polyhedra, Cambridge University Press, pp. 306–338
  73. Ghomi, Mohammad (2018-01-01). "D "urer's Unfolding Problem for Convex Polyhedra". Notices of the American Mathematical Society. 65 (1): 25–27. doi:10.1090/noti1609. ISSN 0002-9920.
  74. Whyte, L. L. (1952), "Unique arrangements of points on a sphere", The American Mathematical Monthly, 59 (9): 606–611, doi:10.2307/2306764, JSTOR 2306764, MR 0050303
  75. Howards, Hugh Nelson (2013), "Forming the Borromean rings out of arbitrary polygonal unknots", Journal of Knot Theory and Its Ramifications, 22 (14): 1350083, 15, arXiv:1406.3370, doi:10.1142/S0218216513500831, MR 3190121, S2CID 119674622
  76. Brandts, Jan; Korotov, Sergey; Křížek, Michal; Šolc, Jakub (2009), "On nonobtuse simplicial partitions" (PDF), SIAM Review, 51 (2): 317–335, Bibcode:2009SIAMR..51..317B, doi:10.1137/060669073, MR 2505583, archived (PDF) from the original on 2018-11-04, retrieved 2018-11-22. See in particular Conjecture 23, p. 327.
  77. ACW (May 24, 2012), "Convex uniform 5-polytopes", Open Problem Garden, archived from the original on October 5, 2016, retrieved 2016-10-04.
  78. Bousquet, Nicolas; Bartier, Valentin (2019), "Linear Transformations Between Colorings in Chordal Graphs", in Bender, Michael A.; Svensson, Ola; Herman, Grzegorz (eds.), 27th Annual European Symposium on Algorithms, ESA 2019, September 9-11, 2019, Munich/Garching, Germany, LIPIcs, vol. 144, Schloss Dagstuhl - Leibniz-Zentrum für Informatik, pp. 24:1–24:15, doi:10.4230/LIPIcs.ESA.2019.24, ISBN 9783959771245, S2CID 195791634{{citation}}: CS1 maint: unflagged free DOI (link)
  79. Chung, Fan; Graham, Ron (1998), Erdős on Graphs: His Legacy of Unsolved Problems, A K Peters, pp. 97–99.
  80. Chudnovsky, Maria; Seymour, Paul (2014), "Extending the Gyárfás-Sumner conjecture", Journal of Combinatorial Theory, Series B, 105: 11–16, doi:10.1016/j.jctb.2013.11.002, MR 3171779
  81. Toft, Bjarne (1996), "A survey of Hadwiger's conjecture", Congressus Numerantium, 115: 249–283, MR 1411244.
  82. Croft, Hallard T.; Falconer, Kenneth J.; Guy, Richard K. (1991), Unsolved Problems in Geometry, Springer-Verlag, Problem G10.
  83. Hägglund, Jonas; Steffen, Eckhard (2014), "Petersen-colorings and some families of snarks", Ars Mathematica Contemporanea, 7 (1): 161–173, doi:10.26493/1855-3974.288.11a, MR 3047618, archived from the original on 2016-10-03, retrieved 2016-09-30.
  84. Jensen, Tommy R.; Toft, Bjarne (1995), "12.20 List-Edge-Chromatic Numbers", Graph Coloring Problems, New York: Wiley-Interscience, pp. 201–202, ISBN 978-0-471-02865-9.
  85. Molloy, Michael; Reed, Bruce (1998), "A bound on the total chromatic number", Combinatorica, 18 (2): 241–280, CiteSeerX 10.1.1.24.6514, doi:10.1007/PL00009820, MR 1656544, S2CID 9600550.
  86. Barát, János; Tóth, Géza (2010), "Towards the Albertson Conjecture", Electronic Journal of Combinatorics, 17 (1): R73, arXiv:0909.0413, Bibcode:2009arXiv0909.0413B, doi:10.37236/345.
  87. Fulek, Radoslav; Pach, János (2011), "A computational approach to Conway's thrackle conjecture", Computational Geometry, 44 (6–7): 345–355, arXiv:1002.3904, doi:10.1016/j.comgeo.2011.02.001, MR 2785903.
  88. Hartsfield, Nora; Ringel, Gerhard (2013), Pearls in Graph Theory: A Comprehensive Introduction, Dover Books on Mathematics, Courier Dover Publications, p. 247, ISBN 978-0-486-31552-2, MR 2047103.
  89. Hliněný, Petr (2010), "20 years of Negami's planar cover conjecture" (PDF), Graphs and Combinatorics, 26 (4): 525–536, CiteSeerX 10.1.1.605.4932, doi:10.1007/s00373-010-0934-9, MR 2669457, S2CID 121645, archived (PDF) from the original on 2016-03-04, retrieved 2016-10-04.
  90. Nöllenburg, Martin; Prutkin, Roman; Rutter, Ignaz (2016), "On self-approaching and increasing-chord drawings of 3-connected planar graphs", Journal of Computational Geometry, 7 (1): 47–69, arXiv:1409.0315, doi:10.20382/jocg.v7i1a3, MR 3463906
  91. Pach, János; Sharir, Micha (2009), "5.1 Crossings—the Brick Factory Problem", Combinatorial Geometry and Its Algorithmic Applications: The Alcalá Lectures, Mathematical Surveys and Monographs, vol. 152, American Mathematical Society, pp. 126–127.
  92. Demaine, E.; O'Rourke, J. (2002–2012), "Problem 45: Smallest Universal Set of Points for Planar Graphs", The Open Problems Project, archived from the original on 2012-08-14, retrieved 2013-03-19.
  93. Florek, Jan (2010), "On Barnette's conjecture", Discrete Mathematics, 310 (10–11): 1531–1535, doi:10.1016/j.disc.2010.01.018, MR 2601261.
  94. Broersma, Hajo; Patel, Viresh; Pyatkin, Artem (2014), "On toughness and Hamiltonicity of $2K_2$-free graphs", Journal of Graph Theory, 75 (3): 244–255, doi:10.1002/jgt.21734, MR 3153119, S2CID 1377980
  95. Jaeger, F. (1985), "A survey of the cycle double cover conjecture", Annals of Discrete Mathematics 27 – Cycles in Graphs, North-Holland Mathematics Studies, vol. 27, pp. 1–12, doi:10.1016/S0304-0208(08)72993-1, ISBN 9780444878038.
  96. Heckman, Christopher Carl; Krakovski, Roi (2013), "Erdös-Gyárfás conjecture for cubic planar graphs", Electronic Journal of Combinatorics, 20 (2), P7, doi:10.37236/3252.
  97. Akiyama, Jin; Exoo, Geoffrey; Harary, Frank (1981), "Covering and packing in graphs. IV. Linear arboricity", Networks, 11 (1): 69–72, doi:10.1002/net.3230110108, MR 0608921.
  98. L. Babai, Automorphism groups, isomorphism, reconstruction Archived 2007-06-13 at the Wayback Machine, in Handbook of Combinatorics, Vol. 2, Elsevier, 1996, 1447–1540.
  99. Lenz, Hanfried; Ringel, Gerhard (1991), "A brief review on Egmont Köhler's mathematical work", Discrete Mathematics, 97 (1–3): 3–16, doi:10.1016/0012-365X(91)90416-Y, MR 1140782
  100. ^ S. Kitaev and V. Lozin. Words and Graphs, Springer, 2015.
  101. ^ S. Kitaev. A comprehensive introduction to the theory of word-representable graphs. In: É. Charlier, J. Leroy, M. Rigo (eds), Developments in Language Theory. DLT 2017. Lecture Notes Comp. Sci. 10396, Springer, 36−67.
  102. ^ S. Kitaev and A. Pyatkin. Word-representable graphs: a Survey, Journal of Applied and Industrial Mathematics 12(2) (2018) 278−296.
  103. ^ С. В. Китаев, А. В. Пяткин. Графы, представимые в виде слов. Обзор результатов, Дискретн. анализ и исслед. опер., 2018, том 25,номер 2, 19−53
  104. Marc Elliot Glen (2016). "Colourability and word-representability of near-triangulations". arXiv:1605.01688 .
  105. S. Kitaev. On graphs with representation number 3, J. Autom., Lang. and Combin. 18 (2013), 97−112.
  106. Glen, Marc; Kitaev, Sergey; Pyatkin, Artem (2018). "On the representation number of a crown graph". Discrete Applied Mathematics. 244: 89–93. arXiv:1609.00674. doi:10.1016/j.dam.2018.03.013. S2CID 46925617.
  107. Conway, John H., Five $1,000 Problems (Update 2017) (PDF), Online Encyclopedia of Integer Sequences, archived (PDF) from the original on 2019-02-13, retrieved 2019-02-12
  108. Chudnovsky, Maria (2014), "The Erdös–Hajnal conjecture—a survey" (PDF), Journal of Graph Theory, 75 (2): 178–190, arXiv:1606.08827, doi:10.1002/jgt.21730, MR 3150572, S2CID 985458, Zbl 1280.05086, archived (PDF) from the original on 2016-03-04, retrieved 2016-09-22.
  109. Gupta, Anupam; Newman, Ilan; Rabinovich, Yuri; Sinclair, Alistair (2004), "Cuts, trees and 1 {\displaystyle \ell _{1}} -embeddings of graphs", Combinatorica, 24 (2): 233–269, CiteSeerX 10.1.1.698.8978, doi:10.1007/s00493-004-0015-x, MR 2071334, S2CID 46133408
  110. Pleanmani, Nopparat (2019), "Graham's pebbling conjecture holds for the product of a graph and a sufficiently large complete bipartite graph", Discrete Mathematics, Algorithms and Applications, 11 (6): 1950068, 7, doi:10.1142/s179383091950068x, MR 4044549, S2CID 204207428
  111. Spinrad, Jeremy P. (2003), "2. Implicit graph representation", Efficient Graph Representations, pp. 17–30, ISBN 978-0-8218-2815-1.
  112. "Jorgensen's Conjecture", Open Problem Garden, archived from the original on 2016-11-14, retrieved 2016-11-13.
  113. Baird, William; Bonato, Anthony (2012), "Meyniel's conjecture on the cop number: a survey", Journal of Combinatorics, 3 (2): 225–238, arXiv:1308.3385, doi:10.4310/JOC.2012.v3.n2.a6, MR 2980752, S2CID 18942362
  114. Schwenk, Allen (2012), "Some History on the Reconstruction Conjecture" (PDF), Joint Mathematics Meetings, archived (PDF) from the original on 2015-04-09, retrieved 2018-11-26
  115. Ramachandran, S. (1981), "On a new digraph reconstruction conjecture", Journal of Combinatorial Theory, Series B, 31 (2): 143–149, doi:10.1016/S0095-8956(81)80019-6, MR 0630977
  116. Seymour's 2nd Neighborhood Conjecture Archived 2019-01-11 at the Wayback Machine, Open Problems in Graph Theory and Combinatorics, Douglas B. West.
  117. Blokhuis, A.; Brouwer, A. E. (1988), "Geodetic graphs of diameter two", Geometriae Dedicata, 25 (1–3): 527–533, doi:10.1007/BF00191941, MR 0925851, S2CID 189890651
  118. Kühn, Daniela; Mycroft, Richard; Osthus, Deryk (2011), "A proof of Sumner's universal tournament conjecture for large tournaments", Proceedings of the London Mathematical Society, Third Series, 102 (4): 731–766, arXiv:1010.4430, doi:10.1112/plms/pdq035, MR 2793448, S2CID 119169562, Zbl 1218.05034.
  119. 4-flow conjecture Archived 2018-11-26 at the Wayback Machine and 5-flow conjecture Archived 2018-11-26 at the Wayback Machine, Open Problem Garden
  120. Brešar, Boštjan; Dorbec, Paul; Goddard, Wayne; Hartnell, Bert L.; Henning, Michael A.; Klavžar, Sandi; Rall, Douglas F. (2012), "Vizing's conjecture: a survey and recent results", Journal of Graph Theory, 69 (1): 46–76, CiteSeerX 10.1.1.159.7029, doi:10.1002/jgt.20565, MR 2864622, S2CID 9120720.
  121. Ducey, Joshua E. (2017), "On the critical group of the missing Moore graph", Discrete Mathematics, 340 (5): 1104–1109, arXiv:1509.00327, doi:10.1016/j.disc.2016.10.001, MR 3612450, S2CID 28297244
  122. Fomin, Fedor V.; Høie, Kjartan (2006), "Pathwidth of cubic graphs and exact algorithms", Information Processing Letters, 97 (5): 191–196, doi:10.1016/j.ipl.2005.10.012, MR 2195217
  123. Khukhro, Evgeny I.; Mazurov, Victor D. (2019), Unsolved Problems in Group Theory. The Kourovka Notebook, arXiv:1401.0300v16
  124. Aschbacher, Michael (1990), "On Conjectures of Guralnick and Thompson", Journal of Algebra, 135 (2): 277–343, doi:10.1016/0021-8693(90)90292-V
  125. Hrushovski, Ehud (1989). "Kueker's conjecture for stable theories". Journal of Symbolic Logic. 54 (1): 207–220. doi:10.2307/2275025. JSTOR 2275025.
  126. ^ Shelah S, Classification Theory, North-Holland, 1990
  127. Shelah, Saharon (2009). Classification theory for abstract elementary classes. College Publications. ISBN 978-1-904987-71-0.
  128. Peretz, Assaf (2006). "Geometry of forking in simple theories". Journal of Symbolic Logic. 71 (1): 347–359. arXiv:math/0412356. doi:10.2178/jsl/1140641179. S2CID 9380215.
  129. Cherlin, G.; Shelah, S. (May 2007). "Universal graphs with a forbidden subtree". Journal of Combinatorial Theory, Series B. 97 (3): 293–333. arXiv:math/0512218. doi:10.1016/j.jctb.2006.05.008. S2CID 10425739.
  130. Džamonja, Mirna, "Club guessing and the universal models." On PCF, ed. M. Foreman, (Banff, Alberta, 2004).
  131. Shelah, Saharon (1999). "Borel sets with large squares". Fundamenta Mathematicae. 159 (1): 1–50. arXiv:math/9802134. Bibcode:1998math......2134S. doi:10.4064/fm-159-1-1-50. S2CID 8846429.
  132. Baldwin, John T. (July 24, 2009). Categoricity (PDF). American Mathematical Society. ISBN 978-0-8218-4893-7. Archived (PDF) from the original on July 29, 2010. Retrieved February 20, 2014.
  133. Shelah, Saharon (2009). "Introduction to classification theory for abstract elementary classes". arXiv:0903.3428. Bibcode:2009arXiv0903.3428S. {{cite journal}}: Cite journal requires |journal= (help)
  134. Gurevich, Yuri, "Monadic Second-Order Theories," in J. Barwise, S. Feferman, eds., Model-Theoretic Logics (New York: Springer-Verlag, 1985), 479–506.
  135. Makowsky J, "Compactness, embeddings and definability," in Model-Theoretic Logics, eds Barwise and Feferman, Springer 1985 pps. 645–715.
  136. Keisler, HJ (1967). "Ultraproducts which are not saturated". J. Symb. Log. 32 (1): 23–46. doi:10.2307/2271240. JSTOR 2271240.
  137. Malliaris M, Shelah S, "A dividing line in simple unstable theories." https://arxiv.org/abs/1208.2140 Archived 2017-08-02 at the Wayback Machine
  138. Conrey, Brian (2016), "Lectures on the Riemann zeta function (book review)", Bulletin of the American Mathematical Society, 53 (3): 507–512, doi:10.1090/bull/1525
  139. Singmaster, D. (1971), "Research Problems: How often does an integer occur as a binomial coefficient?", American Mathematical Monthly, 78 (4): 385–386, doi:10.2307/2316907, JSTOR 2316907, MR 1536288.
  140. Aigner, Martin (2013), Markov's theorem and 100 years of the uniqueness conjecture, Cham: Springer, doi:10.1007/978-3-319-00888-2, ISBN 978-3-319-00887-5, MR 3098784
  141. Guo, Song; Sun, Zhi-Wei (2005), "On odd covering systems with distinct moduli", Advances in Applied Mathematics, 35 (2): 182–187, arXiv:math/0412217, doi:10.1016/j.aam.2005.01.004, MR 2152886, S2CID 835158
  142. "Are the Digits of Pi Random? Berkeley Lab Researcher May Hold Key". Archived from the original on 2016-03-27. Retrieved 2016-03-18.
  143. Huisman, Sander G. (2016). "Newer sums of three cubes". arXiv:1604.07746 .
  144. Dobson, J. B. (1 April 2017), "On Lerch's formula for the Fermat quotient", p. 23, arXiv:1103.3907v6
  145. Ribenboim, P. (2006). Die Welt der Primzahlen. Springer-Lehrbuch (in German) (2nd ed.). Springer. pp. 242–243. doi:10.1007/978-3-642-18079-8. ISBN 978-3-642-18078-1.
  146. Mazur, Barry (1992), "The topology of rational points", Experimental Mathematics, 1 (1): 35–45, doi:10.1080/10586458.1992.10504244 (inactive 28 February 2022), archived from the original on 2019-04-07, retrieved 2019-04-07{{citation}}: CS1 maint: DOI inactive as of February 2022 (link)
  147. Casazza, Peter G.; Fickus, Matthew; Tremain, Janet C.; Weber, Eric (2006). "The Kadison-Singer problem in mathematics and engineering: A detailed account". In Han, Deguang; Jorgensen, Palle E. T.; Larson, David Royal (eds.). Large Deviations for Additive Functionals of Markov Chains: The 25th Great Plains Operator Theory Symposium, June 7–12, 2005, University of Central Florida, Florida. Contemporary Mathematics. Vol. 414. American Mathematical Society. pp. 299–355. doi:10.1090/conm/414/07820. ISBN 978-0-8218-3923-2. Retrieved 24 April 2015.
  148. Mackenzie, Dana. "Kadison–Singer Problem Solved" (PDF). SIAM News. No. January/February 2014. Society for Industrial and Applied Mathematics. Archived (PDF) from the original on 23 October 2014. Retrieved 24 April 2015.
  149. ^ Agol, Ian (2004). "Tameness of hyperbolic 3-manifolds". arXiv:math/0405568.
  150. Kurdyka, Krzysztof; Mostowski, Tadeusz; Parusiński, Adam (2000). "Proof of the gradient conjecture of R. Thom". Annals of Mathematics. 152 (3): 763–792. arXiv:math/9906212. doi:10.2307/2661354. JSTOR 2661354. S2CID 119137528.
  151. Moreira, Joel; Richter, Florian K.; Robertson, Donald (2019). "A proof of a sumset conjecture of Erdős". Annals of Mathematics. 189 (2): 605–652. arXiv:1803.00498. doi:10.4007/annals.2019.189.2.4. S2CID 119158401.
  152. Stanley, Richard P. (1994), "A survey of Eulerian posets", in Bisztriczky, T.; McMullen, P.; Schneider, R.; Weiss, A. Ivić (eds.), Polytopes: abstract, convex and computational (Scarborough, ON, 1993), NATO Advanced Science Institutes Series C: Mathematical and Physical Sciences, vol. 440, Dordrecht: Kluwer Academic Publishers, pp. 301–333, MR 1322068. See in particular p. 316.
  153. Kalai, Gil (2018-12-25). "Amazing: Karim Adiprasito proved the g-conjecture for spheres!". Archived from the original on 2019-02-16. Retrieved 2019-02-15.
  154. Santos, Franciscos (2012). "A counterexample to the Hirsch conjecture". Annals of Mathematics. 176 (1): 383–412. arXiv:1006.2814. doi:10.4007/annals.2012.176.1.7. S2CID 15325169.
  155. Ziegler, Günter M. (2012). "Who solved the Hirsch conjecture?". Documenta Mathematica. Extra Volume "Optimization Stories": 75–85.
  156. Chung, Fan; Greene, Curtis; Hutchinson, Joan (April 2015). "Herbert S. Wilf (1931–2012)". Notices of the AMS. 62 (4): 358. doi:10.1090/noti1247. ISSN 1088-9477. OCLC 34550461. The conjecture was finally given an exceptionally elegant proof by A. Marcus and G. Tardos in 2004.
  157. Savchev, Svetoslav (2005). "Kemnitz' conjecture revisited". Discrete Mathematics. 297 (1–3): 196–201. doi:10.1016/j.disc.2005.02.018.
  158. Green, Ben (2004). "The Cameron–Erdős conjecture". The Bulletin of the London Mathematical Society. 36 (6): 769–778. arXiv:math.NT/0304058. doi:10.1112/S0024609304003650. MR 2083752. S2CID 119615076.
  159. "News from 2007". American Mathematical Society. AMS. 31 December 2007. Archived from the original on 17 November 2015. Retrieved 2015-11-13. The 2007 prize also recognizes Green for "his many outstanding results including his resolution of the Cameron-Erdős conjecture..."
  160. Xue, Jinxin (2014). "Noncollision Singularities in a Planar Four-body Problem" (Document). {{cite document}}: Cite document requires |publisher= (help); Unknown parameter |arxiv= ignored (help)
  161. Xue, Jinxin (2020). "Non-collision singularities in a planar 4-body problem". Acta Mathematica. 224 (2): 253–388. doi:10.4310/ACTA.2020.v224.n2.a2. S2CID 226420221.
  162. Bowditch, Brian H. (2006). "The angel game in the plane" (PDF). School of Mathematics, University of Southampton: warwick.ac.uk Warwick University. Archived (PDF) from the original on 2016-03-04. Retrieved 2016-03-18.
  163. Kloster, Oddvar. "A Solution to the Angel Problem" (PDF). SINTEF ICT, Postboks 124 Blindern, 0314 Oslo, Norway. Archived from the original (PDF) on 2016-01-07. Retrieved 2016-03-18.{{cite web}}: CS1 maint: location (link)
  164. Mathe, Andras (2007). "The Angel of power 2 wins" (PDF). Combinatorics, Probability and Computing. 16 (3): 363–374. doi:10.1017/S0963548306008303. S2CID 16892955. Archived (PDF) from the original on 2016-10-13. Retrieved 2016-03-18.
  165. Gacs, Peter. "THE ANGEL WINS" (PDF). Archived (PDF) from the original on 2016-03-04. Retrieved 2016-03-18.
  166. Song, Antoine. "Existence of infinitely many minimal hypersurfaces in closed manifolds" (PDF). www.ams.org. Retrieved 19 June 2021. ..I will present a solution of the conjecture, which builds on min-max methods developed by F. C. Marques and A. Neves..
  167. "Antoine Song | Clay Mathematics Institute". ...Building on work of Codá Marques and Neves, in 2018 Song proved Yau's conjecture in complete generality
  168. Wolchover, Natalie (July 11, 2017), "Pentagon Tiling Proof Solves Century-Old Math Problem", Quanta Magazine, archived from the original on August 6, 2017, retrieved July 18, 2017
  169. Marques, Fernando C.; Neves, André (2013). "Min-max theory and the Willmore conjecture". Annals of Mathematics. 179 (2): 683–782. arXiv:1202.6036. doi:10.4007/annals.2014.179.2.6. S2CID 50742102.
  170. Guth, Larry; Katz, Nets Hawk (2015). "On the Erdos distinct distance problem in the plane". Annals of Mathematics. 181 (1): 155–190. arXiv:1011.4105. doi:10.4007/annals.2015.181.1.2.
  171. Henle, Frederick V.; Henle, James M. "Squaring the Plane" (PDF). www.maa.org Mathematics Association of America. Archived (PDF) from the original on 2016-03-24. Retrieved 2016-03-18.
  172. Brock, Jeffrey F.; Canary, Richard D.; Minsky, Yair N. (2012). "The classification of Kleinian surface groups, II: The Ending Lamination Conjecture". Annals of Mathematics. 176 (1): 1–149. arXiv:math/0412006. doi:10.4007/annals.2012.176.1.1.
  173. Connelly, Robert; Demaine, Erik D.; Rote, Günter (2003), "Straightening polygonal arcs and convexifying polygonal cycles" (PDF), Discrete & Computational Geometry, 30 (2): 205–239, doi:10.1007/s00454-003-0006-7, MR 1931840, S2CID 40382145
  174. Shestakov, Ivan P.; Umirbaev, Ualbai U. (2004). "The tame and the wild automorphisms of polynomial rings in three variables". Journal of the American Mathematical Society. 17 (1): 197–227. doi:10.1090/S0894-0347-03-00440-5. MR 2015334.
  175. Hutchings, Michael; Morgan, Frank; Ritoré, Manuel; Ros, Antonio (2002). "Proof of the double bubble conjecture". Annals of Mathematics. Second Series. 155 (2): 459–489. doi:10.2307/3062123. hdl:10481/32449. JSTOR 3062123. MR 1906593.
  176. Hales, Thomas C. (2001). "The Honeycomb Conjecture". Discrete & Computational Geometry. 25: 1–22. arXiv:math/9906042. doi:10.1007/s004540010071.
  177. Ullmo, E (1998). "Positivité et Discrétion des Points Algébriques des Courbes". Annals of Mathematics. 147 (1): 167–179. arXiv:alg-geom/9606017. doi:10.2307/120987. JSTOR 120987. S2CID 119717506. Zbl 0934.14013.
  178. Zhang, S.-W. (1998). "Equidistribution of small points on abelian varieties". Annals of Mathematics. 147 (1): 159–165. doi:10.2307/120986. JSTOR 120986.
  179. Hales, Thomas; Adams, Mark; Bauer, Gertrud; Dang, Dat Tat; Harrison, John; Hoang, Le Truong; Kaliszyk, Cezary; Magron, Victor; McLaughlin, Sean; Nguyen, Tat Thang; Nguyen, Quang Truong; Nipkow, Tobias; Obua, Steven; Pleso, Joseph; Rute, Jason; Solovyev, Alexey; Ta, Thi Hoai An; Tran, Nam Trung; Trieu, Thi Diep; Urban, Josef; Ky, Vu; Zumkeller, Roland (2017). "A formal proof of the Kepler conjecture". Forum of Mathematics, Pi. 5: e2. arXiv:1501.02155. doi:10.1017/fmp.2017.1.
  180. Hales, Thomas C.; McLaughlin, Sean (2010). "The dodecahedral conjecture". Journal of the American Mathematical Society. 23 (2): 299–344. arXiv:math/9811079. Bibcode:2010JAMS...23..299H. doi:10.1090/S0894-0347-09-00647-X.
  181. Dujmović, Vida; Eppstein, David; Hickingbotham, Robert; Morin, Pat; Wood, David R. (August 2021). "Stack-number is not bounded by queue-number". Combinatorica. arXiv:2011.04195. doi:10.1007/s00493-021-4585-7. S2CID 226281691.
  182. Huang, C.; Kotzig, A.; Rosa, A. (1982). "Further results on tree labellings". Utilitas Mathematica. 21: 31–48. MR 0668845..
  183. Hartnett, Kevin (19 February 2020). "Rainbow Proof Shows Graphs Have Uniform Parts". Quanta Magazine. Retrieved 2020-02-29.
  184. Shitov, Yaroslav (1 September 2019). "Counterexamples to Hedetniemi's conjecture". Annals of Mathematics. 190 (2): 663–667. arXiv:1905.02167. doi:10.4007/annals.2019.190.2.6. JSTOR 10.4007/annals.2019.190.2.6. MR 3997132. S2CID 146120733. Zbl 1451.05087. Retrieved 19 July 2021.
  185. Abdollahi A., Zallaghi M. (2015). "Character sums for Cayley graphs". Communications in Algebra. 43 (12): 5159–5167. doi:10.1080/00927872.2014.967398. S2CID 117651702.
  186. Chalopin, Jérémie; Gonçalves, Daniel (2009). "Every planar graph is the intersection graph of segments in the plane: extended abstract". In Mitzenmacher, Michael (ed.). Proceedings of the 41st Annual ACM Symposium on Theory of Computing, STOC 2009, Bethesda, MD, USA, May 31 - June 2, 2009. ACM. pp. 631–638. doi:10.1145/1536414.1536500.
  187. Aharoni, Ron; Berger, Eli (2009). "Menger's theorem for infinite graphs". Inventiones Mathematicae. 176 (1): 1–62. arXiv:math/0509397. Bibcode:2009InMat.176....1A. doi:10.1007/s00222-008-0157-3.
  188. Seigel-Itzkovich, Judy (2008-02-08). "Russian immigrant solves math puzzle". The Jerusalem Post. Retrieved 2015-11-12.
  189. "Graph Theory". Archived from the original on 2016-03-08. Retrieved 2016-03-18.
  190. Chudnovsky, Maria; Robertson, Neil; Seymour, Paul; Thomas, Robin (2002). "The strong perfect graph theorem". Annals of Mathematics. 164: 51–229. arXiv:math/0212070. Bibcode:2002math.....12070C. doi:10.4007/annals.2006.164.51. S2CID 119151552.
  191. Joel Friedman, "Sheaves on Graphs, Their Homological Invariants, and a Proof of the Hanna Neumann Conjecture: With an Appendix by Warren Dicks" Mem. Amer. Math. Soc., 233 (2015), no. 1100.
  192. Mineyev, Igor (2012). "Submultiplicativity and the Hanna Neumann conjecture". Annals of Mathematics. Second Series. 175 (1): 393–414. doi:10.4007/annals.2012.175.1.11. MR 2874647.
  193. Namazi, Hossein; Souto, Juan (2012). "Non-realizability and ending laminations: Proof of the density conjecture". Acta Mathematica. 209 (2): 323–395. doi:10.1007/s11511-012-0088-0.
  194. Bourgain, Jean; Ciprian, Demeter; Larry, Guth (2015). "Proof of the main conjecture in Vinogradov's Mean Value Theorem for degrees higher than three". Annals of Mathematics. 184 (2): 633–682. arXiv:1512.01565. Bibcode:2015arXiv151201565B. doi:10.4007/annals.2016.184.2.7. hdl:1721.1/115568. S2CID 43929329.
  195. Helfgott, Harald A. (2013). "Major arcs for Goldbach's theorem". arXiv:1305.2897 .
  196. Helfgott, Harald A. (2012). "Minor arcs for Goldbach's problem". arXiv:1205.5252 .
  197. Helfgott, Harald A. (2013). "The ternary Goldbach conjecture is true". arXiv:1312.7748 .
  198. Zhang, Yitang (2014-05-01). "Bounded gaps between primes". Annals of Mathematics. 179 (3): 1121–1174. doi:10.4007/annals.2014.179.3.7. ISSN 0003-486X.
  199. "Bounded gaps between primes - Polymath Wiki". asone.ai. Retrieved 2021-08-27.
  200. Maynard, James (2015-01-01). "Small gaps between primes". Annals of Mathematics: 383–413. arXiv:1311.4600. doi:10.4007/annals.2015.181.1.7. ISSN 0003-486X. S2CID 55175056.
  201. Cilleruelo, Javier (2010). "Generalized Sidon sets". Advances in Mathematics. 225 (5): 2786–2807. doi:10.1016/j.aim.2010.05.010. hdl:10261/31032. S2CID 7385280.
  202. Khare, Chandrashekhar; Wintenberger, Jean-Pierre (2009), "Serre's modularity conjecture (I)", Inventiones Mathematicae, 178 (3): 485–504, Bibcode:2009InMat.178..485K, CiteSeerX 10.1.1.518.4611, doi:10.1007/s00222-009-0205-7, S2CID 14846347
  203. Khare, Chandrashekhar; Wintenberger, Jean-Pierre (2009), "Serre's modularity conjecture (II)", Inventiones Mathematicae, 178 (3): 505–586, Bibcode:2009InMat.178..505K, CiteSeerX 10.1.1.228.8022, doi:10.1007/s00222-009-0206-6, S2CID 189820189
  204. "2011 Cole Prize in Number Theory" (PDF). Notices of the AMS. 58 (4): 610–611. ISSN 1088-9477. OCLC 34550461. Archived (PDF) from the original on 2015-11-06. Retrieved 2015-11-12.
  205. "Bombieri and Tao Receive King Faisal Prize" (PDF). Notices of the AMS. 57 (5): 642–643. May 2010. ISSN 1088-9477. OCLC 34550461. Archived (PDF) from the original on 2016-03-04. Retrieved 2016-03-18. Working with Ben Green, he proved there are arbitrarily long arithmetic progressions of prime numbers—a result now known as the Green–Tao theorem.
  206. Metsänkylä, Tauno (5 September 2003). "Catalan's conjecture: another old diophantine problem solved" (PDF). Bulletin of the American Mathematical Society. 41 (1): 43–57. doi:10.1090/s0273-0979-03-00993-5. ISSN 0273-0979. Archived (PDF) from the original on 4 March 2016. Retrieved 13 November 2015. The conjecture, which dates back to 1844, was recently proven by the Swiss mathematician Preda Mihăilescu.
  207. Croot, Ernest S., III (2000). Unit Fractions. Ph.D. thesis. University of Georgia, Athens.{{cite book}}: CS1 maint: multiple names: authors list (link) Croot, Ernest S., III (2003). "On a coloring conjecture about unit fractions". Annals of Mathematics. 157 (2): 545–556. arXiv:math.NT/0311421. Bibcode:2003math.....11421C. doi:10.4007/annals.2003.157.545. S2CID 13514070.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  208. Lafforgue, Laurent (1998), "Chtoucas de Drinfeld et applications" [Drinfelʹd shtukas and applications], Documenta Mathematica (in French), II: 563–570, ISSN 1431-0635, MR 1648105, archived from the original on 2018-04-27, retrieved 2016-03-18
  209. Wiles, Andrew (1995). "Modular elliptic curves and Fermat's Last Theorem" (PDF). Annals of Mathematics. 141 (3): 443–551. CiteSeerX 10.1.1.169.9076. doi:10.2307/2118559. JSTOR 2118559. OCLC 37032255. Archived (PDF) from the original on 2011-05-10. Retrieved 2016-03-06.
  210. Taylor R, Wiles A (1995). "Ring theoretic properties of certain Hecke algebras". Annals of Mathematics. 141 (3): 553–572. CiteSeerX 10.1.1.128.531. doi:10.2307/2118560. JSTOR 2118560. OCLC 37032255.
  211. Lee, Choongbum (2017). "Ramsey numbers of degenerate graphs". Annals of Mathematics. 185 (3): 791–829. arXiv:1505.04773. doi:10.4007/annals.2017.185.3.2. S2CID 7974973.
  212. Lamb, Evelyn (26 May 2016). "Two-hundred-terabyte maths proof is largest ever". Nature. 534 (7605): 17–18. Bibcode:2016Natur.534...17L. doi:10.1038/nature.2016.19990. PMID 27251254.
  213. Heule, Marijn J. H.; Kullmann, Oliver; Marek, Victor W. (2016). "Solving and Verifying the Boolean Pythagorean Triples Problem via Cube-and-Conquer". In Creignou, N.; Le Berre, D. (eds.). Theory and Applications of Satisfiability Testing – SAT 2016. Lecture Notes in Computer Science. Vol. 9710. Springer, . pp. 228–245. arXiv:1605.00723. doi:10.1007/978-3-319-40970-2_15. ISBN 978-3-319-40969-6. MR 3534782. S2CID 7912943.
  214. Linkletter, David (27 December 2019). "The 10 Biggest Math Breakthroughs of 2019". www.popularmechanics.com. Hearst Digital Media. Retrieved 20 June 2021.
  215. The Conway knot is not slice, Annals of Mathematics, volume 191, issue 2, pp. 581–591
  216. Graduate Student Solves Decades-Old Conway Knot Problem, Quanta Magazine 19 May 2020
  217. Agol, Ian (2013). "The virtual Haken conjecture (with an appendix by Ian Agol, Daniel Groves, and Jason Manning)" (PDF). Documenta Mathematica. 18: 1045–1087. arXiv:1204.2810v1.
  218. Brendle, Simon (2013). "Embedded minimal tori in S 3 {\displaystyle S^{3}} and the Lawson conjecture". Acta Mathematica. 211 (2): 177–190. arXiv:1203.6597. doi:10.1007/s11511-013-0101-2.
  219. Kahn, Jeremy; Markovic, Vladimir (2015). "The good pants homology and the Ehrenpreis conjecture". Annals of Mathematics. 182 (1): 1–72. arXiv:1101.1330. doi:10.4007/annals.2015.182.1.1.
  220. Austin, Tim (December 2013). "Rational group ring elements with kernels having irrational dimension". Proceedings of the London Mathematical Society. 107 (6): 1424–1448. arXiv:0909.2360. Bibcode:2009arXiv0909.2360A. doi:10.1112/plms/pdt029. S2CID 115160094.
  221. Lurie, Jacob (2009). "On the classification of topological field theories". Current Developments in Mathematics. 2008: 129–280. arXiv:0905.0465. Bibcode:2009arXiv0905.0465L. doi:10.4310/cdm.2008.v2008.n1.a3. S2CID 115162503.
  222. ^ "Prize for Resolution of the Poincaré Conjecture Awarded to Dr. Grigoriy Perelman" (PDF) (Press release). Clay Mathematics Institute. March 18, 2010. Archived from the original on March 22, 2010. Retrieved November 13, 2015. The Clay Mathematics Institute hereby awards the Millennium Prize for resolution of the Poincaré conjecture to Grigoriy Perelman.
  223. Morgan, John; Tian, Gang (2008). "Completion of the Proof of the Geometrization Conjecture". arXiv:0809.4040 .
  224. Norio Iwase (1 November 1998). "Ganea's Conjecture on Lusternik-Schnirelmann Category". ResearchGate.
  225. Tao, Terence (2015). "The Erdős discrepancy problem". arXiv:1509.05363v5 .
  226. Duncan, John F. R.; Griffin, Michael J.; Ono, Ken (1 December 2015). "Proof of the umbral moonshine conjecture". Research in the Mathematical Sciences. 2 (1): 26. arXiv:1503.01472. Bibcode:2015arXiv150301472D. doi:10.1186/s40687-015-0044-7. S2CID 43589605.{{cite journal}}: CS1 maint: unflagged free DOI (link)
  227. Cheeger, Jeff; Naber, Aaron (2015). "Regularity of Einstein Manifolds and the Codimension 4 Conjecture". Annals of Mathematics. 182 (3): 1093–1165. arXiv:1406.6534. doi:10.4007/annals.2015.182.3.5.
  228. "A Long-Sought Proof, Found and Almost Lost". Quanta Magazine. Natalie Wolchover. March 28, 2017. Archived from the original on April 24, 2017. Retrieved May 2, 2017.
  229. Newman, Alantha; Nikolov, Aleksandar (2011). "A counterexample to Beck's conjecture on the discrepancy of three permutations". arXiv:1104.2922 .
  230. Voevodsky, Vladimir (1 July 2011). "On motivic cohomology with Z/l-coefficients" (PDF). School of Mathematics Institute for Advanced Study Einstein Drive Princeton, NJ 08540: annals.math.princeton.edu (Princeton University). pp. 401–438. Archived (PDF) from the original on 2016-03-27. Retrieved 2016-03-18.{{cite web}}: CS1 maint: location (link)
  231. Geisser, Thomas; Levine, Marc (2001). "The Bloch-Kato conjecture and a theorem of Suslin-Voevodsky". Journal für die Reine und Angewandte Mathematik. 2001 (530): 55–103. doi:10.1515/crll.2001.006. MR 1807268.
  232. "page 359" (PDF). Archived (PDF) from the original on 2016-03-27. Retrieved 2016-03-18.
  233. "motivic cohomology – Milnor–Bloch–Kato conjecture implies the Beilinson-Lichtenbaum conjecture – MathOverflow". Retrieved 2016-03-18.
  234. Mattman, Thomas W.; Solis, Pablo (2009). "A proof of the Kauffman-Harary Conjecture". Algebraic & Geometric Topology. 9 (4): 2027–2039. arXiv:0906.1612. Bibcode:2009arXiv0906.1612M. doi:10.2140/agt.2009.9.2027. S2CID 8447495.
  235. Kahn, Jeremy; Markovic, Vladimir (2012). "Immersing almost geodesic surfaces in a closed hyperbolic three manifold". Annals of Mathematics. 175 (3): 1127–1190. arXiv:0910.5501. doi:10.4007/annals.2012.175.3.4.
  236. Lu, Zhiqin (September 2011) . "Normal Scalar Curvature Conjecture and its applications". Journal of Functional Analysis. 261 (5): 1284–1308. arXiv:0711.3510. doi:10.1016/j.jfa.2011.05.002.
  237. Dencker, Nils (2006), "The resolution of the Nirenberg–Treves conjecture" (PDF), Annals of Mathematics, 163 (2): 405–444, doi:10.4007/annals.2006.163.405, S2CID 16630732, archived (PDF) from the original on 2018-07-20, retrieved 2019-04-07
  238. "Research Awards". Clay Mathematics Institute. Archived from the original on 2019-04-07. Retrieved 2019-04-07.
  239. Lewis, A. S.; Parrilo, P. A.; Ramana, M. V. (2005). "The Lax conjecture is true". Proceedings of the American Mathematical Society. 133 (9): 2495–2499. doi:10.1090/S0002-9939-05-07752-X. MR 2146191. S2CID 17436983.
  240. "Fields Medal – Ngô Bảo Châu". International Congress of Mathematicians 2010. ICM. 19 August 2010. Archived from the original on 24 September 2015. Retrieved 2015-11-12. Ngô Bảo Châu is being awarded the 2010 Fields Medal for his proof of the Fundamental Lemma in the theory of automorphic forms through the introduction of new algebro-geometric methods.
  241. Voevodsky, Vladimir (2003). "Reduced power operations in motivic cohomology" (PDF). Publications Mathématiques de l'IHÉS. 98: 1–57. arXiv:math/0107109. CiteSeerX 10.1.1.170.4427. doi:10.1007/s10240-003-0009-z. S2CID 8172797. Archived from the original on 2017-07-28. Retrieved 2016-03-18.
  242. Baruch, Ehud Moshe (2003). "A proof of Kirillov's conjecture". Annals of Mathematics. Second Series. 158 (1): 207–252. doi:10.4007/annals.2003.158.207. MR 1999922.
  243. Haas, Bertrand. "A Simple Counterexample to Kouchnirenko's Conjecture" (PDF). Archived (PDF) from the original on 2016-10-07. Retrieved 2016-03-18.
  244. Haiman, Mark (2001). "Hilbert schemes, polygraphs and the Macdonald positivity conjecture". Journal of the American Mathematical Society. 14 (4): 941–1006. doi:10.1090/S0894-0347-01-00373-3. MR 1839919. S2CID 9253880.
  245. Auscher, Pascal; Hofmann, Steve; Lacey, Michael; McIntosh, Alan; Tchamitchian, Ph. (2002). "The solution of the Kato square root problem for second order elliptic operators on R n {\displaystyle \mathbb {R} ^{n}} ". Annals of Mathematics. Second Series. 156 (2): 633–654. doi:10.2307/3597201. JSTOR 3597201. MR 1933726.
  246. Barbieri-Viale, Luca; Rosenschon, Andreas; Saito, Morihiko (2003). "Deligne's Conjecture on 1-Motives". Annals of Mathematics. 158 (2): 593–633. arXiv:math/0102150. doi:10.4007/annals.2003.158.593.
  247. Breuil, Christophe; Conrad, Brian; Diamond, Fred; Taylor, Richard (2001), "On the modularity of elliptic curves over Q: wild 3-adic exercises", Journal of the American Mathematical Society, 14 (4): 843–939, doi:10.1090/S0894-0347-01-00370-8, ISSN 0894-0347, MR 1839918
  248. Luca, Florian (2000). "On a conjecture of Erdős and Stewart" (PDF). Mathematics of Computation. 70 (234): 893–897. Bibcode:2001MaCom..70..893L. doi:10.1090/s0025-5718-00-01178-9. Archived (PDF) from the original on 2016-04-02. Retrieved 2016-03-18.
  249. Atiyah, Michael (2000). "The geometry of classical particles". In Yau, Shing-Tung (ed.). Papers dedicated to Atiyah, Bott, Hirzebruch, and Singer. Surveys in Differential Geometry. Vol. 7. Somerville, Massachusetts: International Press. pp. 1–15. doi:10.4310/SDG.2002.v7.n1.a1. MR 1919420.
  250. Merel, Loïc (1996). ""Bornes pour la torsion des courbes elliptiques sur les corps de nombres" ". Inventiones Mathematicae. 124 (1): 437–449. Bibcode:1996InMat.124..437M. doi:10.1007/s002220050059. MR 1369424. S2CID 3590991.
  251. Chen, Zhibo (1996). "Harary's conjectures on integral sum graphs". Discrete Mathematics. 160 (1–3): 241–244. doi:10.1016/0012-365X(95)00163-Q.

Further reading

Books discussing problems solved since 1995

Books discussing unsolved problems

External links

Well-known unsolved problems by discipline
Categories: