Misplaced Pages

Almost perfect number

Article snapshot taken from Wikipedia with creative commons attribution-sharealike license. Give it a read and then ask your questions in the chat. We can research this topic together.
Numbers whose sum of divisors is twice the number minus 1
Demonstration, with Cuisenaire rods, that the number 8 is almost perfect, and deficient.

In mathematics, an almost perfect number (sometimes also called slightly defective or least deficient number) is a natural number n such that the sum of all divisors of n (the sum-of-divisors function σ(n)) is equal to 2n − 1, the sum of all proper divisors of n, s(n) = σ(n) − n, then being equal to n − 1. The only known almost perfect numbers are powers of 2 with non-negative exponents (sequence A000079 in the OEIS). Therefore the only known odd almost perfect number is 2 = 1, and the only known even almost perfect numbers are those of the form 2 for some positive integer k; however, it has not been shown that all almost perfect numbers are of this form. It is known that an odd almost perfect number greater than 1 would have at least six prime factors.

If m is an odd almost perfect number then m(2m − 1) is a Descartes number. Moreover if a and b are positive odd integers such that b + 3 < a < m / 2 {\displaystyle b+3<a<{\sqrt {m/2}}} and such that 4ma and 4m + b are both primes, then m(4ma)(4m + b) would be an odd weird number.

See also

References

  1. Kishore, Masao (1978). "Odd integers N with five distinct prime factors for which 2−10 < σ(N)/N < 2+10" (PDF). Mathematics of Computation. 32: 303–309. doi:10.2307/2006281. ISSN 0025-5718. JSTOR 2006281. MR 0485658. Zbl 0376.10005.
  2. Kishore, Masao (1981). "On odd perfect, quasiperfect, and odd almost perfect numbers". Mathematics of Computation. 36 (154): 583–586. doi:10.2307/2007662. ISSN 0025-5718. JSTOR 2007662. Zbl 0472.10007.
  3. Banks, William D.; Güloğlu, Ahmet M.; Nevans, C. Wesley; Saidak, Filip (2008). "Descartes numbers". In De Koninck, Jean-Marie; Granville, Andrew; Luca, Florian (eds.). Anatomy of integers. Based on the CRM workshop, Montreal, Canada, March 13–17, 2006. CRM Proceedings and Lecture Notes. Vol. 46. Providence, RI: American Mathematical Society. pp. 167–173. ISBN 978-0-8218-4406-9. Zbl 1186.11004.
  4. Melfi, Giuseppe (2015). "On the conditional infiniteness of primitive weird numbers". Journal of Number Theory. 147: 508–514. doi:10.1016/j.jnt.2014.07.024.

Further reading

External links

Divisibility-based sets of integers
Overview Divisibility of 60
Factorization forms
Constrained divisor sums
With many divisors
Aliquot sequence-related
Base-dependent
Other sets
Classes of natural numbers
Powers and related numbers
Of the form a × 2 ± 1
Other polynomial numbers
Recursively defined numbers
Possessing a specific set of other numbers
Expressible via specific sums
Figurate numbers
2-dimensional
centered
non-centered
3-dimensional
centered
non-centered
pyramidal
4-dimensional
non-centered
Combinatorial numbers
Primes
Pseudoprimes
Arithmetic functions and dynamics
Divisor functions
Prime omega functions
Euler's totient function
Aliquot sequences
Primorial
Other prime factor or divisor related numbers
Numeral system-dependent numbers
Arithmetic functions
and dynamics
Digit sum
Digit product
Coding-related
Other
P-adic numbers-related
Digit-composition related
Digit-permutation related
Divisor-related
Other
Binary numbers
Generated via a sieve
Sorting related
Natural language related
Graphemics related
Stub icon

This number theory-related article is a stub. You can help Misplaced Pages by expanding it.

Categories: