Misplaced Pages

Rough number

Article snapshot taken from Wikipedia with creative commons attribution-sharealike license. Give it a read and then ask your questions in the chat. We can research this topic together.
Positive integer with large prime factors

A k-rough number, as defined by Finch in 2001 and 2003, is a positive integer whose prime factors are all greater than or equal to k. k-roughness has alternately been defined as requiring all prime factors to strictly exceed k.

Examples (after Finch)

  1. Every odd positive integer is 3-rough.
  2. Every positive integer that is congruent to 1 or 5 mod 6 is 5-rough.
  3. Every positive integer is 2-rough, since all its prime factors, being prime numbers, exceed 1.

See also

Notes

  1. p. 130, Naccache and Shparlinski 2009.

References

The On-Line Encyclopedia of Integer Sequences (OEIS) lists p-rough numbers for small p:

Divisibility-based sets of integers
Overview Divisibility of 60
Factorization forms
Constrained divisor sums
With many divisors
Aliquot sequence-related
Base-dependent
Other sets
Classes of natural numbers
Powers and related numbers
Of the form a × 2 ± 1
Other polynomial numbers
Recursively defined numbers
Possessing a specific set of other numbers
Expressible via specific sums
Figurate numbers
2-dimensional
centered
non-centered
3-dimensional
centered
non-centered
pyramidal
4-dimensional
non-centered
Combinatorial numbers
Primes
Pseudoprimes
Arithmetic functions and dynamics
Divisor functions
Prime omega functions
Euler's totient function
Aliquot sequences
Primorial
Other prime factor or divisor related numbers
Numeral system-dependent numbers
Arithmetic functions
and dynamics
Digit sum
Digit product
Coding-related
Other
P-adic numbers-related
Digit-composition related
Digit-permutation related
Divisor-related
Other
Binary numbers
Generated via a sieve
Sorting related
Natural language related
Graphemics related


Stub icon

This number theory-related article is a stub. You can help Misplaced Pages by expanding it.

Categories: