Revision as of 08:23, 28 November 2003 view sourceMav (talk | contribs)Extended confirmed users77,874 edits a tiny bit more + refs← Previous edit | Revision as of 08:33, 28 November 2003 view source Mav (talk | contribs)Extended confirmed users77,874 editsm - dup textNext edit → | ||
Line 122: | Line 122: | ||
== Applications == | == Applications == | ||
Approximately 95% of titanium is consumed in the form of ] (Ti]<sub>2</sub>), a white permanent ] with good covering power in ]s, ], and ]. Paints made with titanium dioxide are excellent reflectors of ] and are therefore used extensively by ]s. | Approximately 95% of titanium is consumed in the form of ] (Ti]<sub>2</sub>), a intensly white permanent ] with good covering power in ]s, ], and ]. Paints made with titanium dioxide are excellent reflectors of ] and are therefore used extensively by ]s. | ||
Because of its strength, light weight, extraordinary corrosion resistance, and ability to withstand extreme temperatures, titanium ]s are principally used in ] and ]s, although applications in consumer products such as ]s, ]s, and ]s are becoming more common. Titanium is often alloyed with ], ], ], ] and with other metals. Other uses; | Because of its strength, light weight, extraordinary corrosion resistance, and ability to withstand extreme temperatures, titanium ]s are principally used in ] and ]s, although applications in consumer products such as ]s, ]s, and ]s are becoming more common. Titanium is often alloyed with ], ], ], ] and with other metals. Other uses; | ||
Line 128: | Line 128: | ||
*It is used to produce relatively soft artificial ]s. | *It is used to produce relatively soft artificial ]s. | ||
*] (Ti]<sub>4</sub>), a colorless liquid, is used to iridize ] and because it fumes strongly in moist air it is also used to make ]s. | *] (Ti]<sub>4</sub>), a colorless liquid, is used to iridize ] and because it fumes strongly in moist air it is also used to make ]s. | ||
* |
*In addition to being a very important pigment, titanium dioxide is also used in ]s due to its ability to protect ] by itself. | ||
*Because it is considered to be physiologically inert, the metal is used in ]s such as hip ball and sockets. | *Because it is considered to be physiologically inert, the metal is used in ]s such as hip ball and sockets. | ||
*Its inertness and ability to be attractively colored makes it a popular metal for use in ]. | *Its inertness and ability to be attractively colored makes it a popular metal for use in ]. | ||
A potential use of titanium is in ]s. |
A potential use of titanium is in ]s. | ||
== History == | == History == |
Revision as of 08:33, 28 November 2003
| |||||||||||||||||||||||||||||||||||||||||||
General | |||||||||||||||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Name, Symbol, Number | Titanium, Ti, 22 | ||||||||||||||||||||||||||||||||||||||||||
Chemical series | Transition metals | ||||||||||||||||||||||||||||||||||||||||||
Group, Period, Block | 4, 4 , d | ||||||||||||||||||||||||||||||||||||||||||
Density, Hardness | 4507 kg/m, 6 | ||||||||||||||||||||||||||||||||||||||||||
Appearance | Silvery metallic File:Ti,22-thumb.jpg | ||||||||||||||||||||||||||||||||||||||||||
Atomic Properties | |||||||||||||||||||||||||||||||||||||||||||
Atomic weight | 47.867 amu | ||||||||||||||||||||||||||||||||||||||||||
Atomic radius (calc.) | 140 (176) pm | ||||||||||||||||||||||||||||||||||||||||||
Covalent radius | 136 pm | ||||||||||||||||||||||||||||||||||||||||||
van der Waals radius | no data | ||||||||||||||||||||||||||||||||||||||||||
Electron configuration | 3d 4s | ||||||||||||||||||||||||||||||||||||||||||
e 's per energy level | 2, 8, 10, 2 | ||||||||||||||||||||||||||||||||||||||||||
Oxidation state (Oxide) | 4 (amphoteric) | ||||||||||||||||||||||||||||||||||||||||||
Crystal structure | Hexagonal | ||||||||||||||||||||||||||||||||||||||||||
Physical Properties | |||||||||||||||||||||||||||||||||||||||||||
State of matter | Solid (__) | ||||||||||||||||||||||||||||||||||||||||||
Melting point | 1941 K (3034 °F) | ||||||||||||||||||||||||||||||||||||||||||
Boiling point | 3560 K (5949 °F) | ||||||||||||||||||||||||||||||||||||||||||
Molar volume | 10.64 ×10 m/mol | ||||||||||||||||||||||||||||||||||||||||||
Heat of vaporization | 421 kJ/mol | ||||||||||||||||||||||||||||||||||||||||||
Heat of fusion | 15.45 kJ/mol | ||||||||||||||||||||||||||||||||||||||||||
Vapor pressure | 0.49 Pa at 1933 K | ||||||||||||||||||||||||||||||||||||||||||
Velocity of sound | 4140 m/s at 293.15 K | ||||||||||||||||||||||||||||||||||||||||||
Miscellaneous | |||||||||||||||||||||||||||||||||||||||||||
Electronegativity | 1.54 (Pauling scale) | ||||||||||||||||||||||||||||||||||||||||||
Specific heat capacity | 520 J/(kg*K) | ||||||||||||||||||||||||||||||||||||||||||
Electrical conductivity | 2.34 10/m ohm | ||||||||||||||||||||||||||||||||||||||||||
Thermal conductivity | 21.9 W/(m*K) | ||||||||||||||||||||||||||||||||||||||||||
1 ionization potential | 658.8 kJ/mol | ||||||||||||||||||||||||||||||||||||||||||
2 ionization potential | 1309.8 kJ/mol | ||||||||||||||||||||||||||||||||||||||||||
3 ionization potential | 2652.5 kJ/mol | ||||||||||||||||||||||||||||||||||||||||||
4 ionization potential | 4174.6 kJ/mol | ||||||||||||||||||||||||||||||||||||||||||
5 ionization potential | 9581 kJ/mol | ||||||||||||||||||||||||||||||||||||||||||
6 ionization potential | 11533 kJ/mol | ||||||||||||||||||||||||||||||||||||||||||
7 ionization potential | 13590 kJ/mol | ||||||||||||||||||||||||||||||||||||||||||
8 ionization potential | 16440 kJ/mol | ||||||||||||||||||||||||||||||||||||||||||
9 ionization potential | 18530 kJ/mol | ||||||||||||||||||||||||||||||||||||||||||
10 ionization potential | 20833 kJ/mol | ||||||||||||||||||||||||||||||||||||||||||
Most Stable Isotopes | |||||||||||||||||||||||||||||||||||||||||||
| |||||||||||||||||||||||||||||||||||||||||||
SI units & STP are used except where noted. |
Titanium is a chemical element in the periodic table that has the symbol Ti and atomic number 22. A light, strong, white-metallic, lustrous, corrosion-resistant transition metal, titanium is used in strong light-weight alloys and in white pigments. This element occurs in numerous minerals with the main sources being rutile and ilmenite.
Notable Characteristics
Titanium is a metallic element which is well known for its excellent corrosion resistance (almost as resistant as platinum) and for its high strength-to-weight ratio. It is light, strong, easily fabricated metal with low density (40% as dense as steel at the same volume) that, when pure, is quite ductile, easy to work, lustrous, and metallic-white in color. The relatively high melting point of this element makes it useful as a refractory metal. Titanium is as strong as steel, but 45% lighter; it is 60% heavier than aluminium, but twice as strong. These properties make titanium very resistant to the usual kinds of metal fatigue.
This metal forms a passive oxide coating when exposed to air but when it is in an oxygen-free environment it is ductile. The metal, which burns when heated in air, is also the only element that can burn in pure nitrogen gas. Titanium is resistant to dilute sulfuric and hydrochloric acid, along with chlorine gas, chloride solutions, and most organic acids .
Experiments have shown that natural titanium becomes very radioactive after it is bombarded with deuterons emitting mainly positrons and hard gamma rays. The metal is dimorphic with the hexagonal alpha form changing into the cubic beta form very slowly at around 880° C. When it is red hot the metal combines with oxygen and when it reaches 550°C it combines with chlorine.
Applications
Approximately 95% of titanium is consumed in the form of titanium dioxide (TiO2), a intensly white permanent pigment with good covering power in paints, paper, and plastics. Paints made with titanium dioxide are excellent reflectors of infrared radiation and are therefore used extensively by astronomers.
Because of its strength, light weight, extraordinary corrosion resistance, and ability to withstand extreme temperatures, titanium alloys are principally used in aircraft and missiles, although applications in consumer products such as golf clubs, bicycles, and laptop computers are becoming more common. Titanium is often alloyed with aluminum, iron, manganese, molybdenum and with other metals. Other uses;
- Due to excellent resistance to sea water, it is used to make propeller shafts and rigging.
- It is used to produce relatively soft artificial gemstones.
- Titanium tetrachloride (TiCl4), a colorless liquid, is used to iridize glass and because it fumes strongly in moist air it is also used to make smoke screens.
- In addition to being a very important pigment, titanium dioxide is also used in sunscreens due to its ability to protect skin by itself.
- Because it is considered to be physiologically inert, the metal is used in joint replacement implants such as hip ball and sockets.
- Its inertness and ability to be attractively colored makes it a popular metal for use in body piercing.
A potential use of titanium is in desalination plants.
History
Titanium (Latin Titans, the first sons of Gaia) was discovered in England by Reverend William Gregor in 1791 who recognized the presence of a new element in ilmenite. The element was rediscovered several years later by German chemist Heinrich Klaproth in rutile ore. In 1795 Klaproth named the new element after the Titans of Greek mythology.
Pure metallic titanium (99.9%) was first prepared in 1910 by Matthew A. Hunter by heating TiCl4 with sodium in a steel bomb at 700-800°C.
Titanium metal wasn't used outside the laboratory until 1946 when William Justin Kroll proved that titanium could be commercially produced by reducing titanium tetrachloride with magnesium (which is the method still used today).
Occurrence
Titanium metal is not found unbound to other elements in nature but the element is the ninth most abundant element in the Earth's crust (0.6%% by mass) and is present in most igneous rocks and in sediments derived from them. Titanium occurs primarily in the minerals anatase, brookite, ilmenite, leucoxene, perovskite, rutile, and sphene and is found in titanates and in many iron ores. Of these minerals, only ilmenite, leucoxene, and rutile have significant economic importance. Because it reacts easily with oxygen and carbon at high temperatures, it is difficult to prepare pure titanium metal. Significant titanium ore deposits are in Australia, Scandinavia, North America and Malaysia.
This metal is found in meteorites and has been detected in the sun and in M-type stars. Rocks brought back from the moon during the Apollo 17 mission are composed of 12.1% TiO2. Titanium is also found in coal ash, plants, and even the human body.
Production
Titanium metal is produced commercially by reducing TiCl4 with magnesium, a process developed in 1946 by William Justin Kroll. This is a complex and expensive batch process, but a newer process called the "FFC-Cambridge" method may displace this older process. This method uses the feedstock titanium dioxide powder (which is a refined form of rutile) to make the end product which is a continuous stream of molten titanium suitable for immediate use in the manufacture of commercial alloys.
It is hoped that the FFC-Cambridge method will render titanium a less rare and expensive material for the aerospace industry and the luxury goods market, and will be seen in many products currently manufactured using aluminum and specialist grades of steel.
Compounds
Although titanium metal is relatively uncommon, due to the cost of extraction, titanium dioxide is cheap, readily available in bulk, and very widely used as a white pigment in paint, plastic and construction cement. TiO2 powder is chemically inert, resists fading in sunlight, and is very opaque: this allows it to impart a pure and brilliant white color to the brown or gray chemicals that form the majority of household plastics. Pure titanium dioxide has a very high index of refraction and an optical dispersion higher than diamond. Star sapphires and rubies get their asterism from the titanium dioxide present in them.
Isotopes
Naturally occurring titanium is composed of 5 stable isotopes; Ti-46, Ti-47, Ti-48, Ti-49 and Ti-50 with Ti-48 being the most abundant (73.8% natural abundance). 11 radioisotopes have been characterized with the most stable being Ti-44 with a half-life of 63 years, Ti-45 with a half-life of 184.8 minutes, Ti-51 with a half-life of 5.76 minutes, and Ti-52 with a half-life of 1.7 minutes. All of the remaining radioactive isotopes have half-lifes that are less than 33 seconds and the majority of these have half lifes that are less than half a second.
The isotopes of titanium range in atomic weight from 39.99 amu (Ti-40) to 57.966 amu (Ti-58). The primary decay mode before the most abundant stable isotope, Ti-48, is electron capture and the primary mode after is beta emission. The primary decay products before Ti-48 are element 21 (scandium) isotopes and the primary products after are element 23 (vanadium) isotopes.
Precautions
When in a powdered form, titanium metal poses a significant fire hazard but salts of titanium are often considered to be relatively harmless. Chlorine compounds such as TiCl3 and TiCl4 should be considered to be corrosive, however. Titanium also has a tendency to bio-accumulate in tissues that contain silica but it does not play any known biological role in humans.
References
- Los Alamos National Laboratory - Titanium
- Guide to the Elements - Revised Edition, Albert Stwertka, (Oxford University Press; 1998) ISBN 0-19-508083-1
External links
- WebElements.com - Titanium (also used as a reference)
- EnvironmentalChemistry.com - Titanium (also used as a reference)