Misplaced Pages

Tin: Difference between revisions

Article snapshot taken from Wikipedia with creative commons attribution-sharealike license. Give it a read and then ask your questions in the chat. We can research this topic together.
Browse history interactively← Previous editNext edit →Content deleted Content addedVisualWikitext
Revision as of 12:40, 23 November 2006 editFemto (talk | contribs)13,836 editsm Reverted edits by 71.10.91.100 (talk) to last version by ILike2BeAnonymous← Previous edit Revision as of 14:29, 25 November 2006 edit undoMrDolomite (talk | contribs)Extended confirmed users, Rollbackers21,838 editsm added link to Alchemical symbol in image caption textNext edit →
Line 56: Line 56:
{{Elementbox_isotopes_end}} {{Elementbox_isotopes_end}}
{{Elementbox_footer | color1=#cccccc | color2=black }} {{Elementbox_footer | color1=#cccccc | color2=black }}
] symbol for tin]] ] ] for tin]]
] ]
'''Tin''' (]: {{IPA|/ˈtɪn/}}) is a ] in the ] that has the symbol '''Sn''' ({{lang-la|stannum}}) and ] 50. This silvery, malleable ] that is not easily ] in air and resists ], is found in many ]s and is used to coat other metals to prevent corrosion. Tin is obtained chiefly from the ] ], where it occurs as an ]. '''Tin''' (]: {{IPA|/ˈtɪn/}}) is a ] in the ] that has the symbol '''Sn''' ({{lang-la|stannum}}) and ] 50. This silvery, malleable ] that is not easily ] in air and resists ], is found in many ]s and is used to coat other metals to prevent corrosion. Tin is obtained chiefly from the ] ], where it occurs as an ].

Revision as of 14:29, 25 November 2006

For other uses, see the metallic chemical element.

Template:Elementbox header Template:Elementbox series Template:Elementbox groupperiodblock Template:Elementbox appearance img Template:Elementbox atomicmass gpm Template:Elementbox econfig Template:Elementbox epershell Template:Elementbox section physicalprop Template:Elementbox phase Template:Elementbox density gpcm3nrt Template:Elementbox density gpcm3nrt Template:Elementbox densityliq gpcm3mp Template:Elementbox meltingpoint Template:Elementbox boilingpoint Template:Elementbox heatfusion kjpmol Template:Elementbox heatvaporiz kjpmol Template:Elementbox heatcapacity jpmolkat25 Template:Elementbox vaporpressure katpa Template:Elementbox section atomicprop Template:Elementbox crystalstruct Template:Elementbox oxistates Template:Elementbox electroneg pauling Template:Elementbox ionizationenergies4 Template:Elementbox atomicradius pm Template:Elementbox atomicradiuscalc pm Template:Elementbox covalentradius pm Template:Elementbox vanderwaalsrad pm Template:Elementbox section miscellaneous Template:Elementbox magnetic Template:Elementbox eresist ohmmat0 Template:Elementbox thermalcond wpmkat300k Template:Elementbox thermalexpansion umpmkat25 Template:Elementbox speedofsound rodmpsatrt Template:Elementbox youngsmodulus gpa Template:Elementbox shearmodulus gpa Template:Elementbox bulkmodulus gpa Template:Elementbox poissonratio Template:Elementbox mohshardness Template:Elementbox brinellhardness mpa Template:Elementbox cas number Template:Elementbox isotopes begin Template:Elementbox isotopes stable Template:Elementbox isotopes stable Template:Elementbox isotopes stable Template:Elementbox isotopes stable Template:Elementbox isotopes stable Template:Elementbox isotopes stable Template:Elementbox isotopes stable Template:Elementbox isotopes stable Template:Elementbox isotopes stable Template:Elementbox isotopes stable |- ! style="text-align:right;" | Sn | style="text-align:center;" | syn | style="text-align:right;" | ~1 E5 y | Beta | style="text-align:right;" | Sb Template:Elementbox isotopes end Template:Elementbox footer

The alchemical symbol for tin
Tin ore

Tin (IPA: /ˈtɪn/) is a chemical element in the periodic table that has the symbol Sn (Template:Lang-la) and atomic number 50. This silvery, malleable poor metal that is not easily oxidized in air and resists corrosion, is found in many alloys and is used to coat other metals to prevent corrosion. Tin is obtained chiefly from the mineral cassiterite, where it occurs as an oxide.

Notable characteristics

Tin is a malleable, ductile, highly crystalline, silvery-white metal; when a bar of tin is bent, a strange crackling sound known as the "tin cry" can be heard due to the breaking of the crystals. This metal resists corrosion from distilled, sea and soft tap water, but can be attacked by strong acids, alkalis, and by acid salts. Tin acts as a catalyst when oxygen is in solution and helps accelerate chemical attack.

Tin forms the dioxide SnO2 when it is heated in the presence of air. SnO2, in turn, is feebly acidic and forms stannate (SnO3) salts with basic oxides. Tin can be highly polished and is used as a protective coat for other metals in order to prevent corrosion or other chemical action. This metal combines directly with chlorine and oxygen and displaces hydrogen from dilute acids. Tin is malleable at ordinary temperatures but is brittle when it is heated.

Allotropes

Solid tin has two allotropes at normal pressure. At low temperatures it exists as gray or alpha tin, which has a cubic crystal structure similar to silicon and germanium. When warmed above 13.2 °C it changes into white or beta tin, which is metallic and has a tetragonal structure. It slowly changes back to the gray form when cooled, which is called the tin pest or tin disease. However, this transformation is affected by impurities such as aluminium and zinc and can be prevented from occurring through the addition of antimony or bismuth.

Applications

Tin bonds readily to iron, and has been used for coating lead or zinc and steel to prevent corrosion. Tin-plated steel containers are widely used for food preservation, and this forms a large part of the market for metallic tin. Speakers of British English call them "tins"; Americans call them "cans" or "tin cans". One thus-derived use of the slang term "tinnie" or "tinny" means "can of beer". The tin whistle is so called because it was first mass-produced in tin-plated steel.

Other uses:

  • Some important tin alloys are: bronze, bell metal, Babbitt metal, die casting alloy, pewter, phosphor bronze, soft solder, and White metal.
  • The most important salt formed is stannous chloride, which has found use as a reducing agent and as a mordant in the calico printing process. Electrically conductive coatings are produced when tin salts are sprayed onto glass. These coatings have been used in panel lighting and in the production of frost-free windshields.
  • Most metal pipes in a pipe organ are made of varying amounts of a tin/lead alloy, with 50% / 50% being the most common. When this alloy cools, the lead cools slightly faster and makes a mottled or spotted effect. This metal alloy is referred to as spotted metal.
  • Window glass is most often made via floating molten glass on top of molten tin (creating float glass) in order to make a flat surface (this is called the "Pilkington process").
  • Tin is one of the two basic elements used since the Rennaisance in the manufacture of organ pipes (the other being lead). The amount of tin in the pipe defines the pipe's tone, tin being the most tonally resonant of all metals.
  • Tin is also used in solders for joining pipes or electric circuits, in bearing alloys, in glass-making, and in a wide range of tin chemical applications. Although of higher melting point than a lead-tin alloy, the use of pure tin or tin alloyed with other metals in these applications is rapidly supplanting the use of the previously common lead–containing alloys in order to eliminate the problems of toxicity caused by lead.
  • Tin foil was once a common wrapping material for foods and drugs; replaced in the early 20th century by the use of aluminium foil, which is now commonly referred to as tin foil. Hence one use of the slang term "tinnie" or "tinny" for a small retail package of a drug such as cannabis or for a can of beer.

Tin becomes a superconductor below 3.72 K. In fact, tin was one of the first superconductors to be studied; the Meissner effect, one of the characteristic features of superconductors, was first discovered in superconducting tin crystals. The niobium-tin compound Nb3Sn is commercially used as wires for superconducting magnets, due to the material's high critical temperature (18 K) and critical magnetic field (25 T). A superconducting magnet weighing only a couple of kilograms is capable of producing magnetic fields comparable to a conventional electromagnet weighing tons.

History

Tin (Anglo-Saxon, tin, Latin stannum) is one of the earliest metals known and was used as a component of bronze from antiquity. Because of its hardening effect on copper, tin was used in bronze implements as early as 3,500 BC. Tin mining is believed to have started in Cornwall and Devon ( esp Dartmoor) in Classical times, and a thriving tin trade developed with the civilizations of the Mediterranean. However the pure metal was not used until about 600 BC. The last Cornish Tin Mine, at South Crofty near Camborne closed in 1998 bringing 4000 years of mining in Cornwall to an end.

The word "tin" has cognates in many Germanic and Celtic languages. The American Heritage Dictionary speculates that the word was borrowed from a pre-Indo-European language.

In modern times, the word "tin" is often (improperly) used as a generic phrase for any silvery metal that comes in thin sheets. Most everyday objects that are commonly called tin, such as aluminum foil, beverage cans, and tin cans, are actually made of steel or aluminum, although tin cans do contain a thin coating of tin to inhibit rust. Likewise, so-called "tin toys" are usually made of steel, and may or may not have a thin coating of tin to inhibit rust.

Occurrence

About 35 countries mine tin throughout the world. Nearly every continent has an important tin-mining country. Tin is produced by reducing the ore with coal in a reverberatory furnace. This metal is a relatively scarce element with an abundance in the Earth's crust of about 2 ppm, compared with 94 ppm for zinc, 63 ppm for copper, and 12 ppm for lead. Most of the world's tin is produced from placer deposits; at least one-half comes from Southeast Asia. The only mineral of commercial importance as a source of tin is cassiterite (SnO2), although small quantities of tin are recovered from complex sulfides such as stannite, cylindrite, franckeite, canfieldite, and teallite. Secondary, or scrap, tin is also an important source of the metal.

Tasmania hosts some important deposits of historical importance, most importantly Mount Bischoff and Renison Bell.

see also Category:Tin minerals

Isotopes

Tin is the element with the greatest number of stable isotopes (ten). 28 additional unstable isotopes are known.

Compounds

For discussion of Stannate compounds (SnO3) see Stannate. For Stannite (SnO2) see Stannite. See also Stannous hydroxide (Sn(OH)2), Stannic acid (Stannic Hydroxide - Sn(OH)4), Tin dioxide (Stannic Oxide - SnO2), Tin(II) oxide (Stannous Oxide - SnO), Tin(II) chloride (SnCl2), Tin(IV) chloride (SnCl4)

see also category:Tin compounds

Biologic effects of organic tin compounds

The small amount of tin that is found in canned foods is not harmful to humans. Certain organic tin compounds, organotin, such as triorganotins (see tributyltin oxide) are toxic and are used as industrial fungicides and bactericides.

See also

References

External links

Categories: