Misplaced Pages

Subring: Difference between revisions

Article snapshot taken from Wikipedia with creative commons attribution-sharealike license. Give it a read and then ask your questions in the chat. We can research this topic together.
Browse history interactively← Previous editNext edit →Content deleted Content addedVisualWikitext
Revision as of 08:52, 14 August 2014 editCic (talk | contribs)Extended confirmed users1,266 edits Removed link to the subring test, as that article was merge with this one← Previous edit Revision as of 22:09, 4 November 2014 edit undoDavid Eppstein (talk | contribs)Autopatrolled, Administrators226,410 edits Carry out proposed mergeNext edit →
Line 1: Line 1:
{{mergefrom|Ring extension|date=February 2013}}
In ], a '''subring''' of ''R'' is a ] of a ] that is itself a ring when ]s of addition and multiplication on ''R'' are restricted to the subset, and which contains the ] of ''R''. For those who define rings without requiring the existence of a multiplicative identity, a subring of ''R'' is just a subset of ''R'' that is a ring for the operations of ''R'' (this does imply it contains the additive identity of ''R''). The latter gives a strictly weaker condition, even for rings that do have a multiplicative identity, so that for instance all ]s become subrings (and they may have a multiplicative identity that differs from the one of ''R''). With definition requiring a multiplicative identity (which is used in this article), the only ideal of ''R'' that is a subring of ''R'' is ''R'' itself. In ], a '''subring''' of ''R'' is a ] of a ] that is itself a ring when ]s of addition and multiplication on ''R'' are restricted to the subset, and which contains the ] of ''R''. For those who define rings without requiring the existence of a multiplicative identity, a subring of ''R'' is just a subset of ''R'' that is a ring for the operations of ''R'' (this does imply it contains the additive identity of ''R''). The latter gives a strictly weaker condition, even for rings that do have a multiplicative identity, so that for instance all ]s become subrings (and they may have a multiplicative identity that differs from the one of ''R''). With definition requiring a multiplicative identity (which is used in this article), the only ideal of ''R'' that is a subring of ''R'' is ''R'' itself.


Line 11: Line 10:


As an example, the ring '''Z''' of ]s is a subring of the ] of ]s and also a subring of the ring of ]s '''Z'''. As an example, the ring '''Z''' of ]s is a subring of the ] of ]s and also a subring of the ring of ]s '''Z'''.

If ''S'' is a subring of a ring ''R'', then equivalently ''R'' is said to be a '''ring extension''' of ''S'', written as ''R''/''S'' in similar notation to that for ]s.


==Subring generated by a set== ==Subring generated by a set==
Line 22: Line 23:
*The ideal ''I'' = {(''z'',0) | ''z'' in '''Z'''} of the ring '''Z''' × '''Z''' = {(''x'',''y'') | ''x'',''y'' in '''Z'''} with componentwise addition and multiplication has the identity (1,0), which is different from the identity (1,1) of the ring. So ''I'' is a ring with unity, and a "subring-without-unity", but not a "subring-with-unity" of '''Z''' × '''Z'''. *The ideal ''I'' = {(''z'',0) | ''z'' in '''Z'''} of the ring '''Z''' × '''Z''' = {(''x'',''y'') | ''x'',''y'' in '''Z'''} with componentwise addition and multiplication has the identity (1,0), which is different from the identity (1,1) of the ring. So ''I'' is a ring with unity, and a "subring-without-unity", but not a "subring-with-unity" of '''Z''' × '''Z'''.
*The proper ideals of '''Z''' have no multiplicative identity. *The proper ideals of '''Z''' have no multiplicative identity.

If ''I'' is a ] of a commutative ring ''R'', then the intersection of ''I'' with any subring ''S'' of ''R'' remains prime in ''S''. In this case one says that ''I'' '''lies over''' ''I'' ∩ ''S''. The situation is more complicated when ''R'' is not commutative.


==Profile by commutative subrings== ==Profile by commutative subrings==
Line 28: Line 31:
*The ] ring contains three types of commutative planar subrings: the ] plane, the ] plane, as well as the ordinary complex plane *The ] ring contains three types of commutative planar subrings: the ] plane, the ] plane, as well as the ordinary complex plane
*The ring of 3 × 3 real matrices also contains 3-dimensional commutative subrings generated by the ] and a ] ε of order 3 (εεε = 0 ≠ εε). For instance, the ] can be realized as the join of the ] of two of these nilpotent-generated subrings of 3 × 3 matrices. *The ring of 3 × 3 real matrices also contains 3-dimensional commutative subrings generated by the ] and a ] ε of order 3 (εεε = 0 ≠ εε). For instance, the ] can be realized as the join of the ] of two of these nilpotent-generated subrings of 3 × 3 matrices.

==See also==
* ]
* ]
* ]
* ]


==References== ==References==

Revision as of 22:09, 4 November 2014

In mathematics, a subring of R is a subset of a ring that is itself a ring when binary operations of addition and multiplication on R are restricted to the subset, and which contains the multiplicative identity of R. For those who define rings without requiring the existence of a multiplicative identity, a subring of R is just a subset of R that is a ring for the operations of R (this does imply it contains the additive identity of R). The latter gives a strictly weaker condition, even for rings that do have a multiplicative identity, so that for instance all ideals become subrings (and they may have a multiplicative identity that differs from the one of R). With definition requiring a multiplicative identity (which is used in this article), the only ideal of R that is a subring of R is R itself.

A subring of a ring (R, +, ∗, 0, 1) is a subset S of R that preserves the structure of the ring, i.e. a ring (S, +, ∗, 0, 1) with SR. Equivalently, it is both a subgroup of (R, +, 0) and a submonoid of (R, ∗, 1).

The ring Z and its quotients Z/nZ have no subrings (with multiplicative identity) other than the full ring.

Every ring has a unique smallest subring, isomorphic to some ring Z/nZ with n a nonnegative integer (see characteristic). The integers Z correspond to n = 0 in this statement, since Z is isomorphic to Z/0Z.

The subring test states that for any ring R, a subset of R is a subring if it contains the additive identity of R and is closed under subtraction and multiplication.

As an example, the ring Z of integers is a subring of the field of real numbers and also a subring of the ring of polynomials Z.

If S is a subring of a ring R, then equivalently R is said to be a ring extension of S, written as R/S in similar notation to that for field extensions.

Subring generated by a set

Let R be a ring. Any intersection of subrings of R is again a subring of R. Therefore, if X is any subset of R, the intersection of all subrings of R containing X is a subring S of R. S is the smallest subring of R containing X. ("Smallest" means that if T is any other subring of R containing X, then S is contained in T.) S is said to be the subring of R generated by X. If S = R, we may say that the ring R is generated by X.

Relation to ideals

Proper ideals are subrings that are closed under both left and right multiplication by elements from R.

If one omits the requirement that rings have a unity element, then subrings need only be non-empty and otherwise conform to the ring structure, and ideals become subrings. Ideals may or may not have their own multiplicative identity (distinct from the identity of the ring):

  • The ideal I = {(z,0) | z in Z} of the ring Z × Z = {(x,y) | x,y in Z} with componentwise addition and multiplication has the identity (1,0), which is different from the identity (1,1) of the ring. So I is a ring with unity, and a "subring-without-unity", but not a "subring-with-unity" of Z × Z.
  • The proper ideals of Z have no multiplicative identity.

If I is a prime ideal of a commutative ring R, then the intersection of I with any subring S of R remains prime in S. In this case one says that I lies over I ∩ S. The situation is more complicated when R is not commutative.

Profile by commutative subrings

A ring may be profiled by the variety of commutative subrings that it hosts:

See also

References

Category: