Misplaced Pages

Curium: Difference between revisions

Article snapshot taken from Wikipedia with creative commons attribution-sharealike license. Give it a read and then ask your questions in the chat. We can research this topic together.
Browse history interactively← Previous editNext edit →Content deleted Content addedVisualWikitext
Revision as of 00:04, 19 July 2022 editSolomonfromfinland (talk | contribs)Extended confirmed users16,021 edits Clutter out← Previous edit Revision as of 01:18, 19 July 2022 edit undoSolomonfromfinland (talk | contribs)Extended confirmed users16,021 edits Clutter outNext edit →
Line 3: Line 3:
{{good article}} {{good article}}
{{infobox curium}} {{infobox curium}}
'''Curium''' is a ], ] ] with the ] '''Cm''' and ] 96. This ] element was named after eminent scientists ] and ], both known for their research on radioactivity. Curium was first intentionally made by the team of ], ], and ] in 1944, using the ] at ]. They bombarded a piece of the newly discovered element ] (the isotope ]) with ]s. This was then sent to the ] at the ] where a tiny sample of curium was eventually separated and identified. The discovery was kept secret until after the end of ]. The news was released to the public in November 1947. Most curium is produced by bombarding ] or plutonium with ]s in ]s – one ] of spent ] contains ~20 grams of curium. '''Curium''' is a ], ] ] with the ] '''Cm''' and ] 96. This ] element was named after eminent scientists ] and ], both known for their research on radioactivity. Curium was first intentionally made by the team of ], ], and ] in 1944, using the ] at ]. They bombarded the newly discovered element ] (the isotope ]) with ]s. This was then sent to the ] at ] where a tiny sample of curium was eventually separated and identified. The discovery was kept secret until after the end of ]. The news was released to the public in November 1947. Most curium is produced by bombarding ] or plutonium with ]s in ]s – one ] of spent ] contains ~20 grams of curium.


Curium is a hard, dense, silvery metal with a relatively high melting point and boiling point for an actinide. It is ] at ], but becomes ] upon cooling, and other magnetic transitions are also seen for many curium compounds. In compounds, curium usually has ] +3 and sometimes +4; the +3 valence is predominant in solutions. Curium readily oxidizes, and its oxides are a dominant form of this element. It forms strongly ] complexes with various organic compounds, but there is no evidence of its incorporation into ] and ]. When introduced into the human body, curium accumulates in the bones, lungs and liver, where it promotes ]. Curium is a hard, dense, silvery metal with a high melting and boiling point for an actinide. It is ] at ], but becomes ] upon cooling, and other magnetic transitions are also seen in many curium compounds. In compounds, curium usually has ] +3 and sometimes +4; the +3 valence is predominant in solutions. Curium readily oxidizes, and its oxides are a dominant form of this element. It forms strongly ] complexes with various organic compounds, but there is no evidence of its incorporation into ] and ]. If it gets into the human body, curium accumulates in bones, lungs and liver, where it promotes ].


All known ]s of curium are radioactive and have a small ] for a ]. They mostly emit ], and the heat from this process can serve as a heat source in ]s, but this application is hindered by the scarcity and high cost of curium. Curium is used in production of heavier actinides and of the <sup>238</sup>Pu ] for power sources in ]s and ]s for spacecraft. It served as the α-source in the ]s installed on several space probes, including the '']'', '']'', '']'', and '']'' ]s and the ] on ] ], to analyze the composition and structure of the surface. All known ]s of curium are radioactive and have small ] for a ]. They mostly emit ]; ]s can use the heat from this process, but this is hindered by the rarity and high cost of curium. Curium is used in making heavier actinides and the <sup>238</sup>Pu ] for power sources in ]s and ]s for spacecraft. It served as the α-source in the ]s of several space probes, including the '']'', '']'', '']'', and '']'' ]s and the ] on ] ], to analyze the composition and structure of the surface.


==History== ==History==
Line 14: Line 14:
Though curium had likely been produced in previous nuclear experiments as well as the ] at Oklo, Gabon, it was ], isolated and identified in 1944, at ], by ], ], and ]. In their experiments, they used a {{convert|60|in|cm|adj=on}} ].<ref>{{cite book|title = The New Chemistry: A Showcase for Modern Chemistry and Its Applications|first = Nina|last = Hall|publisher = Cambridge University Press|date = 2000|pages = –9|isbn = 978-0-521-45224-3|url = https://archive.org/details/newchemistry00hall|url-access = registration}}</ref> Though curium had likely been produced in previous nuclear experiments as well as the ] at Oklo, Gabon, it was ], isolated and identified in 1944, at ], by ], ], and ]. In their experiments, they used a {{convert|60|in|cm|adj=on}} ].<ref>{{cite book|title = The New Chemistry: A Showcase for Modern Chemistry and Its Applications|first = Nina|last = Hall|publisher = Cambridge University Press|date = 2000|pages = –9|isbn = 978-0-521-45224-3|url = https://archive.org/details/newchemistry00hall|url-access = registration}}</ref>


Curium was chemically identified at the Metallurgical Laboratory (now ]), ]. It was the third ] to be discovered even though it is the fourth in the series – the lighter element ] was unknown at the time.<ref name="E96">{{cite journal|last1=Seaborg|first1=Glenn T. |last2=James |first2=R. A. |last3=Ghiorso|first3=A.|title=The New Element Curium (Atomic Number 96)|journal=NNES PPR (National Nuclear Energy Series, Plutonium Project Record)|volume=14 B|series=The Transuranium Elements: Research Papers, Paper No.&nbsp;22.2 |year=1949|osti=4421946|url=http://www.osti.gov/accomplishments/documents/fullText/ACC0049.pdf|archive-url=https://web.archive.org/web/20071012083344/http://www.osti.gov/accomplishments/documents/fullText/ACC0049.pdf|archive-date=12 October 2007}}</ref><ref name="Morrs" /> Curium was chemically identified at the Metallurgical Laboratory (now ]), ]. It was the third ] to be discovered even though it is the fourth in the series – the lighter element ] was still unknown.<ref name="E96">{{cite journal|last1=Seaborg|first1=Glenn T. |last2=James |first2=R. A. |last3=Ghiorso|first3=A.|title=The New Element Curium (Atomic Number 96)|journal=NNES PPR (National Nuclear Energy Series, Plutonium Project Record)|volume=14 B|series=The Transuranium Elements: Research Papers, Paper No.&nbsp;22.2 |year=1949|osti=4421946|url=http://www.osti.gov/accomplishments/documents/fullText/ACC0049.pdf|archive-url=https://web.archive.org/web/20071012083344/http://www.osti.gov/accomplishments/documents/fullText/ACC0049.pdf|archive-date=12 October 2007}}</ref><ref name="Morrs" />


The sample was prepared as follows: first ] nitrate solution was coated on a ] foil of ~ 0.5&nbsp;cm<sup>2</sup> area, the solution was evaporated and the residue was converted into ] (PuO<sub>2</sub>) by ]. Following cyclotron irradiation of the oxide, the coating was dissolved with ] and then precipitated as the hydroxide using concentrated aqueous ]. The residue was dissolved in ], and further separation was done by ] to yield a certain isotope of curium. The separation of curium and americium was so painstaking that the Berkeley group initially called those elements '']'' (from Greek for ''all demons'' or ''hell'') and '']'' (from Latin for ''madness'').<ref name="radio" /><ref>Krebs, Robert E. , Greenwood Publishing Group, 2006, {{ISBN|0-313-33438-2}} p. 322</ref> The sample was prepared as follows: first ] nitrate solution was coated on a ] foil of ~0.5&nbsp;cm<sup>2</sup> area, the solution was evaporated and the residue was converted into ] (PuO<sub>2</sub>) by ]. Following cyclotron irradiation of the oxide, the coating was dissolved with ] and then precipitated as the hydroxide using concentrated aqueous ]. The residue was dissolved in ], and further separation was done by ] to yield a certain isotope of curium. The separation of curium and americium was so painstaking that the Berkeley group initially called those elements '']'' (from Greek for ''all demons'' or ''hell'') and '']'' (from Latin for ''madness'').<ref name="radio" /><ref>Krebs, Robert E. , Greenwood Publishing Group, 2006, {{ISBN|0-313-33438-2}} p. 322</ref>


The curium-242 isotope was produced in July–August 1944 by bombarding <sup>239</sup>Pu with ] to produce curium with the release of a ]: Curium-242 was made in July–August 1944 by bombarding <sup>239</sup>Pu with ] to produce curium with the release of a ]:
: <chem>^{239}_{94}Pu + ^{4}_{2}He -> ^{242}_{96}Cm + ^{1}_{0}n</chem> : <chem>^{239}_{94}Pu + ^{4}_{2}He -> ^{242}_{96}Cm + ^{1}_{0}n</chem>


Line 29: Line 29:
The α-decay half-life of <sup>240</sup>Cm was correctly determined as 26.7 days.<ref name="nubase" /> The α-decay half-life of <sup>240</sup>Cm was correctly determined as 26.7 days.<ref name="nubase" />


The discovery of curium, and americium, in 1944 was closely related to the ], so the results were confidential and declassified only in 1945. Seaborg leaked the synthesis of the elements 95 and 96 on the U.S. radio show for children, the ], five days before the official presentation at an ] meeting on November 11, 1945, when one of the listeners asked whether any new transuranic element beside plutonium and ] had been discovered during the war.<ref name="radio">{{cite web|url = http://pubs.acs.org/cen/80th/americium.html|title = Chemical & Engineering News: It's Elemental: The Periodic Table – Americium|access-date = 2008-12-07| first = Rachel Sheremeta|last = Pepling|date = 2003}}</ref> The discovery of curium (<sup>242</sup>Cm and <sup>240</sup>Cm), its production, and its compounds was later patented listing only Seaborg as the inventor.<ref>Seaborg, G. T. {{US patent|3161462}} "Element", Filing date: 7 February 1949, Issue date: December 1964</ref> The discovery of curium and americium in 1944 was closely related to the ], so the results were confidential and declassified only in 1945. Seaborg leaked the synthesis of the elements 95 and 96 on the U.S. radio show for children, the ], five days before the official presentation at an ] meeting on November 11, 1945, when one listener asked if any new transuranic element beside plutonium and ] had been discovered during the war.<ref name="radio">{{cite web|url = http://pubs.acs.org/cen/80th/americium.html|title = Chemical & Engineering News: It's Elemental: The Periodic Table – Americium|access-date = 2008-12-07| first = Rachel Sheremeta|last = Pepling|date = 2003}}</ref> The discovery of curium (<sup>242</sup>Cm and <sup>240</sup>Cm), its production, and its compounds was later patented listing only Seaborg as the inventor.<ref>Seaborg, G. T. {{US patent|3161462}} "Element", Filing date: 7 February 1949, Issue date: December 1964</ref>


{{multiple image {{multiple image
Line 43: Line 43:
| footer = ] and ] | footer = ] and ]
}} }}
The new element was named after ] and her husband ], who are noted for discovering ] and for their work in ]. It followed the example of ], a ] element above curium in the periodic table, which was named after the explorer of the ]s ]:<ref>Greenwood, p. 1252</ref> The element was named after ] and her husband ], who are known for discovering ] and for their work in ]. It followed the example of ], a ] element above curium in the periodic table, which was named after the explorer of ]s ]:<ref>Greenwood, p. 1252</ref>
::''"As the name for the element of atomic number 96 we should like to propose "curium", with symbol Cm. The evidence indicates that element 96 contains seven 5f electrons and is thus analogous to the element gadolinium with its seven 4f electrons in the regular rare earth series. On this base element 96 is named after the Curies in a manner analogous to the naming of gadolinium, in which the chemist Gadolin was honored."<ref name="E96" />'' ::''"As the name for the element of atomic number 96 we should like to propose "curium", with symbol Cm. The evidence indicates that element 96 contains seven 5f electrons and is thus analogous to the element gadolinium with its seven 4f electrons in the regular rare earth series. On this base element 96 is named after the Curies in a manner analogous to the naming of gadolinium, in which the chemist Gadolin was honored."<ref name="E96" />''


Line 53: Line 53:
] ]
] of Cm<sup>3+</sup> ions in a solution of tris(hydrotris)pyrazolylborato-Cm(III) complex, excited at 396.6 nm.]] ] of Cm<sup>3+</sup> ions in a solution of tris(hydrotris)pyrazolylborato-Cm(III) complex, excited at 396.6 nm.]]
A synthetic, radioactive element, curium is a hard, dense metal with a silvery-white appearance and physical and chemical properties resembling ]. Its melting point of 1344°C is significantly higher than that of the previous elements neptunium (637°C), plutonium (639°C) and americium (117°C). In comparison, gadolinium melts at 1312°C. The boiling point of curium is 3556°C. With a density of 13.52&nbsp;g/cm<sup>3</sup>, curium is significantly lighter than neptunium (20.45&nbsp;g/cm<sup>3</sup>) and plutonium (19.8&nbsp;g/cm<sup>3</sup>), but heavier than most other metals. Of two crystalline forms of curium, α-Cm is more stable at ambient conditions. It has a hexagonal symmetry, ] P6<sub>3</sub>/mmc, lattice parameters ''a'' = 365 ] and ''c'' = 1182 pm, and four ]s per ].<ref name="Milman">{{cite journal|last1=Milman|first1=V.|title=Crystal structures of curium compounds: an ab initio study|journal=Journal of Nuclear Materials|volume=322|issue=2–3|page=165|date=2003|doi=10.1016/S0022-3115(03)00321-0|bibcode=2003JNuM..322..165M|last2=Winkler|first2=B.|last3=Pickard|first3=C. J.}}</ref> The crystal consists of a double-] with the layer sequence ABAC and so is isotypic with α-lanthanum. At pressure >23 ], at room temperature, α-Cm transforms into β-Cm, which has ] symmetry, space group Fm{{overline|3}}m and lattice constant ''a'' = 493 pm.<ref name = "Milman" /> On further compression to 43 GPa, curium becomes an ] γ-Cm structure similar to α-uranium, with no further transitions observed up to 52 GPa. These three curium phases are also called Cm I, II and III.<ref>Young, D. A. , University of California Press, 1991, {{ISBN|0-520-07483-1}}, p. 227</ref><ref>{{cite journal|last1=Haire|first1=R.|last2=Peterson|first2=J.|last3=Benedict|first3=U.|last4=Dufour|first4=C.|last5=Itie|first5=J.|title=X-ray diffraction of curium-248 metal under pressures of up to 52 GPa|journal=Journal of the Less Common Metals|volume=109|issue=1|page=71|date=1985|doi=10.1016/0022-5088(85)90108-0}}</ref> A synthetic, radioactive element, curium is a hard, dense metal with a silvery-white appearance and physical and chemical properties resembling ]. Its melting point of 1344°C is significantly higher than that of the previous elements neptunium (637°C), plutonium (639°C) and americium (117°C). In comparison, gadolinium melts at 1312°C. Curium boils at is 3556°C. With a density of 13.52&nbsp;g/cm<sup>3</sup>, curium is lighter than neptunium (20.45&nbsp;g/cm<sup>3</sup>) and plutonium (19.8&nbsp;g/cm<sup>3</sup>), but heavier than most other metals. Of two crystalline forms of curium, α-Cm is more stable at ambient conditions. It has a hexagonal symmetry, ] P6<sub>3</sub>/mmc, lattice parameters ''a'' = 365 ] and ''c'' = 1182 pm, and four ]s per ].<ref name="Milman">{{cite journal|last1=Milman|first1=V.|title=Crystal structures of curium compounds: an ab initio study|journal=Journal of Nuclear Materials|volume=322|issue=2–3|page=165|date=2003|doi=10.1016/S0022-3115(03)00321-0|bibcode=2003JNuM..322..165M|last2=Winkler|first2=B.|last3=Pickard|first3=C. J.}}</ref> The crystal consists of double-] with the layer sequence ABAC and so is isotypic with α-lanthanum. At pressure >23 ], at room temperature, α-Cm becomes β-Cm, which has ] symmetry, space group Fm{{overline|3}}m and lattice constant ''a'' = 493 pm.<ref name = "Milman" /> On further compression to 43 GPa, curium becomes an ] γ-Cm structure similar to α-uranium, with no further transitions observed up to 52 GPa. These three curium phases are also called Cm I, II and III.<ref>Young, D. A. , University of California Press, 1991, {{ISBN|0-520-07483-1}}, p. 227</ref><ref>{{cite journal|last1=Haire|first1=R.|last2=Peterson|first2=J.|last3=Benedict|first3=U.|last4=Dufour|first4=C.|last5=Itie|first5=J.|title=X-ray diffraction of curium-248 metal under pressures of up to 52 GPa|journal=Journal of the Less Common Metals|volume=109|issue=1|page=71|date=1985|doi=10.1016/0022-5088(85)90108-0}}</ref>


Curium has peculiar magnetic properties. Its neighbor element americium shows no deviation from ] ] in the entire temperature range, but α-Cm transforms to an ] state upon cooling to 65–52 K,<ref>{{cite journal|last1=Kanellakopulos|first1=B.|title=The magnetic susceptibility of Americium and curium metal|journal=Solid State Communications|volume=17|issue=6|page=713|date=1975|doi=10.1016/0038-1098(75)90392-0|bibcode = 1975SSCom..17..713K|last2=Blaise|first2=A.|last3=Fournier|first3=J. M.|last4=Müller|first4=W. }}</ref><ref>{{cite journal|last1=Fournier|first1=J.|title=Curium: A new magnetic element|journal=Physica B+C|volume=86–88|page=30|date=1977|doi=10.1016/0378-4363(77)90214-5|bibcode = 1977PhyBC..86...30F|last2=Blaise|first2=A.|last3=Muller|first3=W.|last4=Spirlet|first4=J.-C. }}</ref> and β-Cm exhibits a ] transition at about 205 K. Meanwhile, curium pnictides show ] transitions upon cooling: <sup>244</sup>CmN and <sup>244</sup>CmAs at 109 K, <sup>248</sup>CmP at 73 K and <sup>248</sup>CmSb at 162 K. The lanthanide analogue of curium, gadolinium, as well as its pnictides, also show magnetic transitions upon cooling, but the transition character is somewhat different: Gd and GdN become ferromagnetic, and GdP, GdAs and GdSb show antiferromagnetic ordering.<ref>Nave, S. E.; Huray, P. G.; Peterson, J. R. and Damien, D. A. , Oak Ridge National Laboratory</ref> Curium has peculiar magnetic properties. Its neighbor element americium shows no deviation from ] ] in the entire temperature range, but α-Cm transforms to an ] state upon cooling to 65–52 K,<ref>{{cite journal|last1=Kanellakopulos|first1=B.|title=The magnetic susceptibility of Americium and curium metal|journal=Solid State Communications|volume=17|issue=6|page=713|date=1975|doi=10.1016/0038-1098(75)90392-0|bibcode = 1975SSCom..17..713K|last2=Blaise|first2=A.|last3=Fournier|first3=J. M.|last4=Müller|first4=W. }}</ref><ref>{{cite journal|last1=Fournier|first1=J.|title=Curium: A new magnetic element|journal=Physica B+C|volume=86–88|page=30|date=1977|doi=10.1016/0378-4363(77)90214-5|bibcode = 1977PhyBC..86...30F|last2=Blaise|first2=A.|last3=Muller|first3=W.|last4=Spirlet|first4=J.-C. }}</ref> and β-Cm exhibits a ] transition at ~205 K. Curium pnictides show ] transitions upon cooling: <sup>244</sup>CmN and <sup>244</sup>CmAs at 109 K, <sup>248</sup>CmP at 73 K and <sup>248</sup>CmSb at 162 K. The lanthanide analog of curium, gadolinium, and its pnictides, also show magnetic transitions upon cooling, but the transition character is somewhat different: Gd and GdN become ferromagnetic, and GdP, GdAs and GdSb show antiferromagnetic ordering.<ref>Nave, S. E.; Huray, P. G.; Peterson, J. R. and Damien, D. A. , Oak Ridge National Laboratory</ref>


In accordance with magnetic data, electrical resistivity of curium increases with temperature – about twice between 4 and 60 K – and then remains nearly constant up to room temperature. There is a significant increase in resistivity over time (about {{val|10|u=µΩ·cm/h}}) due to self-damage of the crystal lattice by alpha radiation. This makes uncertain the absolute resistivity value for curium (about {{val|125|u=µΩ·cm}}). The resistivity of curium is similar to that of gadolinium and of the actinides plutonium and neptunium, but is significantly higher than that of americium, uranium, ] and ].<ref name="res" /><ref>{{cite journal|last1=Schenkel|first1=R.|title=The electrical resistivity of 244Cm metal|journal=Solid State Communications|volume=23|issue=6|page=389|date=1977|doi=10.1016/0038-1098(77)90239-3|bibcode = 1977SSCom..23..389S }}</ref> In accordance with magnetic data, electrical resistivity of curium increases with temperature – about twice between 4 and 60 K – and then is nearly constant up to room temperature. There is a significant increase in resistivity over time (~{{val|10|u=µΩ·cm/h}}) due to self-damage of the crystal lattice by alpha decay. This makes uncertain the true resistivity of curium (~{{val|125|u=µΩ·cm}}). Curium's resistivity is similar to that of gadolinium, and the actinides plutonium and neptunium, but significantly higher than that of americium, uranium, ] and ].<ref name="res" /><ref>{{cite journal|last1=Schenkel|first1=R.|title=The electrical resistivity of 244Cm metal|journal=Solid State Communications|volume=23|issue=6|page=389|date=1977|doi=10.1016/0038-1098(77)90239-3|bibcode = 1977SSCom..23..389S }}</ref>


Under ultraviolet illumination, curium(III) ions exhibit strong and stable yellow-orange ] with a maximum in the range about 590–640&nbsp;nm depending on their environment.<ref name="denecke">{{cite journal|last1=Denecke|first1=Melissa A.|last2=Rossberg|first2=André|last3=Panak|first3=Petra J.|last4=Weigl|first4=Michael|last5=Schimmelpfennig|first5=Bernd|last6=Geist|first6=Andreas|title=Characterization and Comparison of Cm(III) and Eu(III) Complexed with 2,6-Di(5,6-dipropyl-1,2,4-triazin-3-yl)pyridine Using EXAFS, TRFLS, and Quantum-Chemical Methods|journal=Inorganic Chemistry|volume=44|issue=23|date=2005|pmid=16270980|doi=10.1021/ic0511726|pages=8418–8425}}</ref> The fluorescence originates from the transitions from the first excited state <sup>6</sup>D<sub>7/2</sub> and the ground state <sup>8</sup>S<sub>7/2</sub>. Analysis of this fluorescence allows monitoring interactions between Cm(III) ions in organic and inorganic complexes.<ref name="plb">Bünzli, J.-C. G. and Choppin, G. R. ''Lanthanide probes in life, chemical, and earth sciences: theory and practice'', Elsevier, Amsterdam, 1989 {{ISBN|0-444-88199-9}}</ref> Under ultraviolet illumination, curium(III) ions show strong and stable yellow-orange ] with a maximum in the range ~ 590–640&nbsp;nm depending on their environment.<ref name="denecke">{{cite journal|last1=Denecke|first1=Melissa A.|last2=Rossberg|first2=André|last3=Panak|first3=Petra J.|last4=Weigl|first4=Michael|last5=Schimmelpfennig|first5=Bernd|last6=Geist|first6=Andreas|title=Characterization and Comparison of Cm(III) and Eu(III) Complexed with 2,6-Di(5,6-dipropyl-1,2,4-triazin-3-yl)pyridine Using EXAFS, TRFLS, and Quantum-Chemical Methods|journal=Inorganic Chemistry|volume=44|issue=23|date=2005|pmid=16270980|doi=10.1021/ic0511726|pages=8418–8425}}</ref> The fluorescence originates from the transitions from the first excited state <sup>6</sup>D<sub>7/2</sub> and the ground state <sup>8</sup>S<sub>7/2</sub>. Analysis of this fluorescence allows monitoring interactions between Cm(III) ions in organic and inorganic complexes.<ref name="plb">Bünzli, J.-C. G. and Choppin, G. R. ''Lanthanide probes in life, chemical, and earth sciences: theory and practice'', Elsevier, Amsterdam, 1989 {{ISBN|0-444-88199-9}}</ref>


===Chemical=== ===Chemical===
] ]
Curium ions in solution almost exclusively assume the ] of +3, which is the most stable oxidation state for curium.<ref>Penneman, p. 24</ref> The +4 oxidation state is observed mainly in a few solid phases, such as CmO<sub>2</sub> and CmF<sub>4</sub>.<ref>{{cite journal|last1=Keenan|first1=Thomas K.|title=First Observation of Aqueous Tetravalent Curium|journal=Journal of the American Chemical Society|volume=83|issue=17|page=3719|date=1961|doi=10.1021/ja01478a039}}</ref><ref name = "asprey" /> Aqueous curium(IV) is only known in the presence of strong oxidizers such as ], and is easily reduced to curium(III) by ] and even by water itself.<ref name="Lumetta" /> The chemical behavior of curium is different from the actinides thorium and uranium, and is similar to that of americium and many ]s. In aqueous solution, the Cm<sup>3+</sup> ion is colorless to pale green,<ref name="g1265">Greenwood, p. 1265</ref> and Cm<sup>4+</sup> ion is pale yellow.<ref name="HOWI_1956">Holleman, p. 1956</ref> The optical absorption of Cm<sup>3+</sup> ions contains three sharp peaks at 375.4, 381.2 and 396.5 nanometers and their strength can be directly converted into the concentration of the ions.<ref>Penneman, pp. 25–26</ref> The +6 oxidation state has only been reported once in solution in 1978, as the curyl ion ({{chem|CmO|2|2+}}): this was prepared from the ] of ] in the americium(V) ion {{chem|242|AmO|2|+}}.<ref name="CmO3" /> Failure to obtain Cm(VI) from oxidation of Cm(III) and Cm(IV) may be due to the high Cm<sup>4+</sup>/Cm<sup>3+</sup> ] and the instability of Cm(V).<ref name="Lumetta">{{cite book|first1 = Lumetta|last1 = Gregg J.|first2 = Major C.|last2 = Thompson|first3 = Robert A.|last3 = Penneman|first4 = P. Gary|last4=Eller|contribution = Curium|title = The Chemistry of the Actinide and Transactinide Elements|editor1-first = Lester R.|editor1-last = Morss|editor2-first = Norman M.|editor2-last = Edelstein|editor3-first = Jean|editor3-last = Fuger|edition = 3rd|date = 2006|volume = 3|publisher = Springer|location = Dordrecht, the Netherlands|pages = 1397–1443|url = http://radchem.nevada.edu/classes/rdch710/files/neptunium.pdf|doi = 10.1007/1-4020-3598-5_9|isbn = 978-1-4020-3555-5}}</ref> Curium ion in solution almost always has a +3 ], the most stable oxidation state for curium.<ref>Penneman, p. 24</ref> A +4 oxidation state is seen mainly in a few solid phases, such as CmO<sub>2</sub> and CmF<sub>4</sub>.<ref>{{cite journal|last1=Keenan|first1=Thomas K.|title=First Observation of Aqueous Tetravalent Curium|journal=Journal of the American Chemical Society|volume=83|issue=17|page=3719|date=1961|doi=10.1021/ja01478a039}}</ref><ref name = "asprey" /> Aqueous curium(IV) is only known in the presence of strong oxidizers such as ], and is easily reduced to curium(III) by ] and even by water itself.<ref name="Lumetta" /> Chemical behavior of curium is different from the actinides thorium and uranium, and is similar to americium and many ]s. In aqueous solution, the Cm<sup>3+</sup> ion is colorless to pale green<ref name="g1265">Greenwood, p. 1265</ref>; Cm<sup>4+</sup> ion is pale yellow.<ref name="HOWI_1956">Holleman, p. 1956</ref> The optical absorption of Cm<sup>3+</sup> ion contains three sharp peaks at 375.4, 381.2 and 396.5 nm and their strength can be directly converted into the concentration of the ions.<ref>Penneman, pp. 25–26</ref> +6 oxidation state has only been reported once in solution in 1978, as the curyl ion ({{chem|CmO|2|2+}}): this was prepared from ] of ] in the americium(V) ion {{chem|242|AmO|2|+}}.<ref name="CmO3" /> Failure to get Cm(VI) from oxidation of Cm(III) and Cm(IV) may be due to the high Cm<sup>4+</sup>/Cm<sup>3+</sup> ] and the instability of Cm(V).<ref name="Lumetta">{{cite book|first1 = Lumetta|last1 = Gregg J.|first2 = Major C.|last2 = Thompson|first3 = Robert A.|last3 = Penneman|first4 = P. Gary|last4=Eller|contribution = Curium|title = The Chemistry of the Actinide and Transactinide Elements|editor1-first = Lester R.|editor1-last = Morss|editor2-first = Norman M.|editor2-last = Edelstein|editor3-first = Jean|editor3-last = Fuger|edition = 3rd|date = 2006|volume = 3|publisher = Springer|location = Dordrecht, the Netherlands|pages = 1397–1443|url = http://radchem.nevada.edu/classes/rdch710/files/neptunium.pdf|doi = 10.1007/1-4020-3598-5_9|isbn = 978-1-4020-3555-5}}</ref>


Curium ions are ] and thus form most stable complexes with hard bases.<ref>{{cite journal|last1=Jensen|first1=Mark P.|last2=Bond|first2=Andrew H.|title=Comparison of Covalency in the Complexes of Trivalent Actinide and Lanthanide Cations|journal=Journal of the American Chemical Society|volume=124|issue=33|date=2002|pmid=12175247|doi=10.1021/ja0178620|pages=9870–9877|url=https://figshare.com/articles/Comparison_of_Covalency_in_the_Complexes_of_Trivalent_Actinide_and_Lanthanide_Cations/3640428}}</ref> The bonding is mostly ionic, with a small covalent component.<ref>{{cite journal|last1=Seaborg |first1=Glenn T. |title=Overview of the Actinide and Lanthanide (the ''f'') Elements|journal=Radiochimica Acta|date=1993|volume=61|issue=3–4 |pages=115–122|doi=10.1524/ract.1993.61.34.115 |s2cid=99634366 }}</ref> Curium in its complexes commonly exhibits a 9-fold coordination environment, within a tricapped ].<ref>Greenwood, p. 1267</ref> Curium ions are ] and thus form most stable complexes with hard bases.<ref>{{cite journal|last1=Jensen|first1=Mark P.|last2=Bond|first2=Andrew H.|title=Comparison of Covalency in the Complexes of Trivalent Actinide and Lanthanide Cations|journal=Journal of the American Chemical Society|volume=124|issue=33|date=2002|pmid=12175247|doi=10.1021/ja0178620|pages=9870–9877|url=https://figshare.com/articles/Comparison_of_Covalency_in_the_Complexes_of_Trivalent_Actinide_and_Lanthanide_Cations/3640428}}</ref> The bonding is mostly ionic, with a small covalent component.<ref>{{cite journal|last1=Seaborg |first1=Glenn T. |title=Overview of the Actinide and Lanthanide (the ''f'') Elements|journal=Radiochimica Acta|date=1993|volume=61|issue=3–4 |pages=115–122|doi=10.1524/ract.1993.61.34.115 |s2cid=99634366 }}</ref> Curium in its complexes commonly exhibits a 9-fold coordination environment, within a tricapped ].<ref>Greenwood, p. 1267</ref>
Line 69: Line 69:
===Isotopes=== ===Isotopes===
{{see also|Isotopes of curium}} {{see also|Isotopes of curium}}
About 19 ] and 7 ]s between <sup>233</sup>Cm and <sup>251</sup>Cm are known for curium, none of which are ]. The longest half-lives are 15.6 million years (<sup>247</sup>Cm) and 348,000 years (<sup>248</sup>Cm). Other long-lived ones are <sup>245</sup>Cm (8500 years), <sup>250</sup>Cm (8300 years) and <sup>246</sup>Cm (4760 years). Curium-250 is unusual in that it mainly (~86%) decays by ]. The most commonly used isotopes are <sup>242</sup>Cm and <sup>244</sup>Cm with the half-lives 162.8 days and 18.1 years, respectively.<ref name="nubase">{{NUBASE 1997}}</ref> About 19 ]s and 7 ]s, <sup>233</sup>Cm to <sup>251</sup>Cm, are known; none are ]. The longest half-lives are 15.6 million years (<sup>247</sup>Cm) and 348,000 years (<sup>248</sup>Cm). Other long-lived ones are <sup>245</sup>Cm (8500 years), <sup>250</sup>Cm (8300 years) and <sup>246</sup>Cm (4760 years). Curium-250 is unusual: it mostly (~86%) decays by ]. The most commonly used isotopes are <sup>242</sup>Cm and <sup>244</sup>Cm with the half-lives 162.8 days and 18.1 years, respectively.<ref name="nubase">{{NUBASE 1997}}</ref>
<div style="float:right; margin:0.5em; font-size:85%;"> <div style="float:right; margin:0.5em; font-size:85%;">
{| class="wikitable" {| class="wikitable"
Line 98: Line 98:
</div> </div>


All isotopes between <sup>242</sup>Cm and <sup>248</sup>Cm, as well as <sup>250</sup>Cm, undergo a self-sustaining ] and thus in principle can act as a ] in a reactor. As in most transuranic elements, the ] cross section is especially high for the odd-mass curium isotopes <sup>243</sup>Cm, <sup>245</sup>Cm and <sup>247</sup>Cm. These can be used in ]s, whereas a mixture of curium isotopes is only suitable for ] since the even-mass isotopes are not fissile in a thermal reactor and accumulate as burn-up increases.<ref name="irsn">Institut de Radioprotection et de Sûreté Nucléaire: {{webarchive |url=https://web.archive.org/web/20110519171204/http://ec.europa.eu/energy/nuclear/transport/doc/irsn_sect03_146.pdf |date=May 19, 2011 }}, p. 16</ref> The mixed-oxide (MOX) fuel, which is to be used in power reactors, should contain little or no curium because the ] of <sup>248</sup>Cm will create ]. Californium is a strong ] emitter, and would pollute the back end of the fuel cycle and increase the dose to reactor personnel. Hence, if the ]s are to be used as fuel in a thermal neutron reactor, the curium should be excluded from the fuel or placed in special fuel rods where it is the only actinide present.<ref>{{cite book|author=National Research Council (U.S.). Committee on Separations Technology and Transmutation Systems|title=Nuclear wastes: technologies for separations and transmutation|url=https://books.google.com/books?id=iRI7Cx2D4e4C&pg=PA231|access-date=19 April 2011|date=1996|publisher=National Academies Press|isbn=978-0-309-05226-9|pages=231–}}</ref> All isotopes <sup>242</sup>Cm-<sup>248</sup>Cm, and <sup>250</sup>Cm, undergo a self-sustaining ] and thus in principle can be a ] in a reactor. As in most transuranic elements, ] cross section is especially high for the odd-mass curium isotopes <sup>243</sup>Cm, <sup>245</sup>Cm and <sup>247</sup>Cm. These can be used in ]s, whereas a mixture of curium isotopes is only suitable for ] since the even-mass isotopes are not fissile in a thermal reactor and accumulate as burn-up increases.<ref name="irsn">Institut de Radioprotection et de Sûreté Nucléaire: {{webarchive |url=https://web.archive.org/web/20110519171204/http://ec.europa.eu/energy/nuclear/transport/doc/irsn_sect03_146.pdf |date=May 19, 2011 }}, p. 16</ref> The mixed-oxide (MOX) fuel, which is to be used in power reactors, should contain little or no curium because ] of <sup>248</sup>Cm will create ]. Californium is a strong ] emitter, and would pollute the back end of the fuel cycle and increase the dose to reactor personnel. Hence, if ]s are to be used as fuel in a thermal neutron reactor, the curium should be excluded from the fuel or placed in special fuel rods where it is the only actinide present.<ref>{{cite book|author=National Research Council (U.S.). Committee on Separations Technology and Transmutation Systems|title=Nuclear wastes: technologies for separations and transmutation|url=https://books.google.com/books?id=iRI7Cx2D4e4C&pg=PA231|access-date=19 April 2011|date=1996|publisher=National Academies Press|isbn=978-0-309-05226-9|pages=231–}}</ref>


] ]
The adjacent table lists the ]es for curium isotopes for a sphere, without a moderator and reflector. With a metal reflector (30&nbsp;cm of steel), the critical masses of the odd isotopes are about 3–4&nbsp;kg. When using water (thickness ~20–30&nbsp;cm) as the reflector, the critical mass can be as small as 59&nbsp;gram for <sup>245</sup>Cm, 155&nbsp;gram for <sup>243</sup>Cm and 1550&nbsp;gram for <sup>247</sup>Cm. There is a significant uncertainty in these critical mass values. Whereas it is usually on the order of 20%, the values for <sup>242</sup>Cm and <sup>246</sup>Cm were listed as large as 371&nbsp;kg and 70.1&nbsp;kg, respectively, by some research groups.<ref name="irsn" /><ref>{{cite journal|author=Okundo, H.|author2=Kawasaki, H.|name-list-style=amp |title=Critical and Subcritical Mass Calculations of Curium-243 to −247 Based on JENDL-3.2 for Revision of ANSI/ANS-8.15|journal=Journal of Nuclear Science and Technology|date=2002|volume=39|pages=1072–1085|doi=10.3327/jnst.39.1072|issue=10|doi-access=free}}</ref> The adjacent table lists the ]es for curium isotopes for a sphere, without moderator or reflector. With a metal reflector (30&nbsp;cm of steel), the critical masses of the odd isotopes are about 3–4&nbsp;kg. When using water (thickness ~20–30&nbsp;cm) as the reflector, the critical mass can be as small as 59&nbsp;gram for <sup>245</sup>Cm, 155&nbsp;gram for <sup>243</sup>Cm and 1550&nbsp;gram for <sup>247</sup>Cm. There is significant uncertainty in these critical mass values. While it is usually on the order of 20%, the values for <sup>242</sup>Cm and <sup>246</sup>Cm were listed as large as 371&nbsp;kg and 70.1&nbsp;kg, respectively, by some research groups.<ref name="irsn" /><ref>{{cite journal|author=Okundo, H.|author2=Kawasaki, H.|name-list-style=amp |title=Critical and Subcritical Mass Calculations of Curium-243 to −247 Based on JENDL-3.2 for Revision of ANSI/ANS-8.15|journal=Journal of Nuclear Science and Technology|date=2002|volume=39|pages=1072–1085|doi=10.3327/jnst.39.1072|issue=10|doi-access=free}}</ref>


Curium is not currently used as nuclear fuel due to its low availability and high price.<ref> (in German)</ref> <sup>245</sup>Cm and <sup>247</sup>Cm have very small critical mass and so could be used in ]s, but none are known to have been made. Curium-243 is not suitable for such, due to its short half-life and strong α emission, which would cause excessive heat.<ref>{{cite book|author1=Jukka Lehto|author2=Xiaolin Hou|title=Chemistry and Analysis of Radionuclides: Laboratory Techniques and Methodology|url=https://books.google.com/books?id=v2iRJaO3SMIC&pg=PA303|access-date=19 April 2011|date=2 February 2011|publisher=Wiley-VCH|isbn=978-3-527-32658-7|pages=303–}}</ref> Curium-247 would be highly suitable due to its long half-life, which is 647 times longer than ] (used in many existing ]s). Curium is not currently used as nuclear fuel due to its low availability and high price.<ref> (in German)</ref> <sup>245</sup>Cm and <sup>247</sup>Cm have very small critical mass and so could be used in ]s, but none are known to have been made. Curium-243 is not suitable for such, due to its short half-life and strong α emission, which would cause excessive heat.<ref>{{cite book|author1=Jukka Lehto|author2=Xiaolin Hou|title=Chemistry and Analysis of Radionuclides: Laboratory Techniques and Methodology|url=https://books.google.com/books?id=v2iRJaO3SMIC&pg=PA303|access-date=19 April 2011|date=2 February 2011|publisher=Wiley-VCH|isbn=978-3-527-32658-7|pages=303–}}</ref> Curium-247 would be highly suitable due to its long half-life, which is 647 times longer than ] (used in many existing ]s).
Line 107: Line 107:
===Occurrence=== ===Occurrence===
]'' nuclear test.]] ]'' nuclear test.]]
The longest-lived isotope of curium, <sup>247</sup>Cm, has half-life 15.6 million years. Therefore, any ] curium, that is curium present on Earth during its formation, should have decayed by now. Its past presence as an ] is detectable as an excess of its primordial, long-lived daughter <sup>235</sup>U.<ref>{{cite news |url=https://phys.org/news/2016-03-cosmochemists-evidence-unstable-heavy-element.html |title=Cosmochemists find evidence for unstable heavy element at solar system formation |date=2016 |publisher=University of Chicago |website=phys.org |access-date=6 June 2022}}</ref> Trace amounts of curium may occur naturally in uranium minerals as a result of neutron capture and beta decay, though this has not been confirmed.<ref>{{Cite web|url=https://www.livescience.com/39915-facts-about-curium.html|title=Facts About Curium|last=Earth|first=Live Science Staff 2013-09-24T21:44:13Z Planet|website=livescience.com|date=24 September 2013|language=en|access-date=2019-08-10}}</ref><ref>{{Cite web|url=http://www.rsc.org/periodic-table/element/96/curium|title=Curium - Element information, properties and uses {{!}} Periodic Table|website=www.rsc.org|access-date=2019-08-10}}</ref> Trace quantities of <sup>247</sup>Cm are also probably brought to Earth in ]s, but again this has not been confirmed.<ref name=ThorntonBurdette>{{cite journal |last1=Thornton |first1=Brett F. |last2=Burdette |first2=Shawn C. |date=2019 |title=Neutron stardust and the elements of Earth |url=https://www.nature.com/articles/s41557-018-0190-9 |journal=Nature Chemistry |volume=11 |pages=4–10 |doi=10.1038/s41557-018-0190-9 |access-date=19 February 2022}}</ref> The longest-lived isotope, <sup>247</sup>Cm, has half-life 15.6 million years; so any ] curium, that is, present on Earth when it formed, should have decayed by now. Its past presence as an ] is detectable as an excess of its primordial, long-lived daughter <sup>235</sup>U.<ref>{{cite news |url=https://phys.org/news/2016-03-cosmochemists-evidence-unstable-heavy-element.html |title=Cosmochemists find evidence for unstable heavy element at solar system formation |date=2016 |publisher=University of Chicago |website=phys.org |access-date=6 June 2022}}</ref> Traces of curium may occur naturally in uranium minerals due to neutron capture and beta decay, though this has not been confirmed.<ref>{{Cite web|url=https://www.livescience.com/39915-facts-about-curium.html|title=Facts About Curium|last=Earth|first=Live Science Staff 2013-09-24T21:44:13Z Planet|website=livescience.com|date=24 September 2013|language=en|access-date=2019-08-10}}</ref><ref>{{Cite web|url=http://www.rsc.org/periodic-table/element/96/curium|title=Curium - Element information, properties and uses {{!}} Periodic Table|website=www.rsc.org|access-date=2019-08-10}}</ref> Traces of <sup>247</sup>Cm are also probably brought to Earth in ]s, but again this has not been confirmed.<ref name=ThorntonBurdette>{{cite journal |last1=Thornton |first1=Brett F. |last2=Burdette |first2=Shawn C. |date=2019 |title=Neutron stardust and the elements of Earth |url=https://www.nature.com/articles/s41557-018-0190-9 |journal=Nature Chemistry |volume=11 |pages=4–10 |doi=10.1038/s41557-018-0190-9 |access-date=19 February 2022}}</ref>


Curium is made artificially in small quantities for research purposes. It also occurs as one of the waste products in ].<ref>{{cite journal |vauthors = Chaplin J, Warwick P, Cundy A, Bochud F, Froidevaux P |title=Novel DGT Configurations for the Assessment of Bioavailable Plutonium, Americium, and Uranium in Marine and Freshwater Environments |journal=Analytical Chemistry |date=25 August 2021 |volume=93 |issue=35 |pages=11937–11945 |doi=10.1021/acs.analchem.1c01342 |pmid=34432435 |url=https://pubs.acs.org/doi/10.1021/acs.analchem.1c01342}}</ref><ref>{{cite journal |vauthors = Chaplin J, Christl M, Straub M, Bochud F, Froidevaux P |title=Passive Sampling Tool for Actinides in Spent Nuclear Fuel Pools |journal=ACS Omega |date=2 June 2022 |volume=7 |issue=23 |pages=20053−20058 |doi=10.1021/acsomega.2c01884 |url=https://doi.org/10.1021/acsomega.2c01884}}</ref> Curium is present in nature in certain areas used for ].<ref name="lenntech"> (in German)</ref> Analysis of the debris at the testing site of the ]' first ], ], (1 November 1952, ]), besides ], ], ] and ] also revealed isotopes of berkelium, californium and curium, in particular <sup>245</sup>Cm, <sup>246</sup>Cm and smaller quantities of <sup>247</sup>Cm, <sup>248</sup>Cm and <sup>249</sup>Cm.<ref>{{cite journal|last1=Fields|first1=P. R.|last2=Studier|first2=M. H.|last3=Diamond|first3=H.|last4=Mech|first4=J. F.|last5=Inghram|first5=M. G.|last6=Pyle|first6=G. L.|last7=Stevens|first7=C. M.|last8=Fried|first8=S.|last9=Manning|first9=W. M.|last10=Ghiorso|first10=A.|last11=Thompson|first11=S. G.|last12=Higgins|first12=G. H.|last13=Seaborg|first13=Glenn T.|display-authors=3|title=Transplutonium Elements in Thermonuclear Test Debris|date=1956|journal=Physical Review|volume=102|issue=1|pages=180–182|doi=10.1103/PhysRev.102.180|bibcode=1956PhRv..102..180F}}</ref> Curium is made artificially in small amounts for research purposes. It also occurs as one of the waste products in ].<ref>{{cite journal |vauthors = Chaplin J, Warwick P, Cundy A, Bochud F, Froidevaux P |title=Novel DGT Configurations for the Assessment of Bioavailable Plutonium, Americium, and Uranium in Marine and Freshwater Environments |journal=Analytical Chemistry |date=25 August 2021 |volume=93 |issue=35 |pages=11937–11945 |doi=10.1021/acs.analchem.1c01342 |pmid=34432435 |url=https://pubs.acs.org/doi/10.1021/acs.analchem.1c01342}}</ref><ref>{{cite journal |vauthors = Chaplin J, Christl M, Straub M, Bochud F, Froidevaux P |title=Passive Sampling Tool for Actinides in Spent Nuclear Fuel Pools |journal=ACS Omega |date=2 June 2022 |volume=7 |issue=23 |pages=20053−20058 |doi=10.1021/acsomega.2c01884 |url=https://doi.org/10.1021/acsomega.2c01884}}</ref> Curium is present in nature in some areas used for ].<ref name="lenntech"> (in German)</ref> Analysis of the debris at the test site of the ]' first ], ], (1 November 1952, ]), besides ], ], ] and ] also revealed isotopes of berkelium, californium and curium, in particular <sup>245</sup>Cm, <sup>246</sup>Cm and smaller quantities of <sup>247</sup>Cm, <sup>248</sup>Cm and <sup>249</sup>Cm.<ref>{{cite journal|last1=Fields|first1=P. R.|last2=Studier|first2=M. H.|last3=Diamond|first3=H.|last4=Mech|first4=J. F.|last5=Inghram|first5=M. G.|last6=Pyle|first6=G. L.|last7=Stevens|first7=C. M.|last8=Fried|first8=S.|last9=Manning|first9=W. M.|last10=Ghiorso|first10=A.|last11=Thompson|first11=S. G.|last12=Higgins|first12=G. H.|last13=Seaborg|first13=Glenn T.|display-authors=3|title=Transplutonium Elements in Thermonuclear Test Debris|date=1956|journal=Physical Review|volume=102|issue=1|pages=180–182|doi=10.1103/PhysRev.102.180|bibcode=1956PhRv..102..180F}}</ref>


Atmospheric curium compounds are poorly soluble in common solvents and mostly adhere to soil particles. Soil analysis revealed about 4,000 times higher concentration of curium at the sandy soil particles than in water present in the soil pores. An even higher ratio of about 18,000 was measured in ] soils.<ref name="LA2" /> Atmospheric curium compounds are poorly soluble in common solvents and mostly adhere to soil particles. Soil analysis revealed about 4,000 times higher concentration of curium at the sandy soil particles than in water present in the soil pores. An even higher ratio of about 18,000 was measured in ] soils.<ref name="LA2" />
Line 115: Line 115:
The ]s from americium to fermium, including curium, occurred naturally in the ] at ], but no longer do so.<ref name="emsley">{{cite book|last=Emsley|first=John|title=Nature's Building Blocks: An A-Z Guide to the Elements|edition=New|date=2011|publisher=Oxford University Press|location=New York, NY|isbn=978-0-19-960563-7}}</ref> The ]s from americium to fermium, including curium, occurred naturally in the ] at ], but no longer do so.<ref name="emsley">{{cite book|last=Emsley|first=John|title=Nature's Building Blocks: An A-Z Guide to the Elements|edition=New|date=2011|publisher=Oxford University Press|location=New York, NY|isbn=978-0-19-960563-7}}</ref>


Curium has also been detected in the spectrum of ], along with other non-primordial actinides.<ref name=gopka08>{{cite journal |last1=Gopka |first1=V. F. |last2=Yushchenko |first2=A. V. |last3=Yushchenko |first3=V. A. |last4=Panov |first4=I. V. |last5=Kim |first5=Ch. |title=Identification of absorption lines of short half-life actinides in the spectrum of Przybylski's star (HD 101065) |journal=Kinematics and Physics of Celestial Bodies |date=15 May 2008 |volume=24 |issue=2 |pages=89–98 |doi=10.3103/S0884591308020049 |bibcode = 2008KPCB...24...89G |s2cid=120526363 }}</ref> Curium, and other non-primordial actinides, have also been detected in the spectrum of ].<ref name=gopka08>{{cite journal |last1=Gopka |first1=V. F. |last2=Yushchenko |first2=A. V. |last3=Yushchenko |first3=V. A. |last4=Panov |first4=I. V. |last5=Kim |first5=Ch. |title=Identification of absorption lines of short half-life actinides in the spectrum of Przybylski's star (HD 101065) |journal=Kinematics and Physics of Celestial Bodies |date=15 May 2008 |volume=24 |issue=2 |pages=89–98 |doi=10.3103/S0884591308020049 |bibcode = 2008KPCB...24...89G |s2cid=120526363 }}</ref>


==Synthesis== ==Synthesis==
===Isotope preparation=== ===Isotope preparation===
Curium is produced in small quantities in ]s, and by now only kilograms of <sup>242</sup>Cm and <sup>244</sup>Cm have been accumulated, and grams or even milligrams for heavier isotopes. Hence the high price of curium, which has been quoted at 160–185 ] per milligram,<ref name="CRC" /> with a more recent estimate at US$2,000/g for <sup>242</sup>Cm and US$170/g for <sup>244</sup>Cm.<ref name="lect" /> In nuclear reactors, curium is formed from <sup>238</sup>U in a series of nuclear reactions. In the first chain, <sup>238</sup>U captures a neutron and converts into <sup>239</sup>U, which via ] transforms into <sup>239</sup>Np and <sup>239</sup>Pu. Curium is made in small amounts in ]s, and by now only kilograms of <sup>242</sup>Cm and <sup>244</sup>Cm have been accumulated, and grams or even milligrams for heavier isotopes. Hence the high price of curium, which has been quoted at 160–185 ] per milligram,<ref name="CRC" /> with a more recent estimate at US$2,000/g for <sup>242</sup>Cm and US$170/g for <sup>244</sup>Cm.<ref name="lect" /> In nuclear reactors, curium is formed from <sup>238</sup>U in a series of nuclear reactions. In the first chain, <sup>238</sup>U captures a neutron and converts into <sup>239</sup>U, which via ] transforms into <sup>239</sup>Np and <sup>239</sup>Pu.


{{NumBlk|:|<chem>^{238}_{92}U-> {^{239}_{92}U} -> ^{239}_{93}Np -> ^{239}_{94}Pu</chem> <small>(the times are ])</small>.|{{EquationRef|1}}}} {{NumBlk|:|<chem>^{238}_{92}U-> {^{239}_{92}U} -> ^{239}_{93}Np -> ^{239}_{94}Pu</chem> <small>(the times are ])</small>.|{{EquationRef|1}}}}


Further neutron capture followed by β<sup>−</sup>-decay produces the <sup>241</sup>Am isotope of ] which further converts into <sup>242</sup>Cm: Further neutron capture followed by β<sup>−</sup>-decay gives ] (<sup>241</sup>Am) which further becomes <sup>242</sup>Cm:
{{NumBlk|:|<chem>^{239}_{94}Pu-> ^{241}_{94}Pu -> {^{241}_{95}Am} -> ^{242}_{95}Am -> ^{242}_{96}Cm</chem>.|{{EquationRef|2}}}} {{NumBlk|:|<chem>^{239}_{94}Pu-> ^{241}_{94}Pu -> {^{241}_{95}Am} -> ^{242}_{95}Am -> ^{242}_{96}Cm</chem>.|{{EquationRef|2}}}}


Line 129: Line 129:
{{NumBlk|:|<chem>^{239}_{94}Pu -> ^{243}_{94}Pu -> ^{243}_{95}Am -> ^{244}_{95}Am -> ^{244}_{96}Cm -> ^{240}_{94}Pu</chem>|{{EquationRef|3}}}} {{NumBlk|:|<chem>^{239}_{94}Pu -> ^{243}_{94}Pu -> ^{243}_{95}Am -> ^{244}_{95}Am -> ^{244}_{96}Cm -> ^{240}_{94}Pu</chem>|{{EquationRef|3}}}}


Curium-244 alpha decays into <sup>240</sup>Pu, but it also absorbs neutrons, hence a small amount of heavier curium isotopes. Of those, <sup>247</sup>Cm and <sup>248</sup>Cm are popular in scientific research due to their long half-lives. However, the production rate of <sup>247</sup>Cm in thermal neutron reactors is fairly low because it is prone to undergo fission induced by thermal neutrons.<ref name="haire" /> Synthesis of <sup>250</sup>Cm by ] is unlikely due to the short half-life of the intermediate product <sup>249</sup>Cm (64 min), which β<sup>−</sup> decays to the ] isotope <sup>249</sup>Bk.<ref name="haire" /> Curium-244 alpha decays to <sup>240</sup>Pu, but it also absorbs neutrons, hence a small amount of heavier curium isotopes. Of those, <sup>247</sup>Cm and <sup>248</sup>Cm are popular in scientific research due to their long half-lives. But the production rate of <sup>247</sup>Cm in thermal neutron reactors is low because it is prone to fission due to thermal neutrons.<ref name="haire" /> Synthesis of <sup>250</sup>Cm by ] is unlikely due to the short half-life of the intermediate <sup>249</sup>Cm (64 min), which β<sup>−</sup> decays to the ] isotope <sup>249</sup>Bk.<ref name="haire" />
<!-- Curium-250 is obtained instead from the α-decay of <sup>254</sup>Cf. For this however, the production rate is low as <sup>254</sup>Cf decays mainly by spontaneous fission, and only slightly by emission of α-particles into <sup>250</sup>Cm.{{Citation needed|date=May 2012}} --> <!-- Curium-250 is obtained instead from the α-decay of <sup>254</sup>Cf. For this however, the production rate is low as <sup>254</sup>Cf decays mainly by spontaneous fission, and only slightly by emission of α-particles into <sup>250</sup>Cm.{{Citation needed|date=May 2012}} -->
{{NumBlk|:|<math chem>\ce{^\mathit{A}_{96}Cm{} + ^{1}_{0}n -> ^{\mathit{A}+1}_{96}Cm{} + \gamma} \ (\text{for } 244 \le A \le 248)</math>|{{EquationRef|4}}}} {{NumBlk|:|<math chem>\ce{^\mathit{A}_{96}Cm{} + ^{1}_{0}n -> ^{\mathit{A}+1}_{96}Cm{} + \gamma} \ (\text{for } 244 \le A \le 248)</math>|{{EquationRef|4}}}}


The above cascade of (n,γ) reactions gives a mixture of different curium isotopes. Their post-synthesis separation is cumbersome, and so a selective synthesis is desired. Curium-248 is favored for research purposes due to its long half-life. The most efficient preparation method of this isotope is via α-decay of the ] isotope <sup>252</sup>Cf, which is available in relatively large quantities due to its long half-life (2.65 years). About 35–50&nbsp;mg of <sup>248</sup>Cm is produced by this method every year. The associated reaction produces <sup>248</sup>Cm with isotopic purity of 97%.<ref name="haire">{{cite book The above cascade of (n,γ) reactions gives a mix of different curium isotopes. Their post-synthesis separation is cumbersome, so a selective synthesis is desired. Curium-248 is favored for research purposes due to its long half-life. The most efficient way to prepare this isotope is by α-decay of the ] isotope <sup>252</sup>Cf, which is available in relatively large amounts due to its long half-life (2.65 years). About 35–50&nbsp;mg of <sup>248</sup>Cm is produced thus, per year. The associated reaction produces <sup>248</sup>Cm with isotopic purity of 97%.<ref name="haire">{{cite book
| title = The Chemistry of the Actinide and Transactinide Elements | title = The Chemistry of the Actinide and Transactinide Elements
| editor1-last = Morss | editor1-last = Morss
Line 165: Line 165:
\end{matrix}</math>|{{EquationRef|5}}}} \end{matrix}</math>|{{EquationRef|5}}}}


Another interesting for research isotope <sup>245</sup>Cm can be obtained from the α-decay of <sup>249</sup>Cf, and the latter isotope is produced in minute quantities from the β<sup>−</sup>-decay of the ] isotope <sup>249</sup>Bk. Another isotope, <sup>245</sup>Cm, can be obtained for research, from α-decay of <sup>249</sup>Cf; the latter isotope is produced in small amounts from β<sup>−</sup>-decay of <sup>249</sup>].
{{NumBlk|:|<chem> {{NumBlk|:|<chem>
^{249}_{97}Bk -> ^{249}_{98}Cf -> ^{245}_{96}Cm ^{249}_{97}Bk -> ^{249}_{98}Cf -> ^{245}_{96}Cm
Line 172: Line 172:
===Metal preparation=== ===Metal preparation===
] ] curves revealing the similarity between Tb, Gd, Eu lanthanides and corresponding Bk, Cm, Am actinides.]] ] ] curves revealing the similarity between Tb, Gd, Eu lanthanides and corresponding Bk, Cm, Am actinides.]]
Most synthesis routines yield a mixture of different actinide isotopes as ]s, from which a certain isotope of curium needs to be separated. An example procedure could be to dissolve spent reactor fuel (e.g. ]) in ], and remove the bulk of the uranium and plutonium using a ] ('''P'''lutonium – '''UR'''anium '''EX'''traction) type extraction with ] in a hydrocarbon. The lanthanides and the remaining actinides are then separated from the aqueous residue (]) by a diamide-based extraction to give, after stripping, a mixture of trivalent actinides and lanthanides. A curium compound is then selectively extracted using multi-step ] and centrifugation techniques with an appropriate reagent.<ref>Penneman, pp. 34–48</ref> ] complex has been recently proposed as such reagent which is highly selective to curium.<ref>{{cite journal|author = Magnusson D|author2 = Christiansen B|author3 = Foreman MRS|author4 = Geist A|author5 = Glatz JP|author6 = Malmbeck R|author7 = Modolo G|author8 = Serrano-Purroy D|author9 = Sorel C|name-list-style = amp|journal = Solvent Extraction and Ion Exchange|date = 2009|volume = 27|issue = 2|page = 97|doi = 10.1080/07366290802672204|title = Demonstration of a SANEX Process in Centrifugal Contactors using the CyMe4-BTBP Molecule on a Genuine Fuel Solution|title-link = centrifugal extractor|s2cid = 94720457}}</ref> Separation of curium from the very chemically similar americium can also be achieved by treating a slurry of their hydroxides in aqueous ] with ] at elevated temperature. Both americium and curium are present in solutions mostly in the +3 valence state; whereas americium oxidizes to soluble Am(IV) complexes, curium remains unchanged and can thus be isolated by repeated centrifugation.<ref>Penneman, p. 25</ref> Most synthesis routines yield a mix of actinide isotopes as ]s, from which a given isotope of curium needs to be separated. An example procedure could be to dissolve spent reactor fuel (e.g. ]) in ], and remove the bulk of the uranium and plutonium using a ] ('''P'''lutonium – '''UR'''anium '''EX'''traction) type extraction with ] in a hydrocarbon. The lanthanides and the remaining actinides are then separated from the aqueous residue (]) by a diamide-based extraction to give, after stripping, a mixture of trivalent actinides and lanthanides. A curium compound is then selectively extracted using multi-step ] and centrifugation techniques with an appropriate reagent.<ref>Penneman, pp. 34–48</ref> ] complex has been recently proposed as such reagent which is highly selective to curium.<ref>{{cite journal|author = Magnusson D|author2 = Christiansen B|author3 = Foreman MRS|author4 = Geist A|author5 = Glatz JP|author6 = Malmbeck R|author7 = Modolo G|author8 = Serrano-Purroy D|author9 = Sorel C|name-list-style = amp|journal = Solvent Extraction and Ion Exchange|date = 2009|volume = 27|issue = 2|page = 97|doi = 10.1080/07366290802672204|title = Demonstration of a SANEX Process in Centrifugal Contactors using the CyMe4-BTBP Molecule on a Genuine Fuel Solution|title-link = centrifugal extractor|s2cid = 94720457}}</ref> Separation of curium from the very chemically similar americium can also be done by treating a slurry of their hydroxides in aqueous ] with ] at elevated temperature. Both americium and curium are present in solutions mostly in the +3 valence state; americium oxidizes to soluble Am(IV) complexes, but curium stays unchanged and so can be isolated by repeated centrifugation.<ref>Penneman, p. 25</ref>


Metallic curium is obtained by ] of its compounds. Initially, curium(III) fluoride was used for this purpose. The reaction was conducted in the environment free from water and oxygen, in the apparatus made of ] and ], using elemental ] or ] as reducing agents.<ref name="Morrs" /><ref name = "CM_METALL" /><ref name="cunning">{{cite journal|last1=Cunningham|first1=B. B.|last2=Wallmann|first2=J. C.|title=Crystal structure and melting point of curium metal|journal=Journal of Inorganic and Nuclear Chemistry|volume=26|issue=2|page=271|date=1964|doi=10.1016/0022-1902(64)80069-5|osti=4667421}}</ref><ref>{{cite journal|last1=Stevenson|first1=J.|last2=Peterson|first2=J.|title=Preparation and structural studies of elemental curium-248 and the nitrides of curium-248 and berkelium-249|journal=Journal of the Less Common Metals|volume=66|issue=2|page=201|date=1979|doi=10.1016/0022-5088(79)90229-7}}</ref><ref>''Gmelin Handbook of Inorganic Chemistry'', System No. 71, Volume 7 a, transuranics, Part B 1, pp. 67–68.</ref> Metallic curium is obtained by ] of its compounds. Initially, curium(III) fluoride was used for this purpose. The reaction was done in an environment free of water and oxygen, in an apparatus made of ] and ], using elemental ] or ] as reducing agents.<ref name="Morrs" /><ref name = "CM_METALL" /><ref name="cunning">{{cite journal|last1=Cunningham|first1=B. B.|last2=Wallmann|first2=J. C.|title=Crystal structure and melting point of curium metal|journal=Journal of Inorganic and Nuclear Chemistry|volume=26|issue=2|page=271|date=1964|doi=10.1016/0022-1902(64)80069-5|osti=4667421}}</ref><ref>{{cite journal|last1=Stevenson|first1=J.|last2=Peterson|first2=J.|title=Preparation and structural studies of elemental curium-248 and the nitrides of curium-248 and berkelium-249|journal=Journal of the Less Common Metals|volume=66|issue=2|page=201|date=1979|doi=10.1016/0022-5088(79)90229-7}}</ref><ref>''Gmelin Handbook of Inorganic Chemistry'', System No. 71, Volume 7 a, transuranics, Part B 1, pp. 67–68.</ref>
:<math>\mathrm{CmF_3\ +\ 3\ Li\ \longrightarrow \ Cm\ +\ 3\ LiF}</math> :<math>\mathrm{CmF_3\ +\ 3\ Li\ \longrightarrow \ Cm\ +\ 3\ LiF}</math>


Another possibility is the reduction of curium(IV) oxide using a magnesium-zinc alloy in a melt of ] and ].<ref>{{cite journal|last1=Eubanks|first1=I.|title=Preparation of curium metal|journal=Inorganic and Nuclear Chemistry Letters|volume=5|issue=3|page=187|date=1969|doi=10.1016/0020-1650(69)80221-7|last2=Thompson|first2=M. C.}}</ref> Another possibility is reduction of curium(IV) oxide using a magnesium-zinc alloy in a melt of ] and ].<ref>{{cite journal|last1=Eubanks|first1=I.|title=Preparation of curium metal|journal=Inorganic and Nuclear Chemistry Letters|volume=5|issue=3|page=187|date=1969|doi=10.1016/0020-1650(69)80221-7|last2=Thompson|first2=M. C.}}</ref>


==Compounds and reactions== ==Compounds and reactions==
Line 191: Line 191:
Also, a number of ternary oxides of the type M(II)CmO<sub>3</sub> are known, where M stands for a divalent metal, such as barium.<ref>{{cite journal|last1=Fuger|first1=J.|last2=Haire|first2=R.|last3=Peterson|first3=J.|title=Molar enthalpies of formation of BaCmO3 and BaCfO3|journal=Journal of Alloys and Compounds|volume=200|issue=1–2|page=181|date=1993|doi=10.1016/0925-8388(93)90491-5|url=https://zenodo.org/record/1258637}}</ref> Also, a number of ternary oxides of the type M(II)CmO<sub>3</sub> are known, where M stands for a divalent metal, such as barium.<ref>{{cite journal|last1=Fuger|first1=J.|last2=Haire|first2=R.|last3=Peterson|first3=J.|title=Molar enthalpies of formation of BaCmO3 and BaCfO3|journal=Journal of Alloys and Compounds|volume=200|issue=1–2|page=181|date=1993|doi=10.1016/0925-8388(93)90491-5|url=https://zenodo.org/record/1258637}}</ref>


Thermal oxidation of trace quantities of curium hydride (CmH<sub>2–3</sub>) has been reported to give a volatile form of CmO<sub>2</sub> and the volatile trioxide CmO<sub>3</sub>, one of the two known examples of the very rare +6 state for curium.<ref name="CmO3" /> Another observed species was reported to behave similar to a supposed plutonium tetroxide and was tentatively characterized as CmO<sub>4</sub>, with curium in the extremely rare +8 state;<ref name="CmO4">{{cite journal |last1=Domanov |first1=V. P. |date=January 2013 |title=Possibility of generation of octavalent curium in the gas phase in the form of volatile tetraoxide CmO<sub>4</sub> |journal=Radiochemistry |volume=55 |issue=1 |pages=46–51 |doi=10.1134/S1066362213010098 |s2cid=98076989 }}</ref> but new experiments seem to indicate that CmO<sub>4</sub> does not exist, and have cast doubt on the existence of PuO<sub>4</sub> as well.<ref>{{cite journal|last1=Zaitsevskii|first1=Andréi|last2=Schwarz|first2=W. H. Eugen|date=April 2014|title=Structures and stability of AnO4 isomers, An = Pu, Am, and Cm: a relativistic density functional study.|journal=Physical Chemistry Chemical Physics|volume=2014|issue=16|pages=8997–9001|bibcode=2014PCCP...16.8997Z|doi=10.1039/c4cp00235k|pmid=24695756}}<!--|access-date=March 8, 2015--></ref> Thermal oxidation of trace quantities of curium hydride (CmH<sub>2–3</sub>) has been reported to give a volatile form of CmO<sub>2</sub> and the volatile trioxide CmO<sub>3</sub>, one of two known examples of the very rare +6 state for curium.<ref name="CmO3" /> Another observed species was reported to behave similar to a supposed plutonium tetroxide and was tentatively characterized as CmO<sub>4</sub>, with curium in the extremely rare +8 state;<ref name="CmO4">{{cite journal |last1=Domanov |first1=V. P. |date=January 2013 |title=Possibility of generation of octavalent curium in the gas phase in the form of volatile tetraoxide CmO<sub>4</sub> |journal=Radiochemistry |volume=55 |issue=1 |pages=46–51 |doi=10.1134/S1066362213010098 |s2cid=98076989 }}</ref> but new experiments seem to indicate that CmO<sub>4</sub> does not exist, and have cast doubt on the existence of PuO<sub>4</sub> as well.<ref>{{cite journal|last1=Zaitsevskii|first1=Andréi|last2=Schwarz|first2=W. H. Eugen|date=April 2014|title=Structures and stability of AnO4 isomers, An = Pu, Am, and Cm: a relativistic density functional study.|journal=Physical Chemistry Chemical Physics|volume=2014|issue=16|pages=8997–9001|bibcode=2014PCCP...16.8997Z|doi=10.1039/c4cp00235k|pmid=24695756}}<!--|access-date=March 8, 2015--></ref>


===Halides=== ===Halides===
The colorless curium(III) fluoride (CmF<sub>3</sub>) can be made by introducing fluoride ions into curium(III)-containing solutions. The brown tetravalent curium(IV) fluoride (CmF<sub>4</sub>) on the other hand is only obtained by reacting curium(III) fluoride with molecular ]:<ref name = "Morrs" /> The colorless curium(III) fluoride (CmF<sub>3</sub>) can be made by adding fluoride ions into curium(III)-containing solutions. The brown tetravalent curium(IV) fluoride (CmF<sub>4</sub>) on the other hand is only obtained by reacting curium(III) fluoride with molecular ]:<ref name = "Morrs" />
: <math>\mathrm{2\ CmF_3\ +\ F_2\ \longrightarrow\ 2\ CmF_4}</math> : <math>\mathrm{2\ CmF_3\ +\ F_2\ \longrightarrow\ 2\ CmF_4}</math>


A series of ternary fluorides are known of the form A<sub>7</sub>Cm<sub>6</sub>F<sub>31</sub> (A = ]).<ref>{{cite journal|last1=Keenan|first1=T.|title=Lattice constants of K7Cm6F31 trends in the 1:1 and 7:6 alkali metal-actinide(IV) series|journal=Inorganic and Nuclear Chemistry Letters|volume=3|issue=10|page=391|date=1967|doi=10.1016/0020-1650(67)80092-8}}</ref> A series of ternary fluorides are known of the form A<sub>7</sub>Cm<sub>6</sub>F<sub>31</sub> (A = ]).<ref>{{cite journal|last1=Keenan|first1=T.|title=Lattice constants of K7Cm6F31 trends in the 1:1 and 7:6 alkali metal-actinide(IV) series|journal=Inorganic and Nuclear Chemistry Letters|volume=3|issue=10|page=391|date=1967|doi=10.1016/0020-1650(67)80092-8}}</ref>


The colorless ] (CmCl<sub>3</sub>) is made by reacting ] (Cm(OH)<sub>3</sub>) with anhydrous ] gas. It can further be converted into other halides, such as curium(III) bromide (colorless to light green) and curium(III) iodide (colorless), by reacting it with the ] salt of the corresponding halide at elevated temperature of ~400–450°C:<ref>{{cite journal|title=Crystal Structures of the Trifluorides, Trichlorides, Tribromides, and Triiodides of Americium and Curium|last1=Asprey|first1=L. B.|last2=Keenan|first2=T. K.|last3=Kruse|first3=F. H.|journal=Inorganic Chemistry|volume=4|issue=7|page=985|date=1965|doi=10.1021/ic50029a013|url=https://digital.library.unt.edu/ark:/67531/metadc1035960/}}</ref> The colorless ] (CmCl<sub>3</sub>) is made by reacting ] (Cm(OH)<sub>3</sub>) with anhydrous ] gas. It can be further turned into other halides such as curium(III) bromide (colorless to light green) and curium(III) iodide (colorless), by reacting it with the ] salt of the corresponding halide at temperatures of ~400–450°C:<ref>{{cite journal|title=Crystal Structures of the Trifluorides, Trichlorides, Tribromides, and Triiodides of Americium and Curium|last1=Asprey|first1=L. B.|last2=Keenan|first2=T. K.|last3=Kruse|first3=F. H.|journal=Inorganic Chemistry|volume=4|issue=7|page=985|date=1965|doi=10.1021/ic50029a013|url=https://digital.library.unt.edu/ark:/67531/metadc1035960/}}</ref>
: <math>\mathrm{CmCl_3\ +\ 3\ NH_4I\ \longrightarrow \ CmI_3\ +\ 3\ NH_4Cl}</math> : <math>\mathrm{CmCl_3\ +\ 3\ NH_4I\ \longrightarrow \ CmI_3\ +\ 3\ NH_4Cl}</math>


An alternative procedure is heating curium oxide to ~ 600°C with the corresponding acid (such as ] for curium bromide).<ref>{{cite journal|last1=Burns|first1=J.|title=Crystallographic studies of some transuranic trihalides: 239PuCl3, 244CmBr3, 249BkBr3 and 249CfBr3|journal=Journal of Inorganic and Nuclear Chemistry|volume=37|issue=3|page=743|date=1975|doi=10.1016/0022-1902(75)80532-X|last2=Peterson|first2=J. R.|last3=Stevenson|first3=J. N.}}</ref><ref>{{cite journal|last1=Wallmann|first1=J.|title=Crystal structure and lattice parameters of curium trichloride|journal=Journal of Inorganic and Nuclear Chemistry|volume=29|issue=11|page=2745|date=1967|doi=10.1016/0022-1902(67)80013-7|last2=Fuger|first2=J.|last3=Peterson|first3=J. R.|last4=Green|first4=J. L.}}</ref> Vapor phase ] of curium(III) chloride results in curium oxychloride:<ref>{{cite journal|last1=Weigel|first1=F.|last2=Wishnevsky|first2=V.|last3=Hauske|first3=H.|title=The vapor phase hydrolysis of PuCl3 and CmCl3: heats of formation of PuOC1 and CmOCl|journal=Journal of the Less Common Metals|volume=56|issue=1|page=113|date=1977|doi=10.1016/0022-5088(77)90224-7}}</ref> Or, one can heat curium oxide to ~600°C with the corresponding acid (such as ] for curium bromide).<ref>{{cite journal|last1=Burns|first1=J.|title=Crystallographic studies of some transuranic trihalides: 239PuCl3, 244CmBr3, 249BkBr3 and 249CfBr3|journal=Journal of Inorganic and Nuclear Chemistry|volume=37|issue=3|page=743|date=1975|doi=10.1016/0022-1902(75)80532-X|last2=Peterson|first2=J. R.|last3=Stevenson|first3=J. N.}}</ref><ref>{{cite journal|last1=Wallmann|first1=J.|title=Crystal structure and lattice parameters of curium trichloride|journal=Journal of Inorganic and Nuclear Chemistry|volume=29|issue=11|page=2745|date=1967|doi=10.1016/0022-1902(67)80013-7|last2=Fuger|first2=J.|last3=Peterson|first3=J. R.|last4=Green|first4=J. L.}}</ref> Vapor phase ] of curium(III) chloride gives curium oxychloride:<ref>{{cite journal|last1=Weigel|first1=F.|last2=Wishnevsky|first2=V.|last3=Hauske|first3=H.|title=The vapor phase hydrolysis of PuCl3 and CmCl3: heats of formation of PuOC1 and CmOCl|journal=Journal of the Less Common Metals|volume=56|issue=1|page=113|date=1977|doi=10.1016/0022-5088(77)90224-7}}</ref>
: <math>\mathrm{CmCl_3\ +\ \ H_2O\ \longrightarrow \ CmOCl\ +\ 2\ HCl}</math> : <math>\mathrm{CmCl_3\ +\ \ H_2O\ \longrightarrow \ CmOCl\ +\ 2\ HCl}</math>


===Chalcogenides and pnictides=== ===Chalcogenides and pnictides===
Sulfides, selenides and tellurides of curium have been obtained by treating curium with gaseous ], ] or ] in vacuum at elevated temperature.<ref>Troc, R. , Springer, 2009 {{ISBN|3-540-29177-6}}, p. 4</ref><ref>{{cite journal|last1=Damien|first1=D.|title=Preparation and lattice parameters of curium sulfides and selenides|journal=Inorganic and Nuclear Chemistry Letters|volume=11|issue=7–8|page=451|date=1975|doi=10.1016/0020-1650(75)80017-1|last2=Charvillat|first2=J. P.|last3=Müller|first3=W.}}</ref> The ] of curium of the type CmX are known for the elements ], ], ] and ].<ref name="Morrs" /> They can be prepared by reacting either curium(III) hydride (CmH<sub>3</sub>) or metallic curium with these elements at elevated temperatures.<ref name="CuriumChap9">Lumetta, G. J.; Thompson, M. C.; Penneman, R. A.; Eller, P. G. {{webarchive|url=https://web.archive.org/web/20100717154205/http://radchem.nevada.edu/classes/rdch710/files/curium.pdf |date=2010-07-17 }}, Chapter Nine in ''Radioanalytical Chemistry'', Springer, 2004, pp. 1420–1421. {{ISBN|0387341226}}, {{ISBN|978-0387 341224}}</ref> Sulfides, selenides and tellurides of curium have been obtained by treating curium with gaseous ], ] or ] in vacuum at elevated temperature.<ref>Troc, R. , Springer, 2009 {{ISBN|3-540-29177-6}}, p. 4</ref><ref>{{cite journal|last1=Damien|first1=D.|title=Preparation and lattice parameters of curium sulfides and selenides|journal=Inorganic and Nuclear Chemistry Letters|volume=11|issue=7–8|page=451|date=1975|doi=10.1016/0020-1650(75)80017-1|last2=Charvillat|first2=J. P.|last3=Müller|first3=W.}}</ref> Curium ] of the type CmX are known for ], ], ] and ].<ref name="Morrs" /> They can be prepared by reacting either curium(III) hydride (CmH<sub>3</sub>) or metallic curium with these elements at elevated temperature.<ref name="CuriumChap9">Lumetta, G. J.; Thompson, M. C.; Penneman, R. A.; Eller, P. G. {{webarchive|url=https://web.archive.org/web/20100717154205/http://radchem.nevada.edu/classes/rdch710/files/curium.pdf |date=2010-07-17 }}, Chapter Nine in ''Radioanalytical Chemistry'', Springer, 2004, pp. 1420–1421. {{ISBN|0387341226}}, {{ISBN|978-0387 341224}}</ref>


===Organocurium compounds and biological aspects=== ===Organocurium compounds and biological aspects===
Line 212: Line 212:
Organometallic complexes analogous to ] are known also for other actinides, such as thorium, protactinium, neptunium, plutonium and americium. ] predicts a stable "curocene" complex (η<sup>8</sup>-C<sub>8</sub>H<sub>8</sub>)<sub>2</sub>Cm, but it has not been reported experimentally yet.<ref>Elschenbroich, Ch. Organometallic Chemistry, 6th edition, Wiesbaden 2008, {{ISBN|978-3-8351-0167-8}}, p. 589</ref><ref>{{cite journal|last1=Kerridge|first1=Andrew|last2=Kaltsoyannis|first2=Nikolas|title=Are the Ground States of the Later Actinocenes Multiconfigurational? All-Electron Spin−Orbit Coupled CASPT2 Calculations on An(η8-C8H8)2(An = Th, U, Pu, Cm)|journal=The Journal of Physical Chemistry A|volume=113|issue=30|date=2009|pmid=19719318|doi=10.1021/jp903912q|pages=8737–8745|bibcode=2009JPCA..113.8737K|url=https://figshare.com/articles/Are_the_Ground_States_of_the_Later_Actinocenes_Multiconfigurational_All_Electron_Spin_Orbit_Coupled_CASPT2_Calculations_on_An_sup_8_sup_C_sub_8_sub_H_sub_8_sub_sub_2_sub_An_Th_U_Pu_Cm_/2840251}}</ref> Organometallic complexes analogous to ] are known also for other actinides, such as thorium, protactinium, neptunium, plutonium and americium. ] predicts a stable "curocene" complex (η<sup>8</sup>-C<sub>8</sub>H<sub>8</sub>)<sub>2</sub>Cm, but it has not been reported experimentally yet.<ref>Elschenbroich, Ch. Organometallic Chemistry, 6th edition, Wiesbaden 2008, {{ISBN|978-3-8351-0167-8}}, p. 589</ref><ref>{{cite journal|last1=Kerridge|first1=Andrew|last2=Kaltsoyannis|first2=Nikolas|title=Are the Ground States of the Later Actinocenes Multiconfigurational? All-Electron Spin−Orbit Coupled CASPT2 Calculations on An(η8-C8H8)2(An = Th, U, Pu, Cm)|journal=The Journal of Physical Chemistry A|volume=113|issue=30|date=2009|pmid=19719318|doi=10.1021/jp903912q|pages=8737–8745|bibcode=2009JPCA..113.8737K|url=https://figshare.com/articles/Are_the_Ground_States_of_the_Later_Actinocenes_Multiconfigurational_All_Electron_Spin_Orbit_Coupled_CASPT2_Calculations_on_An_sup_8_sup_C_sub_8_sub_H_sub_8_sub_sub_2_sub_An_Th_U_Pu_Cm_/2840251}}</ref>


Formation of the complexes of the type {{chem|Cm|(|n-C|3|H|7|-BTP)|3}}, where BTP stands for 2,6-di(1,2,4-triazin-3-yl)pyridine, in solutions containing n-C<sub>3</sub>H<sub>7</sub>-BTP and Cm<sup>3+</sup> ions has been confirmed by ]. Some of these BTP-type complexes selectively interact with curium and therefore are useful in its selective separation from lanthanides and another actinides.<ref name="denecke" /><ref>{{cite journal|last1=Girnt|first1=Denise|last2=Roesky|first2=Peter W.|last3=Geist|first3=Andreas|last4=Ruff|first4=Christian M.|last5=Panak|first5=Petra J.|last6=Denecke|first6=Melissa A.|s2cid=978265|title=6-(3,5-Dimethyl-1H-pyrazol-1-yl)-2,2′-bipyridine as Ligand for Actinide(III)/Lanthanide(III) Separation|journal=Inorganic Chemistry|volume=49|issue=20|date=2010|pmid=20849125|doi=10.1021/ic101309j|pages=9627–9635}}</ref> Dissolved Cm<sup>3+</sup> ions bind with many organic compounds, such as ],<ref name="pl1">{{cite journal|last1=Glorius|first1=M.|last2=Moll|first2=H.|last3=Bernhard|first3=G.|title=Complexation of curium(III) with hydroxamic acids investigated by time-resolved laser-induced fluorescence spectroscopy|journal=Polyhedron|volume=27|issue=9–10|page=2113|date=2008|doi=10.1016/j.poly.2008.04.002}}</ref> ],<ref name="pl2">{{cite journal|last1=Heller|first1=Anne|last2=Barkleit|first2=Astrid|last3=Bernhard|first3=Gert|last4=Ackermann|first4=Jörg-Uwe|title=Complexation study of europium(III) and curium(III) with urea in aqueous solution investigated by time-resolved laser-induced fluorescence spectroscopy|journal=Inorganica Chimica Acta|volume=362|issue=4|page=1215|date=2009|doi=10.1016/j.ica.2008.06.016}}</ref> ]<ref name="pl3">{{cite journal|last1=Moll|first1=Henry|last2=Johnsson|first2=Anna|last3=Schäfer|first3=Mathias|last4=Pedersen|first4=Karsten|last5=Budzikiewicz|first5=Herbert|last6=Bernhard|first6=Gert|title=Curium(III) complexation with pyoverdins secreted by a groundwater strain of Pseudomonas fluorescens|journal=BioMetals|volume=21|issue=2|date=2007|pmid=17653625|doi=10.1007/s10534-007-9111-x|pages=219–228|s2cid=24565144}}</ref> and ].<ref name="pl4">{{cite journal|last1=Moll|first1=Henry|last2=Geipel|first2=Gerhard|last3=Bernhard|first3=Gert|title=Complexation of curium(III) by adenosine 5′-triphosphate (ATP): A time-resolved laser-induced fluorescence spectroscopy (TRLFS) study|journal=Inorganica Chimica Acta|volume=358|issue=7|page=2275|date=2005|doi=10.1016/j.ica.2004.12.055}}</ref> Many of these compounds are related to biological activity of various ]s. The resulting complexes exhibit strong yellow-orange emission under UV light excitation, which is convenient not only for their detection, but also for studying the interactions between the Cm<sup>3+</sup> ion and the ligands via changes in the half-life (of the order ~0.1 ms) and spectrum of the fluorescence.<ref name="plb" /><ref name="pl1" /><ref name="pl2" /><ref name="pl3" /><ref name="pl4" /> Formation of the complexes of the type {{chem|Cm|(|n-C|3|H|7|-BTP)|3}} (BTP = 2,6-di(1,2,4-triazin-3-yl)pyridine), in solutions containing n-C<sub>3</sub>H<sub>7</sub>-BTP and Cm<sup>3+</sup> ions has been confirmed by ]. Some of these BTP-type complexes selectively interact with curium and thus are useful for separating it from lanthanides and another actinides.<ref name="denecke" /><ref>{{cite journal|last1=Girnt|first1=Denise|last2=Roesky|first2=Peter W.|last3=Geist|first3=Andreas|last4=Ruff|first4=Christian M.|last5=Panak|first5=Petra J.|last6=Denecke|first6=Melissa A.|s2cid=978265|title=6-(3,5-Dimethyl-1H-pyrazol-1-yl)-2,2′-bipyridine as Ligand for Actinide(III)/Lanthanide(III) Separation|journal=Inorganic Chemistry|volume=49|issue=20|date=2010|pmid=20849125|doi=10.1021/ic101309j|pages=9627–9635}}</ref> Dissolved Cm<sup>3+</sup> ions bind with many organic compounds, such as ],<ref name="pl1">{{cite journal|last1=Glorius|first1=M.|last2=Moll|first2=H.|last3=Bernhard|first3=G.|title=Complexation of curium(III) with hydroxamic acids investigated by time-resolved laser-induced fluorescence spectroscopy|journal=Polyhedron|volume=27|issue=9–10|page=2113|date=2008|doi=10.1016/j.poly.2008.04.002}}</ref> ],<ref name="pl2">{{cite journal|last1=Heller|first1=Anne|last2=Barkleit|first2=Astrid|last3=Bernhard|first3=Gert|last4=Ackermann|first4=Jörg-Uwe|title=Complexation study of europium(III) and curium(III) with urea in aqueous solution investigated by time-resolved laser-induced fluorescence spectroscopy|journal=Inorganica Chimica Acta|volume=362|issue=4|page=1215|date=2009|doi=10.1016/j.ica.2008.06.016}}</ref> ]<ref name="pl3">{{cite journal|last1=Moll|first1=Henry|last2=Johnsson|first2=Anna|last3=Schäfer|first3=Mathias|last4=Pedersen|first4=Karsten|last5=Budzikiewicz|first5=Herbert|last6=Bernhard|first6=Gert|title=Curium(III) complexation with pyoverdins secreted by a groundwater strain of Pseudomonas fluorescens|journal=BioMetals|volume=21|issue=2|date=2007|pmid=17653625|doi=10.1007/s10534-007-9111-x|pages=219–228|s2cid=24565144}}</ref> and ].<ref name="pl4">{{cite journal|last1=Moll|first1=Henry|last2=Geipel|first2=Gerhard|last3=Bernhard|first3=Gert|title=Complexation of curium(III) by adenosine 5′-triphosphate (ATP): A time-resolved laser-induced fluorescence spectroscopy (TRLFS) study|journal=Inorganica Chimica Acta|volume=358|issue=7|page=2275|date=2005|doi=10.1016/j.ica.2004.12.055}}</ref> Many of these compounds are related to biological activity of various ]s. The resulting complexes show strong yellow-orange emission under UV light excitation, which is convenient not only for their detection, but also for studying interactions between the Cm<sup>3+</sup> ion and the ligands via changes in the half-life (of the order ~0.1 ms) and spectrum of the fluorescence.<ref name="plb" /><ref name="pl1" /><ref name="pl2" /><ref name="pl3" /><ref name="pl4" />


Curium has no biological significance.<ref>{{cite web|url=http://umbbd.ethz.ch/periodic/elements/cm.html |title=Biochemical Periodic Table – Curium |publisher=UMBBD |date=2007-06-08 |access-date=2011-03-25}}</ref> There are a few reports on ] of Cm<sup>3+</sup> by ] and ], but no evidence for incorporation of curium into them.<ref>{{cite journal|doi=10.1021/es0301166|last1=Moll|first1=H.|last2=Stumpf|first2=T.|last3=Merroun|first3=M.|last4=Rossberg|first4=A.|last5=Selenska-Pobell|first5=S.|last6=Bernhard|first6=G.|title=Time-resolved laser fluorescence spectroscopy study on the interaction of curium(III) with Desulfovibrio äspöensis DSM 10631T|journal=Environmental Science & Technology|volume=38|issue=5|pages=1455–1459|date=2004|pmid=15046347|bibcode = 2004EnST...38.1455M }}</ref><ref>{{cite journal|author=Ozaki, T.|display-authors=etal|url=http://sciencelinks.jp/j-east/article/200305/000020030503A0110480.php|archive-url=https://web.archive.org/web/20090225195752/http://sciencelinks.jp/j-east/article/200305/000020030503A0110480.php|url-status=dead|archive-date=2009-02-25|title=Association of Eu(III) and Cm(III) with Bacillus subtilis and Halobacterium salinarium|journal=Journal of Nuclear Science and Technology|date=2002|volume=Suppl. 3|pages=950–953|doi=10.1080/00223131.2002.10875626|s2cid=98319565}}</ref> Curium has no biological significance.<ref>{{cite web|url=http://umbbd.ethz.ch/periodic/elements/cm.html |title=Biochemical Periodic Table – Curium |publisher=UMBBD |date=2007-06-08 |access-date=2011-03-25}}</ref> There are a few reports on ] of Cm<sup>3+</sup> by ] and ], but no evidence for incorporation of curium into them.<ref>{{cite journal|doi=10.1021/es0301166|last1=Moll|first1=H.|last2=Stumpf|first2=T.|last3=Merroun|first3=M.|last4=Rossberg|first4=A.|last5=Selenska-Pobell|first5=S.|last6=Bernhard|first6=G.|title=Time-resolved laser fluorescence spectroscopy study on the interaction of curium(III) with Desulfovibrio äspöensis DSM 10631T|journal=Environmental Science & Technology|volume=38|issue=5|pages=1455–1459|date=2004|pmid=15046347|bibcode = 2004EnST...38.1455M }}</ref><ref>{{cite journal|author=Ozaki, T.|display-authors=etal|url=http://sciencelinks.jp/j-east/article/200305/000020030503A0110480.php|archive-url=https://web.archive.org/web/20090225195752/http://sciencelinks.jp/j-east/article/200305/000020030503A0110480.php|url-status=dead|archive-date=2009-02-25|title=Association of Eu(III) and Cm(III) with Bacillus subtilis and Halobacterium salinarium|journal=Journal of Nuclear Science and Technology|date=2002|volume=Suppl. 3|pages=950–953|doi=10.1080/00223131.2002.10875626|s2cid=98319565}}</ref>
Line 219: Line 219:
===Radionuclides=== ===Radionuclides===
] ]
Curium is one of the most radioactive isolable elements. Its two most common isotopes <sup>242</sup>Cm and <sup>244</sup>Cm are strong alpha emitters (energy 6&nbsp;MeV); they have relatively short half-lives of 162.8 days and 18.1 years, and produce as much as 120 W/g and 3 W/g of heat, respectively.<ref name="CRC" /><ref name="Binder">Binder, Harry H.: ''Lexikon der chemischen Elemente'', S. Hirzel Verlag, Stuttgart 1999, {{ISBN|3-7776-0736-3}}, pp.&nbsp;174–178.</ref><ref>''Gmelin Handbook of Inorganic Chemistry'', System No. 71, Volume 7a, transuranics, Part A2, p. 289</ref> Therefore, curium can be used in its common oxide form in ]s like those in spacecraft. This application has been studied for the <sup>244</sup>Cm isotope, while <sup>242</sup>Cm was abandoned due to its prohibitive price of ~2000 USD/g. <sup>243</sup>Cm with a ~30 year half-life and good energy yield of ~1.6 W/g could be a suitable fuel, but it produces significant amounts of harmful ] and ] rays from radioactive decay products. Though as an α-emitter, <sup>244</sup>Cm requires a much thinner radiation protection shielding, it has a high spontaneous fission rate, and thus the neutron and gamma radiation rate are fairly strong. As compared to a competing thermoelectric generator isotope such as <sup>238</sup>Pu, <sup>244</sup>Cm emits a 500-fold greater fluence of neutrons, and its higher gamma emission requires a shield that is 20 times thicker— ~ 2&nbsp;inches of lead for a 1&nbsp;kW source, compared to 0.1 in for <sup>238</sup>Pu. Therefore, this use of curium is currently considered impractical.<ref name="lect"> {{Webarchive|url=https://web.archive.org/web/20130215003518/http://fti.neep.wisc.edu/neep602/SPRING00/lecture5.pdf |date=2013-02-15 }}, G.L. Kulcinski, NEEP 602 Course Notes (Spring 2000), Nuclear Power in Space, University of Wisconsin Fusion Technology Institute (see last page)</ref> Curium is one of the most radioactive isolable elements. Its two most common isotopes <sup>242</sup>Cm and <sup>244</sup>Cm are strong alpha emitters (energy 6&nbsp;MeV); they have fairly short half-lives, 162.8 days and 18.1 years, and give as much as 120 W/g and 3 W/g of heat, respectively.<ref name="CRC" /><ref name="Binder">Binder, Harry H.: ''Lexikon der chemischen Elemente'', S. Hirzel Verlag, Stuttgart 1999, {{ISBN|3-7776-0736-3}}, pp.&nbsp;174–178.</ref><ref>''Gmelin Handbook of Inorganic Chemistry'', System No. 71, Volume 7a, transuranics, Part A2, p. 289</ref> Therefore, curium can be used in its common oxide form in ]s like those in spacecraft. This application has been studied for the <sup>244</sup>Cm isotope, while <sup>242</sup>Cm was abandoned due to its prohibitive price, ~2000 USD/g. <sup>243</sup>Cm with a ~30 year half-life and good energy yield of ~1.6 W/g could be a suitable fuel, but it gives significant amounts of harmful ] and ] rays from radioactive decay products. As an α-emitter, <sup>244</sup>Cm needs much less radiation shielding, but it has a high spontaneous fission rate, and thus a lot of neutron and gamma radiation. Compared to a competing thermoelectric generator isotope such as <sup>238</sup>Pu, <sup>244</sup>Cm emits 500 times more neutrons, and its higher gamma emission requires a shield that is 20 times thicker— ~2&nbsp;inches of lead for a 1&nbsp;kW source, compared to 0.1 in for <sup>238</sup>Pu. Therefore, this use of curium is currently considered impractical.<ref name="lect"> {{Webarchive|url=https://web.archive.org/web/20130215003518/http://fti.neep.wisc.edu/neep602/SPRING00/lecture5.pdf |date=2013-02-15 }}, G.L. Kulcinski, NEEP 602 Course Notes (Spring 2000), Nuclear Power in Space, University of Wisconsin Fusion Technology Institute (see last page)</ref>


A more promising use of <sup>242</sup>Cm is to produce <sup>238</sup>Pu, a more suitable radioisotope for thermoelectric generators such as in cardiac pacemakers. The alternative routes to <sup>238</sup>Pu use the (n,γ) reaction of <sup>237</sup>Np, or ] bombardment of uranium, which both always produce <sup>236</sup>Pu as an undesired by-product—since the latter decays to <sup>232</sup>U with strong gamma emission.<ref>, {{Webarchive|url=https://web.archive.org/web/20131226011403/http://www.kernenergie-wissen.de/pu-batterien.html |date=2013-12-26 }} (in German) A more promising use of <sup>242</sup>Cm is for making <sup>238</sup>Pu, a better radioisotope for thermoelectric generators such as in heart pacemakers. The alternate routes to <sup>238</sup>Pu use the (n,γ) reaction of <sup>237</sup>Np, or ] bombardment of uranium, which both always produce <sup>236</sup>Pu as an undesired by-product—since the latter decays to <sup>232</sup>U with strong gamma emission.<ref>, {{Webarchive|url=https://web.archive.org/web/20131226011403/http://www.kernenergie-wissen.de/pu-batterien.html |date=2013-12-26 }} (in German)


{{Cite web |url=http://www.kronenberg.kernchemie.de/ |title=Archived copy |access-date=April 28, 2011 |archive-url=https://web.archive.org/web/20110221040021/http://www.kronenberg.kernchemie.de/ |archive-date=February 21, 2011 |url-status=bot: unknown |df=mdy-all }}</ref> Curium is a common starting material for making higher ]s and ]s. Thus, bombarding <sup>248</sup>Cm with neon (<sup>22</sup>Ne), magnesium (<sup>26</sup>Mg), or calcium (<sup>48</sup>Ca) yields isotopes of ] (<sup>265</sup>Sg), ] (<sup>269</sup>Hs and <sup>270</sup>Hs), and ] (<sup>292</sup>Lv, <sup>293</sup>Lv, and possibly <sup>294</sup>Lv).<ref name="HOWI_1980">Holleman, pp. 1980–1981.</ref> Californium was discovered when a microgram-sized target of curium-242 was irradiated with 35&nbsp;MeV ]s using the {{convert|60|in|cm|adj=on}} cyclotron at Berkeley: {{Cite web |url=http://www.kronenberg.kernchemie.de/ |title=Archived copy |access-date=April 28, 2011 |archive-url=https://web.archive.org/web/20110221040021/http://www.kronenberg.kernchemie.de/ |archive-date=February 21, 2011 |url-status=bot: unknown |df=mdy-all }}</ref> Curium is a common starting material for making higher ] and ]s. Thus, bombarding <sup>248</sup>Cm with neon (<sup>22</sup>Ne), magnesium (<sup>26</sup>Mg), or calcium (<sup>48</sup>Ca) yields isotopes of ] (<sup>265</sup>Sg), ] (<sup>269</sup>Hs and <sup>270</sup>Hs), and ] (<sup>292</sup>Lv, <sup>293</sup>Lv, and possibly <sup>294</sup>Lv).<ref name="HOWI_1980">Holleman, pp. 1980–1981.</ref> Californium was discovered when a microgram-sized target of curium-242 was irradiated with 35&nbsp;MeV ]s using the {{convert|60|in|cm|adj=on}} cyclotron at Berkeley:
:{{nuclide|curium|242}} + {{nuclide|helium|4}} → {{nuclide|californium|245}} + {{nuclide|neutronium|1}} :{{nuclide|curium|242}} + {{nuclide|helium|4}} → {{nuclide|californium|245}} + {{nuclide|neutronium|1}}
Only about 5,000 atoms of californium were produced in this experiment.<ref>{{cite book|title=One Hundred Years after the Discovery of Radioactivity|editor=Adloff, J. P.|last=Seaborg|first=Glenn T.|page=82|date=1996|publisher=Oldenbourg Wissenschaftsverlag|isbn=978-3-486-64252-0}}</ref> Only about 5,000 atoms of californium were produced in this experiment.<ref>{{cite book|title=One Hundred Years after the Discovery of Radioactivity|editor=Adloff, J. P.|last=Seaborg|first=Glenn T.|page=82|date=1996|publisher=Oldenbourg Wissenschaftsverlag|isbn=978-3-486-64252-0}}</ref>


The odd-mass curium isotopes <sup>243</sup>Cm, <sup>245</sup>Cm, and <sup>247</sup>Cm are all highly ] and can generate additional energy in a thermal spectrum ]; while all Cm isotopes are fissionable in fast-neutron reactors. This is one of the motives for ] separation and transmutation in the ], helping to reduce the long-term radiotoxicity of used, or ]. The odd-mass curium isotopes <sup>243</sup>Cm, <sup>245</sup>Cm, and <sup>247</sup>Cm are all highly ] and can give additional energy in a thermal spectrum ]; while all Cm isotopes are fissionable in fast-neutron reactors. This is one of the motives for ] separation and transmutation in the ], helping to reduce the long-term radiotoxicity of used, or ].


] ]


===X-ray spectrometer=== ===X-ray spectrometer===
The most practical application of <sup>244</sup>Cm—though rather limited in total volume—is as α-particle source in the ]s (APXS). These instruments were installed on the ], ], ], ]s and ],<ref>{{cite web|url=http://www.bernd-leitenberger.de/philae.shtml |title=Der Rosetta Lander Philae |publisher=Bernd-leitenberger.de |date=2003-07-01 |access-date=2011-03-25}}</ref> as well as the ] to analyze the composition and structure of the rocks on the surface of planet ].<ref>{{cite journal|bibcode=1996DPS....28.0221R|title=An Alpha Proton X-Ray Spectrometer for Mars-96 and Mars Pathfinder|author=Rieder, R.|author2=Wanke, H.|author3=Economou, T.|journal=Bulletin of the American Astronomical Society|volume=28|page=1062|date=September 1996}}</ref> APXS was also used in the ] moon probes but with a <sup>242</sup>Cm source.<ref name="LA2"> {{Webarchive|url=https://web.archive.org/web/20060218162709/http://www.ead.anl.gov/pub/doc/curium.pdf |date=2006-02-18 }}, Los Alamos National Laboratory</ref><ref>Leitenberger, Bernd (in German)</ref><ref>{{cite book|chapter-url=https://history.nasa.gov/SP-480/ch9.htm |author=Nicks, Oran | The most practical application of <sup>244</sup>Cm—though rather limited in total volume—is as α-particle source in ]s (APXS). These instruments were installed on the ], ], ], ]s and ],<ref>{{cite web|url=http://www.bernd-leitenberger.de/philae.shtml |title=Der Rosetta Lander Philae |publisher=Bernd-leitenberger.de |date=2003-07-01 |access-date=2011-03-25}}</ref> as well as the ] to analyze the composition and structure of the rocks on the surface of planet ].<ref>{{cite journal|bibcode=1996DPS....28.0221R|title=An Alpha Proton X-Ray Spectrometer for Mars-96 and Mars Pathfinder|author=Rieder, R.|author2=Wanke, H.|author3=Economou, T.|journal=Bulletin of the American Astronomical Society|volume=28|page=1062|date=September 1996}}</ref> APXS was also used in the ] moon probes but with a <sup>242</sup>Cm source.<ref name="LA2"> {{Webarchive|url=https://web.archive.org/web/20060218162709/http://www.ead.anl.gov/pub/doc/curium.pdf |date=2006-02-18 }}, Los Alamos National Laboratory</ref><ref>Leitenberger, Bernd (in German)</ref><ref>{{cite book|chapter-url=https://history.nasa.gov/SP-480/ch9.htm |author=Nicks, Oran |
chapter=Ch. 9. Essentials for Surveyor|publisher=NASA|date=1985|title=SP-480 Far Travelers: The Exploring Machines}}</ref> chapter=Ch. 9. Essentials for Surveyor|publisher=NASA|date=1985|title=SP-480 Far Travelers: The Exploring Machines}}</ref>


An elaborated APXS setup is equipped with a sensor head containing six curium sources having the total radioactive decay rate of several tens of ] (roughly a ]). The sources are collimated on the sample, and the energy spectra of the alpha particles and protons scattered from the sample are analyzed (the proton analysis is implemented only in some spectrometers). These spectra contain quantitative information on all major elements in the samples except for hydrogen, helium and lithium.<ref>, Cornell University</ref> An elaborate APXS setup has a sensor head containing six curium sources with a total decay rate of several tens of ] (~ a giga]). The sources are collimated on a sample, and the energy spectra of the alpha particles and protons scattered from the sample are analyzed (proton analysis is done only in some spectrometers). These spectra contain quantitative information on all major elements in the sample except for hydrogen, helium and lithium.<ref>, Cornell University</ref>


==Safety== ==Safety==
Due to its high radioactivity, curium and its compounds must be handled in appropriate laboratories under special arrangements. While curium itself mostly emits α-particles which are absorbed by thin layers of common materials, some of its decay products emit significant fractions of beta and gamma radiation, which require a more elaborate protection.<ref name="lenntech" /> If consumed, curium is excreted within a few days and only 0.05% is absorbed in the blood. From there, ~45% goes to the ], 45% to the bones, and the remaining 10% is excreted. In bone, curium accumulates on the inside of the interfaces to the ] and does not significantly redistribute with time; its radiation destroys bone marrow and thus stops ] creation. The ] of curium is about 20 years in the liver and 50 years in the bones.<ref name="lenntech" /><ref name="LA2" /> Curium is absorbed in the body much more strongly via inhalation, and the allowed total dose of <sup>244</sup>Cm in soluble form is 0.3 μ].<ref name="CRC" /> Intravenous injection of <sup>242</sup>Cm and <sup>244</sup>Cm containing solutions to rats increased the incidence of ], and inhalation promoted ] and ].<ref name="lenntech" /> Due to its radioactivity, curium and its compounds must be handled in appropriate labs under special arrangements. While curium itself mostly emits α-particles which are absorbed by thin layers of common materials, some of its decay products emit significant fractions of beta and gamma rays, which require a more elaborate protection.<ref name="lenntech" /> If consumed, curium is excreted within a few days and only 0.05% is absorbed in the blood. From there, ~45% goes to the ], 45% to the bones, and the remaining 10% is excreted. In bone, curium accumulates on the inside of the interfaces to the ] and does not significantly redistribute with time; its radiation destroys bone marrow and thus stops ] creation. The ] of curium is about 20 years in the liver and 50 years in the bones.<ref name="lenntech" /><ref name="LA2" /> Curium is absorbed in the body much more strongly via inhalation, and the allowed total dose of <sup>244</sup>Cm in soluble form is 0.3 μ].<ref name="CRC" /> Intravenous injection of <sup>242</sup>Cm- and <sup>244</sup>Cm-containing solutions to rats increased the incidence of ], and inhalation promoted ] and ].<ref name="lenntech" />


Curium isotopes are inevitably present in spent nuclear fuel with a concentration of about 20 g/tonne.<ref>Hoffmann, K. ''Kann man Gold machen? Gauner, Gaukler und Gelehrte. Aus der Geschichte der chemischen Elemente'' (Can you make gold? Crooks, clowns and scholars. From the history of the chemical elements), Urania-Verlag, Leipzig, Jena, Berlin 1979, no ISBN, p. 233</ref> Among them, the <sup>245</sup>Cm–<sup>248</sup>Cm isotopes have decay times of thousands of years and need to be removed to neutralize the fuel for disposal.<ref>Baetslé, L. H. {{Webarchive|url=https://web.archive.org/web/20050426092418/http://www.ictp.trieste.it/~pub_off/lectures/lns012/Baetsle.pdf |date=2005-04-26 }}, Nuclear Research Centre of Belgium Sck/Cen, Mol, Belgium, September 2001.</ref> The associated procedure involves several steps, where curium is first separated and then converted by neutron bombardment in special reactors to short-lived nuclides. This procedure, ], while well documented for other elements, is still being developed for curium.<ref name="denecke" /> Curium isotopes are inevitably present in spent nuclear fuel (about 20 g/tonne).<ref>Hoffmann, K. ''Kann man Gold machen? Gauner, Gaukler und Gelehrte. Aus der Geschichte der chemischen Elemente'' (Can you make gold? Crooks, clowns and scholars. From the history of the chemical elements), Urania-Verlag, Leipzig, Jena, Berlin 1979, no ISBN, p. 233</ref> The isotopes <sup>245</sup>Cm–<sup>248</sup>Cm have decay times of thousands of years and must be removed to neutralize the fuel for disposal.<ref>Baetslé, L. H. {{Webarchive|url=https://web.archive.org/web/20050426092418/http://www.ictp.trieste.it/~pub_off/lectures/lns012/Baetsle.pdf |date=2005-04-26 }}, Nuclear Research Centre of Belgium Sck/Cen, Mol, Belgium, September 2001.</ref> Such a procedure involves several steps, where curium is first separated and then converted by neutron bombardment in special reactors to short-lived nuclides. This procedure, ], while well documented for other elements, is still being developed for curium.<ref name="denecke" />


== References == == References ==

Revision as of 01:18, 19 July 2022

Not to be confused with cerium. This article is about the chemical element. For the ancient city located in Cyprus, see Kourion.

Chemical element with atomic number 96 (Cm)
Curium, 96Cm
Curium
Pronunciation/ˈkjʊəriəm/ ​(KURE-ee-əm)
Appearancesilvery metallic, glows purple in the dark
Mass number
Curium in the periodic table
Hydrogen Helium
Lithium Beryllium Boron Carbon Nitrogen Oxygen Fluorine Neon
Sodium Magnesium Aluminium Silicon Phosphorus Sulfur Chlorine Argon
Potassium Calcium Scandium Titanium Vanadium Chromium Manganese Iron Cobalt Nickel Copper Zinc Gallium Germanium Arsenic Selenium Bromine Krypton
Rubidium Strontium Yttrium Zirconium Niobium Molybdenum Technetium Ruthenium Rhodium Palladium Silver Cadmium Indium Tin Antimony Tellurium Iodine Xenon
Caesium Barium Lanthanum Cerium Praseodymium Neodymium Promethium Samarium Europium Gadolinium Terbium Dysprosium Holmium Erbium Thulium Ytterbium Lutetium Hafnium Tantalum Tungsten Rhenium Osmium Iridium Platinum Gold Mercury (element) Thallium Lead Bismuth Polonium Astatine Radon
Francium Radium Actinium Thorium Protactinium Uranium Neptunium Plutonium Americium Curium Berkelium Californium Einsteinium Fermium Mendelevium Nobelium Lawrencium Rutherfordium Dubnium Seaborgium Bohrium Hassium Meitnerium Darmstadtium Roentgenium Copernicium Nihonium Flerovium Moscovium Livermorium Tennessine Oganesson
Gd

Cm

americiumcuriumberkelium
Atomic number (Z)96
Groupf-block groups (no number)
Periodperiod 7
Block  f-block
Electron configuration[Rn] 5f 6d 7s
Electrons per shell2, 8, 18, 32, 25, 9, 2
Physical properties
Phase at STPsolid
Melting point1613 K ​(1340 °C, ​2444 °F)
Boiling point3383 K ​(3110 °C, ​5630 °F)
Density (near r.t.)13.51 g/cm
Heat of fusion13.85 kJ/mol
Vapor pressure
P (Pa) 1 10 100 1 k 10 k 100 k
at T (K) 1788 1982
Atomic properties
Oxidation statescommon: +3
+4, +5, +6
ElectronegativityPauling scale: 1.3
Ionization energies
  • 1st: 581 kJ/mol
Atomic radiusempirical: 174 pm
Covalent radius169±3 pm
Color lines in a spectral range
Spectral lines of curium
Other properties
Natural occurrencesynthetic
Crystal structuredouble hexagonal close-packed (dhcp)Double hexagonal close packed crystal structure for curium
Electrical resistivity1.25 µΩ⋅m
Magnetic orderingantiferromagnetic-paramagnetic transition at 52 K
CAS Number7440-51-9
History
Namingnamed after Marie Skłodowska-Curie and Pierre Curie
DiscoveryGlenn T. Seaborg, Ralph A. James, Albert Ghiorso (1944)
Isotopes of curium
Main isotopes Decay
abun­dance half-life (t1/2) mode pro­duct
Cm synth 162.8 d α Pu
SF
CD Pb
Cm synth 29.1 y α Pu
ε Am
SF
Cm synth 18.11 y α Pu
SF
Cm synth 8250 y α Pu
SF
Cm synth 4760 y α Pu
SF
Cm synth 1.56×10 y α Pu
Cm synth 3.480×10 y α Pu
SF
Cm synth 8300 y SF
α Pu
β Bk
 Category: Curium
| references

Curium is a transuranic, radioactive chemical element with the symbol Cm and atomic number 96. This actinide element was named after eminent scientists Marie and Pierre Curie, both known for their research on radioactivity. Curium was first intentionally made by the team of Glenn T. Seaborg, Ralph A. James, and Albert Ghiorso in 1944, using the cyclotron at Berkeley. They bombarded the newly discovered element plutonium (the isotope Pu) with alpha particles. This was then sent to the Metallurgical Laboratory at University of Chicago where a tiny sample of curium was eventually separated and identified. The discovery was kept secret until after the end of World War II. The news was released to the public in November 1947. Most curium is produced by bombarding uranium or plutonium with neutrons in nuclear reactors – one tonne of spent nuclear fuel contains ~20 grams of curium.

Curium is a hard, dense, silvery metal with a high melting and boiling point for an actinide. It is paramagnetic at ambient conditions, but becomes antiferromagnetic upon cooling, and other magnetic transitions are also seen in many curium compounds. In compounds, curium usually has valence +3 and sometimes +4; the +3 valence is predominant in solutions. Curium readily oxidizes, and its oxides are a dominant form of this element. It forms strongly fluorescent complexes with various organic compounds, but there is no evidence of its incorporation into bacteria and archaea. If it gets into the human body, curium accumulates in bones, lungs and liver, where it promotes cancer.

All known isotopes of curium are radioactive and have small critical mass for a nuclear chain reaction. They mostly emit α-particles; radioisotope thermoelectric generators can use the heat from this process, but this is hindered by the rarity and high cost of curium. Curium is used in making heavier actinides and the Pu radionuclide for power sources in cardiac pacemakers and RTGs for spacecraft. It served as the α-source in the alpha particle X-ray spectrometers of several space probes, including the Sojourner, Spirit, Opportunity, and Curiosity Mars rovers and the Philae lander on comet 67P/Churyumov–Gerasimenko, to analyze the composition and structure of the surface.

History

Glenn T. Seaborg
The 60-inch (150 cm) cyclotron at the Lawrence Radiation Laboratory, University of California, Berkeley, in August 1939.

Though curium had likely been produced in previous nuclear experiments as well as the natural nuclear fission reactor at Oklo, Gabon, it was first intentionally synthesized, isolated and identified in 1944, at University of California, Berkeley, by Glenn T. Seaborg, Ralph A. James, and Albert Ghiorso. In their experiments, they used a 60-inch (150 cm) cyclotron.

Curium was chemically identified at the Metallurgical Laboratory (now Argonne National Laboratory), University of Chicago. It was the third transuranium element to be discovered even though it is the fourth in the series – the lighter element americium was still unknown.

The sample was prepared as follows: first plutonium nitrate solution was coated on a platinum foil of ~0.5 cm area, the solution was evaporated and the residue was converted into plutonium(IV) oxide (PuO2) by annealing. Following cyclotron irradiation of the oxide, the coating was dissolved with nitric acid and then precipitated as the hydroxide using concentrated aqueous ammonia solution. The residue was dissolved in perchloric acid, and further separation was done by ion exchange to yield a certain isotope of curium. The separation of curium and americium was so painstaking that the Berkeley group initially called those elements pandemonium (from Greek for all demons or hell) and delirium (from Latin for madness).

Curium-242 was made in July–August 1944 by bombarding Pu with α-particles to produce curium with the release of a neutron:

Pu 94 239 + He 2 4 Cm 96 242 + n 0 1 {\displaystyle {\ce {^{239}_{94}Pu + ^{4}_{2}He -> ^{242}_{96}Cm + ^{1}_{0}n}}}

Curium-242 was unambiguously identified by the characteristic energy of the α-particles emitted during the decay:

Cm 96 242 Pu 94 238 + He 2 4 {\displaystyle {\ce {^{242}_{96}Cm -> ^{238}_{94}Pu + ^{4}_{2}He}}}

The half-life of this alpha decay was first measured as 150 days and then corrected to 162.8 days.

Another isotope Cm was produced in a similar reaction in March 1945:

Pu 94 239 + He 2 4 Cm 96 240 + 3 0 1 n {\displaystyle {\ce {^{239}_{94}Pu + ^{4}_{2}He -> ^{240}_{96}Cm + 3^{1}_{0}n}}}

The α-decay half-life of Cm was correctly determined as 26.7 days.

The discovery of curium and americium in 1944 was closely related to the Manhattan Project, so the results were confidential and declassified only in 1945. Seaborg leaked the synthesis of the elements 95 and 96 on the U.S. radio show for children, the Quiz Kids, five days before the official presentation at an American Chemical Society meeting on November 11, 1945, when one listener asked if any new transuranic element beside plutonium and neptunium had been discovered during the war. The discovery of curium (Cm and Cm), its production, and its compounds was later patented listing only Seaborg as the inventor.

Marie and Pierre Curie

The element was named after Marie Curie and her husband Pierre Curie, who are known for discovering radium and for their work in radioactivity. It followed the example of gadolinium, a lanthanide element above curium in the periodic table, which was named after the explorer of rare-earth elements Johan Gadolin:

"As the name for the element of atomic number 96 we should like to propose "curium", with symbol Cm. The evidence indicates that element 96 contains seven 5f electrons and is thus analogous to the element gadolinium with its seven 4f electrons in the regular rare earth series. On this base element 96 is named after the Curies in a manner analogous to the naming of gadolinium, in which the chemist Gadolin was honored."

The first curium samples were barely visible, and were identified by their radioactivity. Louis Werner and Isadore Perlman made the first substantial sample of 30 µg curium-242 hydroxide at University of California, Berkeley in 1947 by bombarding americium-241 with neutrons. Macroscopic amounts of curium(III) fluoride were obtained in 1950 by W. W. T. Crane, J. C. Wallmann and B. B. Cunningham. Its magnetic susceptibility was very close to that of GdF3 providing the first experimental evidence for the +3 valence of curium in its compounds. Curium metal was produced only in 1951 by reduction of CmF3 with barium.

Characteristics

Physical

Double-hexagonal close packing with the layer sequence ABAC in the crystal structure of α-curium (A: green, B: blue, C: red)
Orange fluorescence of Cm ions in a solution of tris(hydrotris)pyrazolylborato-Cm(III) complex, excited at 396.6 nm.

A synthetic, radioactive element, curium is a hard, dense metal with a silvery-white appearance and physical and chemical properties resembling gadolinium. Its melting point of 1344°C is significantly higher than that of the previous elements neptunium (637°C), plutonium (639°C) and americium (117°C). In comparison, gadolinium melts at 1312°C. Curium boils at is 3556°C. With a density of 13.52 g/cm, curium is lighter than neptunium (20.45 g/cm) and plutonium (19.8 g/cm), but heavier than most other metals. Of two crystalline forms of curium, α-Cm is more stable at ambient conditions. It has a hexagonal symmetry, space group P63/mmc, lattice parameters a = 365 pm and c = 1182 pm, and four formula units per unit cell. The crystal consists of double-hexagonal close packing with the layer sequence ABAC and so is isotypic with α-lanthanum. At pressure >23 GPa, at room temperature, α-Cm becomes β-Cm, which has face-centered cubic symmetry, space group Fm3m and lattice constant a = 493 pm. On further compression to 43 GPa, curium becomes an orthorhombic γ-Cm structure similar to α-uranium, with no further transitions observed up to 52 GPa. These three curium phases are also called Cm I, II and III.

Curium has peculiar magnetic properties. Its neighbor element americium shows no deviation from Curie-Weiss paramagnetism in the entire temperature range, but α-Cm transforms to an antiferromagnetic state upon cooling to 65–52 K, and β-Cm exhibits a ferrimagnetic transition at ~205 K. Curium pnictides show ferromagnetic transitions upon cooling: CmN and CmAs at 109 K, CmP at 73 K and CmSb at 162 K. The lanthanide analog of curium, gadolinium, and its pnictides, also show magnetic transitions upon cooling, but the transition character is somewhat different: Gd and GdN become ferromagnetic, and GdP, GdAs and GdSb show antiferromagnetic ordering.

In accordance with magnetic data, electrical resistivity of curium increases with temperature – about twice between 4 and 60 K – and then is nearly constant up to room temperature. There is a significant increase in resistivity over time (~10 µΩ·cm/h) due to self-damage of the crystal lattice by alpha decay. This makes uncertain the true resistivity of curium (~125 µΩ·cm). Curium's resistivity is similar to that of gadolinium, and the actinides plutonium and neptunium, but significantly higher than that of americium, uranium, polonium and thorium.

Under ultraviolet illumination, curium(III) ions show strong and stable yellow-orange fluorescence with a maximum in the range ~ 590–640 nm depending on their environment. The fluorescence originates from the transitions from the first excited state D7/2 and the ground state S7/2. Analysis of this fluorescence allows monitoring interactions between Cm(III) ions in organic and inorganic complexes.

Chemical

A solution of curium

Curium ion in solution almost always has a +3 oxidation state, the most stable oxidation state for curium. A +4 oxidation state is seen mainly in a few solid phases, such as CmO2 and CmF4. Aqueous curium(IV) is only known in the presence of strong oxidizers such as potassium persulfate, and is easily reduced to curium(III) by radiolysis and even by water itself. Chemical behavior of curium is different from the actinides thorium and uranium, and is similar to americium and many lanthanides. In aqueous solution, the Cm ion is colorless to pale green; Cm ion is pale yellow. The optical absorption of Cm ion contains three sharp peaks at 375.4, 381.2 and 396.5 nm and their strength can be directly converted into the concentration of the ions. +6 oxidation state has only been reported once in solution in 1978, as the curyl ion (CmO
2): this was prepared from beta decay of americium-242 in the americium(V) ion
AmO
2. Failure to get Cm(VI) from oxidation of Cm(III) and Cm(IV) may be due to the high Cm/Cm ionization potential and the instability of Cm(V).

Curium ions are hard Lewis acids and thus form most stable complexes with hard bases. The bonding is mostly ionic, with a small covalent component. Curium in its complexes commonly exhibits a 9-fold coordination environment, within a tricapped trigonal prismatic geometry.

Isotopes

See also: Isotopes of curium

About 19 radioisotopes and 7 nuclear isomers, Cm to Cm, are known; none are stable. The longest half-lives are 15.6 million years (Cm) and 348,000 years (Cm). Other long-lived ones are Cm (8500 years), Cm (8300 years) and Cm (4760 years). Curium-250 is unusual: it mostly (~86%) decays by spontaneous fission. The most commonly used isotopes are Cm and Cm with the half-lives 162.8 days and 18.1 years, respectively.

Thermal neutron cross sections (barns)
Cm Cm Cm Cm Cm Cm
Fission 5 617 1.04 2145 0.14 81.90
Capture 16 130 15.20 369 1.22 57
C/F ratio 3.20 0.21 14.62 0.17 8.71 0.70
LEU spent nuclear fuel 20 years after 53 MWd/kg burnup
3 common isotopes 51 3700 390
Fast-neutron reactor MOX fuel (avg 5 samples, burnup 66–120 GWd/t)
Total curium 3.09×10% 27.64% 70.16% 2.166% 0.0376% 0.000928%
Isotope Cm Cm Cm Cm Cm Cm Cm Cm
Critical mass, kg 25 7.5 33 6.8 39 7 40.4 23.5

All isotopes Cm-Cm, and Cm, undergo a self-sustaining nuclear chain reaction and thus in principle can be a nuclear fuel in a reactor. As in most transuranic elements, nuclear fission cross section is especially high for the odd-mass curium isotopes Cm, Cm and Cm. These can be used in thermal-neutron reactors, whereas a mixture of curium isotopes is only suitable for fast breeder reactors since the even-mass isotopes are not fissile in a thermal reactor and accumulate as burn-up increases. The mixed-oxide (MOX) fuel, which is to be used in power reactors, should contain little or no curium because neutron activation of Cm will create californium. Californium is a strong neutron emitter, and would pollute the back end of the fuel cycle and increase the dose to reactor personnel. Hence, if minor actinides are to be used as fuel in a thermal neutron reactor, the curium should be excluded from the fuel or placed in special fuel rods where it is the only actinide present.

Transmutation flow between Pu and Cm in LWR.
Fission percentage is 100 minus shown percentages.
Total rate of transmutation varies greatly by nuclide.
Cm–Cm are long-lived with negligible decay.

The adjacent table lists the critical masses for curium isotopes for a sphere, without moderator or reflector. With a metal reflector (30 cm of steel), the critical masses of the odd isotopes are about 3–4 kg. When using water (thickness ~20–30 cm) as the reflector, the critical mass can be as small as 59 gram for Cm, 155 gram for Cm and 1550 gram for Cm. There is significant uncertainty in these critical mass values. While it is usually on the order of 20%, the values for Cm and Cm were listed as large as 371 kg and 70.1 kg, respectively, by some research groups.

Curium is not currently used as nuclear fuel due to its low availability and high price. Cm and Cm have very small critical mass and so could be used in tactical nuclear weapons, but none are known to have been made. Curium-243 is not suitable for such, due to its short half-life and strong α emission, which would cause excessive heat. Curium-247 would be highly suitable due to its long half-life, which is 647 times longer than plutonium-239 (used in many existing nuclear weapons).

Occurrence

Several isotopes of curium were detected in the fallout from the Ivy Mike nuclear test.

The longest-lived isotope, Cm, has half-life 15.6 million years; so any primordial curium, that is, present on Earth when it formed, should have decayed by now. Its past presence as an extinct radionuclide is detectable as an excess of its primordial, long-lived daughter U. Traces of curium may occur naturally in uranium minerals due to neutron capture and beta decay, though this has not been confirmed. Traces of Cm are also probably brought to Earth in cosmic rays, but again this has not been confirmed.

Curium is made artificially in small amounts for research purposes. It also occurs as one of the waste products in spent nuclear fuel. Curium is present in nature in some areas used for nuclear weapons testing. Analysis of the debris at the test site of the United States' first thermonuclear weapon, Ivy Mike, (1 November 1952, Enewetak Atoll), besides einsteinium, fermium, plutonium and americium also revealed isotopes of berkelium, californium and curium, in particular Cm, Cm and smaller quantities of Cm, Cm and Cm.

Atmospheric curium compounds are poorly soluble in common solvents and mostly adhere to soil particles. Soil analysis revealed about 4,000 times higher concentration of curium at the sandy soil particles than in water present in the soil pores. An even higher ratio of about 18,000 was measured in loam soils.

The transuranium elements from americium to fermium, including curium, occurred naturally in the natural nuclear fission reactor at Oklo, but no longer do so.

Curium, and other non-primordial actinides, have also been detected in the spectrum of Przybylski's Star.

Synthesis

Isotope preparation

Curium is made in small amounts in nuclear reactors, and by now only kilograms of Cm and Cm have been accumulated, and grams or even milligrams for heavier isotopes. Hence the high price of curium, which has been quoted at 160–185 USD per milligram, with a more recent estimate at US$2,000/g for Cm and US$170/g for Cm. In nuclear reactors, curium is formed from U in a series of nuclear reactions. In the first chain, U captures a neutron and converts into U, which via β decay transforms into Np and Pu.

U 92 238 ( n , γ ) U 92 239 23.5   min β 93 239 Np 2.3565   d β 94 239 Pu {\displaystyle {\ce {^{238}_{92}U->{^{239}_{92}U}->_{93}^{239}Np->_{94}^{239}Pu}}} (the times are half-lives). 1

Further neutron capture followed by β-decay gives americium (Am) which further becomes Cm:

Pu 94 239 2 ( n , γ ) 94 241 Pu 14.35   yr β Am 95 241 ( n , γ ) 95 242 Am 16.02 h β 96 242 Cm {\displaystyle {\ce {^{239}_{94}Pu->_{94}^{241}Pu->{^{241}_{95}Am}->_{95}^{242}Am->_{96}^{242}Cm}}} . 2

For research purposes, curium is obtained by irradiating not uranium but plutonium, which is available in large amounts from spent nuclear fuel. A much higher neutron flux is used for the irradiation that results in a different reaction chain and formation of Cm:

Pu 94 239 4 ( n , γ ) 94 243 Pu 4.956   h β 95 243 Am ( n , γ ) 95 244 Am 10.1 h β 96 244 Cm 18.11   yr α 94 240 Pu {\displaystyle {\ce {^{239}_{94}Pu->_{94}^{243}Pu->_{95}^{243}Am->_{95}^{244}Am->_{96}^{244}Cm->_{94}^{240}Pu}}} 3

Curium-244 alpha decays to Pu, but it also absorbs neutrons, hence a small amount of heavier curium isotopes. Of those, Cm and Cm are popular in scientific research due to their long half-lives. But the production rate of Cm in thermal neutron reactors is low because it is prone to fission due to thermal neutrons. Synthesis of Cm by neutron capture is unlikely due to the short half-life of the intermediate Cm (64 min), which β decays to the berkelium isotope Bk.

Cm 96 A + 0 1 n 96 A + 1 Cm + γ   ( for  244 A 248 ) {\displaystyle {\ce {^{\mathit {A}}_{96}Cm{}+_{0}^{1}n->_{96}^{{\mathit {A}}+1}Cm{}+\gamma }}\ ({\text{for }}244\leq A\leq 248)} 4

The above cascade of (n,γ) reactions gives a mix of different curium isotopes. Their post-synthesis separation is cumbersome, so a selective synthesis is desired. Curium-248 is favored for research purposes due to its long half-life. The most efficient way to prepare this isotope is by α-decay of the californium isotope Cf, which is available in relatively large amounts due to its long half-life (2.65 years). About 35–50 mg of Cm is produced thus, per year. The associated reaction produces Cm with isotopic purity of 97%.

Cf 98 252 2.645   yr α Cm 96 248 {\displaystyle {\begin{matrix}{}\\{\ce {^{252}_{98}Cf -> ^{248}_{96}Cm}}\\{}\end{matrix}}} 5

Another isotope, Cm, can be obtained for research, from α-decay of Cf; the latter isotope is produced in small amounts from β-decay of Bk.

Bk 97 249 330   d β Cf 98 249 351   yr α Cm 96 245 {\displaystyle {\ce {^{249}_{97}Bk -> ^{249}_{98}Cf -> ^{245}_{96}Cm}}} 6

Metal preparation

Chromatographic elution curves revealing the similarity between Tb, Gd, Eu lanthanides and corresponding Bk, Cm, Am actinides.

Most synthesis routines yield a mix of actinide isotopes as oxides, from which a given isotope of curium needs to be separated. An example procedure could be to dissolve spent reactor fuel (e.g. MOX fuel) in nitric acid, and remove the bulk of the uranium and plutonium using a PUREX (Plutonium – URanium EXtraction) type extraction with tributyl phosphate in a hydrocarbon. The lanthanides and the remaining actinides are then separated from the aqueous residue (raffinate) by a diamide-based extraction to give, after stripping, a mixture of trivalent actinides and lanthanides. A curium compound is then selectively extracted using multi-step chromatographic and centrifugation techniques with an appropriate reagent. Bis-triazinyl bipyridine complex has been recently proposed as such reagent which is highly selective to curium. Separation of curium from the very chemically similar americium can also be done by treating a slurry of their hydroxides in aqueous sodium bicarbonate with ozone at elevated temperature. Both americium and curium are present in solutions mostly in the +3 valence state; americium oxidizes to soluble Am(IV) complexes, but curium stays unchanged and so can be isolated by repeated centrifugation.

Metallic curium is obtained by reduction of its compounds. Initially, curium(III) fluoride was used for this purpose. The reaction was done in an environment free of water and oxygen, in an apparatus made of tantalum and tungsten, using elemental barium or lithium as reducing agents.

C m F 3   +   3   L i     C m   +   3   L i F {\displaystyle \mathrm {CmF_{3}\ +\ 3\ Li\ \longrightarrow \ Cm\ +\ 3\ LiF} }

Another possibility is reduction of curium(IV) oxide using a magnesium-zinc alloy in a melt of magnesium chloride and magnesium fluoride.

Compounds and reactions

See also: Category:Curium compounds

Oxides

Curium readily reacts with oxygen forming mostly Cm2O3 and CmO2 oxides, but the divalent oxide CmO is also known. Black CmO2 can be obtained by burning curium oxalate (Cm
2(C
2O
4)
3), nitrate (Cm(NO
3)
3), or hydroxide in pure oxygen. Upon heating to 600–650 °C in vacuum (about 0.01 Pa), it transforms into the whitish Cm2O3:

4 CmO 2 Δ T 2 Cm 2 O 3 + O 2 {\displaystyle {\ce {4CmO2 -> 2Cm2O3 + O2}}} .

Or, Cm2O3 can be obtained by reducing CmO2 with molecular hydrogen:

2 CmO 2 + H 2 Cm 2 O 3 + H 2 O {\displaystyle {\ce {2CmO2 + H2 -> Cm2O3 + H2O}}}

Also, a number of ternary oxides of the type M(II)CmO3 are known, where M stands for a divalent metal, such as barium.

Thermal oxidation of trace quantities of curium hydride (CmH2–3) has been reported to give a volatile form of CmO2 and the volatile trioxide CmO3, one of two known examples of the very rare +6 state for curium. Another observed species was reported to behave similar to a supposed plutonium tetroxide and was tentatively characterized as CmO4, with curium in the extremely rare +8 state; but new experiments seem to indicate that CmO4 does not exist, and have cast doubt on the existence of PuO4 as well.

Halides

The colorless curium(III) fluoride (CmF3) can be made by adding fluoride ions into curium(III)-containing solutions. The brown tetravalent curium(IV) fluoride (CmF4) on the other hand is only obtained by reacting curium(III) fluoride with molecular fluorine:

2   C m F 3   +   F 2     2   C m F 4 {\displaystyle \mathrm {2\ CmF_{3}\ +\ F_{2}\ \longrightarrow \ 2\ CmF_{4}} }

A series of ternary fluorides are known of the form A7Cm6F31 (A = alkali metal).

The colorless curium(III) chloride (CmCl3) is made by reacting curium hydroxide (Cm(OH)3) with anhydrous hydrogen chloride gas. It can be further turned into other halides such as curium(III) bromide (colorless to light green) and curium(III) iodide (colorless), by reacting it with the ammonia salt of the corresponding halide at temperatures of ~400–450°C:

C m C l 3   +   3   N H 4 I     C m I 3   +   3   N H 4 C l {\displaystyle \mathrm {CmCl_{3}\ +\ 3\ NH_{4}I\ \longrightarrow \ CmI_{3}\ +\ 3\ NH_{4}Cl} }

Or, one can heat curium oxide to ~600°C with the corresponding acid (such as hydrobromic for curium bromide). Vapor phase hydrolysis of curium(III) chloride gives curium oxychloride:

C m C l 3   +     H 2 O     C m O C l   +   2   H C l {\displaystyle \mathrm {CmCl_{3}\ +\ \ H_{2}O\ \longrightarrow \ CmOCl\ +\ 2\ HCl} }

Chalcogenides and pnictides

Sulfides, selenides and tellurides of curium have been obtained by treating curium with gaseous sulfur, selenium or tellurium in vacuum at elevated temperature. Curium pnictides of the type CmX are known for nitrogen, phosphorus, arsenic and antimony. They can be prepared by reacting either curium(III) hydride (CmH3) or metallic curium with these elements at elevated temperature.

Organocurium compounds and biological aspects

Predicted curocene structure

Organometallic complexes analogous to uranocene are known also for other actinides, such as thorium, protactinium, neptunium, plutonium and americium. Molecular orbital theory predicts a stable "curocene" complex (η-C8H8)2Cm, but it has not been reported experimentally yet.

Formation of the complexes of the type Cm(n-C
3H
7-BTP)
3 (BTP = 2,6-di(1,2,4-triazin-3-yl)pyridine), in solutions containing n-C3H7-BTP and Cm ions has been confirmed by EXAFS. Some of these BTP-type complexes selectively interact with curium and thus are useful for separating it from lanthanides and another actinides. Dissolved Cm ions bind with many organic compounds, such as hydroxamic acid, urea, fluorescein and adenosine triphosphate. Many of these compounds are related to biological activity of various microorganisms. The resulting complexes show strong yellow-orange emission under UV light excitation, which is convenient not only for their detection, but also for studying interactions between the Cm ion and the ligands via changes in the half-life (of the order ~0.1 ms) and spectrum of the fluorescence.

Curium has no biological significance. There are a few reports on biosorption of Cm by bacteria and archaea, but no evidence for incorporation of curium into them.

Applications

Radionuclides

The radiation from curium is so strong that the metal glows purple in the dark.

Curium is one of the most radioactive isolable elements. Its two most common isotopes Cm and Cm are strong alpha emitters (energy 6 MeV); they have fairly short half-lives, 162.8 days and 18.1 years, and give as much as 120 W/g and 3 W/g of heat, respectively. Therefore, curium can be used in its common oxide form in radioisotope thermoelectric generators like those in spacecraft. This application has been studied for the Cm isotope, while Cm was abandoned due to its prohibitive price, ~2000 USD/g. Cm with a ~30 year half-life and good energy yield of ~1.6 W/g could be a suitable fuel, but it gives significant amounts of harmful gamma and beta rays from radioactive decay products. As an α-emitter, Cm needs much less radiation shielding, but it has a high spontaneous fission rate, and thus a lot of neutron and gamma radiation. Compared to a competing thermoelectric generator isotope such as Pu, Cm emits 500 times more neutrons, and its higher gamma emission requires a shield that is 20 times thicker— ~2 inches of lead for a 1 kW source, compared to 0.1 in for Pu. Therefore, this use of curium is currently considered impractical.

A more promising use of Cm is for making Pu, a better radioisotope for thermoelectric generators such as in heart pacemakers. The alternate routes to Pu use the (n,γ) reaction of Np, or deuteron bombardment of uranium, which both always produce Pu as an undesired by-product—since the latter decays to U with strong gamma emission. Curium is a common starting material for making higher transuranic and superheavy elements. Thus, bombarding Cm with neon (Ne), magnesium (Mg), or calcium (Ca) yields isotopes of seaborgium (Sg), hassium (Hs and Hs), and livermorium (Lv, Lv, and possibly Lv). Californium was discovered when a microgram-sized target of curium-242 was irradiated with 35 MeV alpha particles using the 60-inch (150 cm) cyclotron at Berkeley:


96Cm
+
2He

98Cf
+
0n

Only about 5,000 atoms of californium were produced in this experiment.

The odd-mass curium isotopes Cm, Cm, and Cm are all highly fissile and can give additional energy in a thermal spectrum nuclear reactor; while all Cm isotopes are fissionable in fast-neutron reactors. This is one of the motives for minor actinide separation and transmutation in the nuclear fuel cycle, helping to reduce the long-term radiotoxicity of used, or spent nuclear fuel.

Alpha-particle X-ray spectrometer of a Mars exploration rover

X-ray spectrometer

The most practical application of Cm—though rather limited in total volume—is as α-particle source in alpha particle X-ray spectrometers (APXS). These instruments were installed on the Sojourner, Mars, Mars 96, Mars Exploration Rovers and Philae comet lander, as well as the Mars Science Laboratory to analyze the composition and structure of the rocks on the surface of planet Mars. APXS was also used in the Surveyor 5–7 moon probes but with a Cm source.

An elaborate APXS setup has a sensor head containing six curium sources with a total decay rate of several tens of millicuries (~ a gigabecquerel). The sources are collimated on a sample, and the energy spectra of the alpha particles and protons scattered from the sample are analyzed (proton analysis is done only in some spectrometers). These spectra contain quantitative information on all major elements in the sample except for hydrogen, helium and lithium.

Safety

Due to its radioactivity, curium and its compounds must be handled in appropriate labs under special arrangements. While curium itself mostly emits α-particles which are absorbed by thin layers of common materials, some of its decay products emit significant fractions of beta and gamma rays, which require a more elaborate protection. If consumed, curium is excreted within a few days and only 0.05% is absorbed in the blood. From there, ~45% goes to the liver, 45% to the bones, and the remaining 10% is excreted. In bone, curium accumulates on the inside of the interfaces to the bone marrow and does not significantly redistribute with time; its radiation destroys bone marrow and thus stops red blood cell creation. The biological half-life of curium is about 20 years in the liver and 50 years in the bones. Curium is absorbed in the body much more strongly via inhalation, and the allowed total dose of Cm in soluble form is 0.3 μCi. Intravenous injection of Cm- and Cm-containing solutions to rats increased the incidence of bone tumor, and inhalation promoted lung and liver cancer.

Curium isotopes are inevitably present in spent nuclear fuel (about 20 g/tonne). The isotopes Cm–Cm have decay times of thousands of years and must be removed to neutralize the fuel for disposal. Such a procedure involves several steps, where curium is first separated and then converted by neutron bombardment in special reactors to short-lived nuclides. This procedure, nuclear transmutation, while well documented for other elements, is still being developed for curium.

References

  1. Greenwood, Norman N.; Earnshaw, Alan (1997). Chemistry of the Elements (2nd ed.). Butterworth-Heinemann. p. 28. ISBN 978-0-08-037941-8.
  2. Kovács, Attila; Dau, Phuong D.; Marçalo, Joaquim; Gibson, John K. (2018). "Pentavalent Curium, Berkelium, and Californium in Nitrate Complexes: Extending Actinide Chemistry and Oxidation States". Inorg. Chem. 57 (15). American Chemical Society: 9453–9467. doi:10.1021/acs.inorgchem.8b01450. OSTI 1631597. PMID 30040397. S2CID 51717837.
  3. ^ Domanov, V. P.; Lobanov, Yu. V. (October 2011). "Formation of volatile curium(VI) trioxide CmO3". Radiochemistry. 53 (5). SP MAIK Nauka/Interperiodica: 453–6. doi:10.1134/S1066362211050018. S2CID 98052484.
  4. ^ Schenkel, R. (1977). "The electrical resistivity of 244Cm metal". Solid State Communications. 23 (6): 389. Bibcode:1977SSCom..23..389S. doi:10.1016/0038-1098(77)90239-3.
  5. Kondev, F. G.; Wang, M.; Huang, W. J.; Naimi, S.; Audi, G. (2021). "The NUBASE2020 evaluation of nuclear properties" (PDF). Chinese Physics C. 45 (3): 030001. doi:10.1088/1674-1137/abddae.
  6. Hall, Nina (2000). The New Chemistry: A Showcase for Modern Chemistry and Its Applications. Cambridge University Press. pp. 8–9. ISBN 978-0-521-45224-3.
  7. ^ Seaborg, Glenn T.; James, R. A.; Ghiorso, A. (1949). "The New Element Curium (Atomic Number 96)" (PDF). NNES PPR (National Nuclear Energy Series, Plutonium Project Record). The Transuranium Elements: Research Papers, Paper No. 22.2. 14 B. OSTI 4421946. Archived from the original (PDF) on 12 October 2007.
  8. ^ Morss, L. R.; Edelstein, N. M. and Fugere, J. (eds): The Chemistry of the Actinide Elements and transactinides, volume 3, Springer-Verlag, Dordrecht 2006, ISBN 1-4020-3555-1.
  9. ^ Pepling, Rachel Sheremeta (2003). "Chemical & Engineering News: It's Elemental: The Periodic Table – Americium". Retrieved 2008-12-07.
  10. Krebs, Robert E. The history and use of our earth's chemical elements: a reference guide, Greenwood Publishing Group, 2006, ISBN 0-313-33438-2 p. 322
  11. ^ Audi, Georges; Bersillon, Olivier; Blachot, Jean; Wapstra, Aaldert Hendrik (1997). "The NUBASE evaluation of nuclear and decay properties" (PDF). Nuclear Physics A. 624 (1): 1–124. Bibcode:1997NuPhA.624....1A. doi:10.1016/S0375-9474(97)00482-X. Archived from the original (PDF) on 2008-09-23.
  12. Seaborg, G. T. U.S. patent 3,161,462 "Element", Filing date: 7 February 1949, Issue date: December 1964
  13. Greenwood, p. 1252
  14. ^ Hammond C. R. "The elements" in Lide, D. R., ed. (2005). CRC Handbook of Chemistry and Physics (86th ed.). Boca Raton, Florida: CRC Press. ISBN 0-8493-0486-5.
  15. L. B. Werner, I. Perlman: "Isolation of Curium", NNES PPR (National Nuclear Energy Series, Plutonium Project Record), Vol. 14 B, The Transuranium Elements: Research Papers, Paper No. 22.5, McGraw-Hill Book Co., Inc., New York, 1949.
  16. "National Academy of Sciences. Isadore Perlman 1915–1991". Nap.edu. Retrieved 2011-03-25.
  17. ^ Wallmann, J. C.; Crane, W. W. T.; Cunningham, B. B. (1951). "The Preparation and Some Properties of Curium Metal" (PDF). Journal of the American Chemical Society. 73 (1): 493–494. doi:10.1021/ja01145a537. hdl:2027/mdp.39015086479790.
  18. Werner, L. B.; Perlman, I. (1951). "First Isolation of Curium". Journal of the American Chemical Society. 73 (1): 5215–5217. doi:10.1021/ja01155a063.
  19. ^ Milman, V.; Winkler, B.; Pickard, C. J. (2003). "Crystal structures of curium compounds: an ab initio study". Journal of Nuclear Materials. 322 (2–3): 165. Bibcode:2003JNuM..322..165M. doi:10.1016/S0022-3115(03)00321-0.
  20. Young, D. A. Phase diagrams of the elements, University of California Press, 1991, ISBN 0-520-07483-1, p. 227
  21. Haire, R.; Peterson, J.; Benedict, U.; Dufour, C.; Itie, J. (1985). "X-ray diffraction of curium-248 metal under pressures of up to 52 GPa". Journal of the Less Common Metals. 109 (1): 71. doi:10.1016/0022-5088(85)90108-0.
  22. Kanellakopulos, B.; Blaise, A.; Fournier, J. M.; Müller, W. (1975). "The magnetic susceptibility of Americium and curium metal". Solid State Communications. 17 (6): 713. Bibcode:1975SSCom..17..713K. doi:10.1016/0038-1098(75)90392-0.
  23. Fournier, J.; Blaise, A.; Muller, W.; Spirlet, J.-C. (1977). "Curium: A new magnetic element". Physica B+C. 86–88: 30. Bibcode:1977PhyBC..86...30F. doi:10.1016/0378-4363(77)90214-5.
  24. Nave, S. E.; Huray, P. G.; Peterson, J. R. and Damien, D. A. Magnetic susceptibility of curium pnictides, Oak Ridge National Laboratory
  25. Schenkel, R. (1977). "The electrical resistivity of 244Cm metal". Solid State Communications. 23 (6): 389. Bibcode:1977SSCom..23..389S. doi:10.1016/0038-1098(77)90239-3.
  26. ^ Denecke, Melissa A.; Rossberg, André; Panak, Petra J.; Weigl, Michael; Schimmelpfennig, Bernd; Geist, Andreas (2005). "Characterization and Comparison of Cm(III) and Eu(III) Complexed with 2,6-Di(5,6-dipropyl-1,2,4-triazin-3-yl)pyridine Using EXAFS, TRFLS, and Quantum-Chemical Methods". Inorganic Chemistry. 44 (23): 8418–8425. doi:10.1021/ic0511726. PMID 16270980.
  27. ^ Bünzli, J.-C. G. and Choppin, G. R. Lanthanide probes in life, chemical, and earth sciences: theory and practice, Elsevier, Amsterdam, 1989 ISBN 0-444-88199-9
  28. Penneman, p. 24
  29. Keenan, Thomas K. (1961). "First Observation of Aqueous Tetravalent Curium". Journal of the American Chemical Society. 83 (17): 3719. doi:10.1021/ja01478a039.
  30. ^ Asprey, L. B.; Ellinger, F. H.; Fried, S.; Zachariasen, W. H. (1955). "Evidence for Quadrivalent Curium: X-Ray Data on Curium Oxides1". Journal of the American Chemical Society. 77 (6): 1707. doi:10.1021/ja01611a108.
  31. ^ Gregg J., Lumetta; Thompson, Major C.; Penneman, Robert A.; Eller, P. Gary (2006). "Curium". In Morss, Lester R.; Edelstein, Norman M.; Fuger, Jean (eds.). The Chemistry of the Actinide and Transactinide Elements (PDF). Vol. 3 (3rd ed.). Dordrecht, the Netherlands: Springer. pp. 1397–1443. doi:10.1007/1-4020-3598-5_9. ISBN 978-1-4020-3555-5.
  32. Greenwood, p. 1265
  33. Holleman, p. 1956
  34. Penneman, pp. 25–26
  35. Jensen, Mark P.; Bond, Andrew H. (2002). "Comparison of Covalency in the Complexes of Trivalent Actinide and Lanthanide Cations". Journal of the American Chemical Society. 124 (33): 9870–9877. doi:10.1021/ja0178620. PMID 12175247.
  36. Seaborg, Glenn T. (1993). "Overview of the Actinide and Lanthanide (the f) Elements". Radiochimica Acta. 61 (3–4): 115–122. doi:10.1524/ract.1993.61.34.115. S2CID 99634366.
  37. Greenwood, p. 1267
  38. Pfennig, G.; Klewe-Nebenius, H. and Seelmann Eggebert, W. (Eds.): Karlsruhe nuclide, 6th Ed. 1998
  39. Kang, Jungmin; Von Hippel, Frank (2005). "Limited Proliferation-Resistance Benefits from Recycling Unseparated Transuranics and Lanthanides from Light-Water Reactor Spent Fuel" (PDF). Science and Global Security. 13 (3): 169. Bibcode:2005S&GS...13..169K. doi:10.1080/08929880500357682. S2CID 123552796.
  40. Osaka, M.; et al. (2001). "Analysis of Curium Isotopes in Mixed Oxide Fuel Irradiated in Fast Reactor". Journal of Nuclear Science and Technology. 38 (10): 912–914. doi:10.3327/jnst.38.912.
  41. ^ Institut de Radioprotection et de Sûreté Nucléaire: "Evaluation of nuclear criticality safety. data and limits for actinides in transport" Archived May 19, 2011, at the Wayback Machine, p. 16
  42. National Research Council (U.S.). Committee on Separations Technology and Transmutation Systems (1996). Nuclear wastes: technologies for separations and transmutation. National Academies Press. pp. 231–. ISBN 978-0-309-05226-9. Retrieved 19 April 2011.
  43. Sasahara, Akihiro; Matsumura, Tetsuo; Nicolaou, Giorgos; Papaioannou, Dimitri (2004). "Neutron and Gamma Ray Source Evaluation of LWR High Burn-up UO2 and MOX Spent Fuels" (PDF). Journal of Nuclear Science and Technology. 41 (4): 448–456. doi:10.3327/jnst.41.448.
  44. Okundo, H. & Kawasaki, H. (2002). "Critical and Subcritical Mass Calculations of Curium-243 to −247 Based on JENDL-3.2 for Revision of ANSI/ANS-8.15". Journal of Nuclear Science and Technology. 39 (10): 1072–1085. doi:10.3327/jnst.39.1072.
  45. § 2 Begriffsbestimmungen (Atomic Energy Act) (in German)
  46. Jukka Lehto; Xiaolin Hou (2 February 2011). Chemistry and Analysis of Radionuclides: Laboratory Techniques and Methodology. Wiley-VCH. pp. 303–. ISBN 978-3-527-32658-7. Retrieved 19 April 2011.
  47. "Cosmochemists find evidence for unstable heavy element at solar system formation". phys.org. University of Chicago. 2016. Retrieved 6 June 2022.
  48. Earth, Live Science Staff 2013-09-24T21:44:13Z Planet (24 September 2013). "Facts About Curium". livescience.com. Retrieved 2019-08-10.{{cite web}}: CS1 maint: numeric names: authors list (link)
  49. "Curium - Element information, properties and uses | Periodic Table". www.rsc.org. Retrieved 2019-08-10.
  50. Thornton, Brett F.; Burdette, Shawn C. (2019). "Neutron stardust and the elements of Earth". Nature Chemistry. 11: 4–10. doi:10.1038/s41557-018-0190-9. Retrieved 19 February 2022.
  51. Chaplin J, Warwick P, Cundy A, Bochud F, Froidevaux P (25 August 2021). "Novel DGT Configurations for the Assessment of Bioavailable Plutonium, Americium, and Uranium in Marine and Freshwater Environments". Analytical Chemistry. 93 (35): 11937–11945. doi:10.1021/acs.analchem.1c01342. PMID 34432435.
  52. Chaplin J, Christl M, Straub M, Bochud F, Froidevaux P (2 June 2022). "Passive Sampling Tool for Actinides in Spent Nuclear Fuel Pools". ACS Omega. 7 (23): 20053−20058. doi:10.1021/acsomega.2c01884.
  53. ^ Curium (in German)
  54. Fields, P. R.; Studier, M. H.; Diamond, H.; et al. (1956). "Transplutonium Elements in Thermonuclear Test Debris". Physical Review. 102 (1): 180–182. Bibcode:1956PhRv..102..180F. doi:10.1103/PhysRev.102.180.
  55. ^ Human Health Fact Sheet on Curium Archived 2006-02-18 at the Wayback Machine, Los Alamos National Laboratory
  56. Emsley, John (2011). Nature's Building Blocks: An A-Z Guide to the Elements (New ed.). New York, NY: Oxford University Press. ISBN 978-0-19-960563-7.
  57. Gopka, V. F.; Yushchenko, A. V.; Yushchenko, V. A.; Panov, I. V.; Kim, Ch. (15 May 2008). "Identification of absorption lines of short half-life actinides in the spectrum of Przybylski's star (HD 101065)". Kinematics and Physics of Celestial Bodies. 24 (2): 89–98. Bibcode:2008KPCB...24...89G. doi:10.3103/S0884591308020049. S2CID 120526363.
  58. ^ Basic elements of static RTGs Archived 2013-02-15 at the Wayback Machine, G.L. Kulcinski, NEEP 602 Course Notes (Spring 2000), Nuclear Power in Space, University of Wisconsin Fusion Technology Institute (see last page)
  59. ^ Lumetta, Gregg J.; Thompson, Major C.; Penneman, Robert A.; Eller, P. Gary (2006). "Curium" (PDF). In Morss; Edelstein, Norman M.; Fuger, Jean (eds.). The Chemistry of the Actinide and Transactinide Elements (3rd ed.). Dordrecht, The Netherlands: Springer Science+Business Media. p. 1401. ISBN 978-1-4020-3555-5. Archived from the original (PDF) on 2010-07-17.
  60. Penneman, pp. 34–48
  61. Magnusson D; Christiansen B; Foreman MRS; Geist A; Glatz JP; Malmbeck R; Modolo G; Serrano-Purroy D & Sorel C (2009). "Demonstration of a SANEX Process in Centrifugal Contactors using the CyMe4-BTBP Molecule on a Genuine Fuel Solution". Solvent Extraction and Ion Exchange. 27 (2): 97. doi:10.1080/07366290802672204. S2CID 94720457.
  62. Penneman, p. 25
  63. Cunningham, B. B.; Wallmann, J. C. (1964). "Crystal structure and melting point of curium metal". Journal of Inorganic and Nuclear Chemistry. 26 (2): 271. doi:10.1016/0022-1902(64)80069-5. OSTI 4667421.
  64. Stevenson, J.; Peterson, J. (1979). "Preparation and structural studies of elemental curium-248 and the nitrides of curium-248 and berkelium-249". Journal of the Less Common Metals. 66 (2): 201. doi:10.1016/0022-5088(79)90229-7.
  65. Gmelin Handbook of Inorganic Chemistry, System No. 71, Volume 7 a, transuranics, Part B 1, pp. 67–68.
  66. Eubanks, I.; Thompson, M. C. (1969). "Preparation of curium metal". Inorganic and Nuclear Chemistry Letters. 5 (3): 187. doi:10.1016/0020-1650(69)80221-7.
  67. Holleman, p. 1972
  68. Greenwood, p. 1268
  69. Noe, M.; Fuger, J. (1971). "Self-radiation effects on the lattice parameter of 244CmO2". Inorganic and Nuclear Chemistry Letters. 7 (5): 421. doi:10.1016/0020-1650(71)80177-0.
  70. Haug, H. (1967). "Curium sesquioxide Cm2O3". Journal of Inorganic and Nuclear Chemistry. 29 (11): 2753. doi:10.1016/0022-1902(67)80014-9.
  71. Fuger, J.; Haire, R.; Peterson, J. (1993). "Molar enthalpies of formation of BaCmO3 and BaCfO3". Journal of Alloys and Compounds. 200 (1–2): 181. doi:10.1016/0925-8388(93)90491-5.
  72. Domanov, V. P. (January 2013). "Possibility of generation of octavalent curium in the gas phase in the form of volatile tetraoxide CmO4". Radiochemistry. 55 (1): 46–51. doi:10.1134/S1066362213010098. S2CID 98076989.
  73. Zaitsevskii, Andréi; Schwarz, W. H. Eugen (April 2014). "Structures and stability of AnO4 isomers, An = Pu, Am, and Cm: a relativistic density functional study". Physical Chemistry Chemical Physics. 2014 (16): 8997–9001. Bibcode:2014PCCP...16.8997Z. doi:10.1039/c4cp00235k. PMID 24695756.
  74. Keenan, T. (1967). "Lattice constants of K7Cm6F31 trends in the 1:1 and 7:6 alkali metal-actinide(IV) series". Inorganic and Nuclear Chemistry Letters. 3 (10): 391. doi:10.1016/0020-1650(67)80092-8.
  75. Asprey, L. B.; Keenan, T. K.; Kruse, F. H. (1965). "Crystal Structures of the Trifluorides, Trichlorides, Tribromides, and Triiodides of Americium and Curium". Inorganic Chemistry. 4 (7): 985. doi:10.1021/ic50029a013.
  76. Burns, J.; Peterson, J. R.; Stevenson, J. N. (1975). "Crystallographic studies of some transuranic trihalides: 239PuCl3, 244CmBr3, 249BkBr3 and 249CfBr3". Journal of Inorganic and Nuclear Chemistry. 37 (3): 743. doi:10.1016/0022-1902(75)80532-X.
  77. Wallmann, J.; Fuger, J.; Peterson, J. R.; Green, J. L. (1967). "Crystal structure and lattice parameters of curium trichloride". Journal of Inorganic and Nuclear Chemistry. 29 (11): 2745. doi:10.1016/0022-1902(67)80013-7.
  78. Weigel, F.; Wishnevsky, V.; Hauske, H. (1977). "The vapor phase hydrolysis of PuCl3 and CmCl3: heats of formation of PuOC1 and CmOCl". Journal of the Less Common Metals. 56 (1): 113. doi:10.1016/0022-5088(77)90224-7.
  79. Troc, R. Actinide Monochalcogenides, Volume 27, Springer, 2009 ISBN 3-540-29177-6, p. 4
  80. Damien, D.; Charvillat, J. P.; Müller, W. (1975). "Preparation and lattice parameters of curium sulfides and selenides". Inorganic and Nuclear Chemistry Letters. 11 (7–8): 451. doi:10.1016/0020-1650(75)80017-1.
  81. Lumetta, G. J.; Thompson, M. C.; Penneman, R. A.; Eller, P. G. Curium Archived 2010-07-17 at the Wayback Machine, Chapter Nine in Radioanalytical Chemistry, Springer, 2004, pp. 1420–1421. ISBN 0387341226, ISBN 978-0387 341224
  82. Elschenbroich, Ch. Organometallic Chemistry, 6th edition, Wiesbaden 2008, ISBN 978-3-8351-0167-8, p. 589
  83. Kerridge, Andrew; Kaltsoyannis, Nikolas (2009). "Are the Ground States of the Later Actinocenes Multiconfigurational? All-Electron Spin−Orbit Coupled CASPT2 Calculations on An(η8-C8H8)2(An = Th, U, Pu, Cm)". The Journal of Physical Chemistry A. 113 (30): 8737–8745. Bibcode:2009JPCA..113.8737K. doi:10.1021/jp903912q. PMID 19719318.
  84. Girnt, Denise; Roesky, Peter W.; Geist, Andreas; Ruff, Christian M.; Panak, Petra J.; Denecke, Melissa A. (2010). "6-(3,5-Dimethyl-1H-pyrazol-1-yl)-2,2′-bipyridine as Ligand for Actinide(III)/Lanthanide(III) Separation". Inorganic Chemistry. 49 (20): 9627–9635. doi:10.1021/ic101309j. PMID 20849125. S2CID 978265.
  85. ^ Glorius, M.; Moll, H.; Bernhard, G. (2008). "Complexation of curium(III) with hydroxamic acids investigated by time-resolved laser-induced fluorescence spectroscopy". Polyhedron. 27 (9–10): 2113. doi:10.1016/j.poly.2008.04.002.
  86. ^ Heller, Anne; Barkleit, Astrid; Bernhard, Gert; Ackermann, Jörg-Uwe (2009). "Complexation study of europium(III) and curium(III) with urea in aqueous solution investigated by time-resolved laser-induced fluorescence spectroscopy". Inorganica Chimica Acta. 362 (4): 1215. doi:10.1016/j.ica.2008.06.016.
  87. ^ Moll, Henry; Johnsson, Anna; Schäfer, Mathias; Pedersen, Karsten; Budzikiewicz, Herbert; Bernhard, Gert (2007). "Curium(III) complexation with pyoverdins secreted by a groundwater strain of Pseudomonas fluorescens". BioMetals. 21 (2): 219–228. doi:10.1007/s10534-007-9111-x. PMID 17653625. S2CID 24565144.
  88. ^ Moll, Henry; Geipel, Gerhard; Bernhard, Gert (2005). "Complexation of curium(III) by adenosine 5′-triphosphate (ATP): A time-resolved laser-induced fluorescence spectroscopy (TRLFS) study". Inorganica Chimica Acta. 358 (7): 2275. doi:10.1016/j.ica.2004.12.055.
  89. "Biochemical Periodic Table – Curium". UMBBD. 2007-06-08. Retrieved 2011-03-25.
  90. Moll, H.; Stumpf, T.; Merroun, M.; Rossberg, A.; Selenska-Pobell, S.; Bernhard, G. (2004). "Time-resolved laser fluorescence spectroscopy study on the interaction of curium(III) with Desulfovibrio äspöensis DSM 10631T". Environmental Science & Technology. 38 (5): 1455–1459. Bibcode:2004EnST...38.1455M. doi:10.1021/es0301166. PMID 15046347.
  91. Ozaki, T.; et al. (2002). "Association of Eu(III) and Cm(III) with Bacillus subtilis and Halobacterium salinarium". Journal of Nuclear Science and Technology. Suppl. 3: 950–953. doi:10.1080/00223131.2002.10875626. S2CID 98319565. Archived from the original on 2009-02-25.
  92. Binder, Harry H.: Lexikon der chemischen Elemente, S. Hirzel Verlag, Stuttgart 1999, ISBN 3-7776-0736-3, pp. 174–178.
  93. Gmelin Handbook of Inorganic Chemistry, System No. 71, Volume 7a, transuranics, Part A2, p. 289
  94. Kronenberg, Andreas, Plutonium-Batterien Archived 2013-12-26 at the Wayback Machine (in German) "Archived copy". Archived from the original on February 21, 2011. Retrieved April 28, 2011.{{cite web}}: CS1 maint: archived copy as title (link) CS1 maint: bot: original URL status unknown (link)
  95. Holleman, pp. 1980–1981.
  96. Seaborg, Glenn T. (1996). Adloff, J. P. (ed.). One Hundred Years after the Discovery of Radioactivity. Oldenbourg Wissenschaftsverlag. p. 82. ISBN 978-3-486-64252-0.
  97. "Der Rosetta Lander Philae". Bernd-leitenberger.de. 2003-07-01. Retrieved 2011-03-25.
  98. Rieder, R.; Wanke, H.; Economou, T. (September 1996). "An Alpha Proton X-Ray Spectrometer for Mars-96 and Mars Pathfinder". Bulletin of the American Astronomical Society. 28: 1062. Bibcode:1996DPS....28.0221R.
  99. Leitenberger, Bernd Die Surveyor Raumsonden (in German)
  100. Nicks, Oran (1985). "Ch. 9. Essentials for Surveyor". SP-480 Far Travelers: The Exploring Machines. NASA.
  101. Alpha Particle X-Ray Spectrometer (APXS), Cornell University
  102. Hoffmann, K. Kann man Gold machen? Gauner, Gaukler und Gelehrte. Aus der Geschichte der chemischen Elemente (Can you make gold? Crooks, clowns and scholars. From the history of the chemical elements), Urania-Verlag, Leipzig, Jena, Berlin 1979, no ISBN, p. 233
  103. Baetslé, L. H. Application of Partitioning/Transmutation of Radioactive Materials in Radioactive Waste Management Archived 2005-04-26 at the Wayback Machine, Nuclear Research Centre of Belgium Sck/Cen, Mol, Belgium, September 2001.

Bibliography

External links

Periodic table
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
1 H He
2 Li Be B C N O F Ne
3 Na Mg Al Si P S Cl Ar
4 K Ca Sc Ti V Cr Mn Fe Co Ni Cu Zn Ga Ge As Se Br Kr
5 Rb Sr Y Zr Nb Mo Tc Ru Rh Pd Ag Cd In Sn Sb Te I Xe
6 Cs Ba La Ce Pr Nd Pm Sm Eu Gd Tb Dy Ho Er Tm Yb Lu Hf Ta W Re Os Ir Pt Au Hg Tl Pb Bi Po At Rn
7 Fr Ra Ac Th Pa U Np Pu Am Cm Bk Cf Es Fm Md No Lr Rf Db Sg Bh Hs Mt Ds Rg Cn Nh Fl Mc Lv Ts Og
s-block f-block d-block p-block
Curium compounds
Curium(III)
Curium(IV)
Curium(VI)
Nuclear technology
Science
Fuel
Neutron
Power
Medicine
Imaging
Therapy
Processing
Weapons
Topics
Lists
Waste
Products
Disposal
Debate
Nuclear reactors
Fission
Moderator
Light water
Heavy water
by coolant
D2O
H2O
Organic
CO2
Graphite
by coolant
Water
H2O
Gas
CO2
He
Molten-salt
Fluorides
None
(fast-neutron)
Generation IV
Others
Fusion
by confinement
Magnetic
Inertial
Other
Marie and Pierre Curie
Discoveries
Publications
Museums
Family
Namesakes
Depictions
Categories: