Misplaced Pages

Tin(II) chloride

Article snapshot taken from Wikipedia with creative commons attribution-sharealike license. Give it a read and then ask your questions in the chat. We can research this topic together.
Tin(II) chloride
Tin(II) chloride
Ball-and-stick model (gas phase).
Space-filling model (gas phase).
Names
IUPAC names Tin(II) chloride
Tin dichloride
Other names
  • Stannous chloride
  • Tin salt
  • Tin protochloride
Identifiers
CAS Number
3D model (JSmol)
ChEBI
ChemSpider
DrugBank
ECHA InfoCard 100.028.971 Edit this at Wikidata
EC Number
  • 231-868-0
E number E512 (acidity regulators, ...)
PubChem CID
RTECS number
  • XP8700000 (anhydrous)
    XP8850000 (dihydrate)
UNII
UN number 3260
CompTox Dashboard (EPA)
InChI
  • InChI=1S/2ClH.Sn/h2*1H;/q;;+2/p-2Key: AXZWODMDQAVCJE-UHFFFAOYSA-L
  • InChI=1/2ClH.Sn/h2*1H;/q;;+2/p-2Key: AXZWODMDQAVCJE-NUQVWONBAJ
SMILES
  • ClCl
Properties
Chemical formula SnCl2
Molar mass 189.60 g/mol (anhydrous)
225.63 g/mol (dihydrate)
Appearance White crystalline solid
Odor odorless
Density 3.95 g/cm (anhydrous)
2.71 g/cm (dihydrate)
Melting point 247 °C (477 °F; 520 K) (anhydrous)
37.7 °C (dihydrate)
Boiling point 623 °C (1,153 °F; 896 K) (decomposes)
Solubility in water 83.9 g/100 ml (0 °C)
Hydrolyses in hot water
Solubility soluble in ethanol, acetone, ether, Tetrahydrofuran
insoluble in xylene
Magnetic susceptibility (χ) −69.0·10 cm/mol
Structure
Crystal structure Layer structure
(chains of SnCl3 groups)
Coordination geometry Trigonal pyramidal (anhydrous)
Dihydrate also three-coordinate
Molecular shape Bent (gas phase)
Thermochemistry
Std enthalpy of
formation
fH298)
−325 kJ/mol
Hazards
Occupational safety and health (OHS/OSH):
Main hazards Irritant, dangerous for aquatic organisms
GHS labelling:
Pictograms GHS05: Corrosive GHS07: Exclamation mark GHS08: Health hazard
Signal word Danger
Hazard statements H290, H302+H332, H314, H317, H335, H373, H412
Precautionary statements P260, P273, P280, P303+P361+P353, P304+P340+P312, P305+P351+P338+P310
NFPA 704 (fire diamond)
NFPA 704 four-colored diamondHealth 3: Short exposure could cause serious temporary or residual injury. E.g. chlorine gasFlammability 0: Will not burn. E.g. waterInstability 0: Normally stable, even under fire exposure conditions, and is not reactive with water. E.g. liquid nitrogenSpecial hazards (white): no code
3 0 0
Lethal dose or concentration (LD, LC):
LD50 (median dose) 700 mg/kg (rat, oral)
10,000 mg/kg (rabbit, oral)
250 mg/kg (mouse, oral)
Safety data sheet (SDS) ICSC 0955 (anhydrous)
ICSC 0738 (dihydrate)
Related compounds
Other anions Tin(II) fluoride
Tin(II) bromide
Tin(II) iodide
Other cations Germanium dichloride
Tin(IV) chloride
Lead(II) chloride
Except where otherwise noted, data are given for materials in their standard state (at 25 °C , 100 kPa). ☒verify (what is  ?) Infobox references
Chemical compound

Tin(II) chloride, also known as stannous chloride, is a white crystalline solid with the formula SnCl2. It forms a stable dihydrate, but aqueous solutions tend to undergo hydrolysis, particularly if hot. SnCl2 is widely used as a reducing agent (in acid solution), and in electrolytic baths for tin-plating. Tin(II) chloride should not be confused with the other chloride of tin; tin(IV) chloride or stannic chloride (SnCl4).

Chemical structure

SnCl2 has a lone pair of electrons, such that the molecule in the gas phase is bent. In the solid state, crystalline SnCl2 forms chains linked via chloride bridges as shown. The dihydrate has three coordinates as well, with one water on the tin and another water on the first. The main part of the molecule stacks into double layers in the crystal lattice, with the "second" water sandwiched between the layers.

Structures of tin(II) chloride and related compounds
Ball-and-stick models of the crystal structure of SnCl2

Chemical properties

Tin(II) chloride can dissolve in less than its own mass of water without apparent decomposition, but as the solution is diluted, hydrolysis occurs to form an insoluble basic salt:

SnCl2 (aq) + H2O (l) ⇌ Sn(OH)Cl (s) + HCl (aq)

Therefore, if clear solutions of tin(II) chloride are to be used, it must be dissolved in hydrochloric acid (typically of the same or greater molarity as the stannous chloride) to maintain the equilibrium towards the left-hand side (using Le Chatelier's principle). Solutions of SnCl2 are also unstable towards oxidation by the air:

6 SnCl2 (aq) + O2 (g) + 2 H2O (l) → 2 SnCl4 (aq) + 4 Sn(OH)Cl (s)

This can be prevented by storing the solution over lumps of tin metal.

There are many such cases where tin(II) chloride acts as a reducing agent, reducing silver and gold salts to the metal, and iron(III) salts to iron(II), for example:

SnCl2 (aq) + 2 FeCl3 (aq) → SnCl4 (aq) + 2 FeCl2 (aq)

It also reduces copper(II) to copper(I).

Solutions of tin(II) chloride can also serve simply as a source of Sn ions, which can form other tin(II) compounds via precipitation reactions. For example, reaction with sodium sulfide produces the brown/black tin(II) sulfide:

SnCl2 (aq) + Na2S (aq) → SnS (s) + 2 NaCl (aq)

If alkali is added to a solution of SnCl2, a white precipitate of hydrated tin(II) oxide forms initially; this then dissolves in excess base to form a stannite salt such as sodium stannite:

SnCl2(aq) + 2 NaOH (aq) → SnO·H2O (s) + 2 NaCl (aq)
SnO·H2O (s) + NaOH (aq) → NaSn(OH)3 (aq)

Anhydrous SnCl2 can be used to make a variety of interesting tin(II) compounds in non-aqueous solvents. For example, the lithium salt of 4-methyl-2,6-di-tert-butylphenol reacts with SnCl2 in THF to give the yellow linear two-coordinate compound Sn(OAr)2 (Ar = aryl).

Tin(II) chloride also behaves as a Lewis acid, forming complexes with ligands such as chloride ion, for example:

SnCl2 (aq) + CsCl (aq) → CsSnCl3 (aq)

Most of these complexes are pyramidal, and since complexes such as SnCl
3 have a full octet, there is little tendency to add more than one ligand. The lone pair of electrons in such complexes is available for bonding, however, and therefore the complex itself can act as a Lewis base or ligand. This seen in the ferrocene-related product of the following reaction:

SnCl2 + Fe(η-C5H5)(CO)2HgCl → Fe(η-C5H5)(CO)2SnCl3 + Hg

SnCl2 can be used to make a variety of such compounds containing metal-metal bonds. For example, the reaction with dicobalt octacarbonyl:

SnCl2 + Co2(CO)8 → (CO)4Co-(SnCl2)-Co(CO)4

Preparation

Anhydrous SnCl2 is prepared by the action of dry hydrogen chloride gas on tin metal. The dihydrate is made by a similar reaction, using hydrochloric acid:

Sn (s) + 2 HCl (aq) → SnCl2 (aq) + H2 (g)

The water then carefully evaporated from the acidic solution to produce crystals of SnCl2·2H2O. This dihydrate can be dehydrated to anhydration using acetic anhydride.

Uses

A solution of tin(II) chloride containing a little hydrochloric acid is used for the tin-plating of steel, in order to make tin cans. An electric potential is applied, and tin metal is formed at the cathode via electrolysis.

Tin(II) chloride is used as a mordant in textile dyeing because it gives brighter colours with some dyes e.g. cochineal. This mordant has also been used alone to increase the weight of silk.

In recent years, an increasing number of tooth paste brands have been adding Tin(II) chloride as protection against enamel erosion to their formula, e. g. Oral-B or Elmex.

It is used as a catalyst in the production of the plastic polylactic acid (PLA).

It also finds a use as a catalyst between acetone and hydrogen peroxide to form the tetrameric form of acetone peroxide.

Tin(II) chloride also finds wide use as a reducing agent. This is seen in its use for silvering mirrors, where silver metal is deposited on the glass:

Sn (aq) + 2 Ag → Sn (aq) + 2 Ag (s)

A related reduction was traditionally used as an analytical test for Hg (aq). For example, if SnCl2 is added dropwise into a solution of mercury(II) chloride, a white precipitate of mercury(I) chloride is first formed; as more SnCl2 is added this turns black as metallic mercury is formed.

Stannous chloride is also used by many precious metals refining hobbyists and professionals to test for the presence of gold salts. When SnCl2 comes into contact with gold compounds, particularly chloroaurate salts, it forms a bright purple colloid known as purple of Cassius. A similar reaction occurs with platinum and palladium salts, becoming green and brown respectively.

When mercury is analyzed using atomic absorption spectroscopy, a cold vapor method must be used, and tin (II) chloride is typically used as the reductant.

In organic chemistry, SnCl2 is mainly used in the Stephen reduction, whereby a nitrile is reduced (via an imidoyl chloride salt) to an imine which is easily hydrolysed to an aldehyde.

The reaction usually works best with aromatic nitriles Aryl-CN. A related reaction (called the Sonn-Müller method) starts with an amide, which is treated with PCl5 to form the imidoyl chloride salt.

The Stephen reduction
The Stephen reduction

The Stephen reduction is less used today, because it has been mostly superseded by diisobutylaluminium hydride reduction.

Additionally, SnCl2 is used to selectively reduce aromatic nitro groups to anilines.

Aromatic nitro group reduction using SnCl2
Aromatic nitro group reduction using SnCl2

SnCl2 also reduces quinones to hydroquinones.

Stannous chloride is also added as a food additive with E number E512 to some canned and bottled foods, where it serves as a color-retention agent and antioxidant.

SnCl2 is used in radionuclide angiography to reduce the radioactive agent technetium-99m-pertechnetate to assist in binding to blood cells.

Molten SnCl2 can be oxidised to form highly crystalline SnO2 nanostructures.

A Stannous reduction is used in nuclear medicine bone scans to remove the negative charge from free pertechnetate when it is bound to MDP for radiopharmaceutical studies. Incomplete reduction due to insufficient tin or accidental insufflation of air leads to the formation of free pertechnetate, a finding which can be seen on bone scans due to its inappropriate uptake in the stomach.

Stannous Chloride is used for coating SnO2 Tin Oxide doped conductive iridescent coatings for low e glass.

Notes

  • N. N. Greenwood, A. Earnshaw, Chemistry of the Elements, 2nd ed., Butterworth-Heinemann, Oxford, UK, 1997.
  • Handbook of Chemistry and Physics, 71st edition, CRC Press, Ann Arbor, Michigan, 1990.
  • The Merck Index, 7th edition, Merck & Co, Rahway, New Jersey, USA, 1960.
  • A. F. Wells, 'Structural Inorganic Chemistry, 5th ed., Oxford University Press, Oxford, UK, 1984.
  • J. March, Advanced Organic Chemistry, 4th ed., p. 723, Wiley, New York, 1992.

References

  1. "Tin (inorganic compounds, as Sn)". Immediately Dangerous to Life or Health Concentrations (IDLH). National Institute for Occupational Safety and Health (NIOSH).
  2. Record in the GESTIS Substance Database of the Institute for Occupational Safety and Health
  3. J. M. Leger; J. Haines; A. Atouf (1996). "The high pressure behaviour of the cotunnite and post-cotunnite phases of PbCl2 and SnCl2". J. Phys. Chem. Solids. 57 (1): 7–16. Bibcode:1996JPCS...57....7L. doi:10.1016/0022-3697(95)00060-7.
  4. H. Nechamkin (1968). The Chemistry of the Elements. New York: McGraw-Hill.
  5. Cetinkaya, B.; Gumrukcu, I.; Lappert, M. F.; et al. (1980-03-01). "Bivalent germanium, tin, and lead 2,6-di-tert-butylphenoxides and the crystal and molecular structures of M(OC6H2Me-4-But2-2,6)2 (M = Ge or Sn)". Journal of the American Chemical Society. 102 (6): 2088–2089. doi:10.1021/ja00526a054. ISSN 0002-7863.
  6. Armarego, W. L. F.; Chai, C. L. L. (2009). Purification of Laboratory Chemicals. Burlington: Elsevier, Butterwoth-Heinemann. doi:10.1016/B978-1-85617-567-8.50009-3. ISBN 978-0-08-087824-9. Retrieved 2022-02-03.
  7. How To Make Stannous Chloride for Testing Gold Solutions, 27 February 2015, retrieved 2023-02-10
  8. Fink, Colin; Putnam, Garth (1942-06-01). "Determination of Small Amounts of Gold with Stannous Chloride". Industrial & Engineering Chemistry Analytical Edition. 14 (6): 468–470. doi:10.1021/i560106a008. ISSN 0096-4484.
  9. Sam (2020-07-11). "Stannous Chloride – Test For Gold, Platinum and Palladium Presence". Gold-N-scrap. Retrieved 2024-05-05.
  10. Williams, J. W. (1955). "β-Naphthaldehyde". Organic Syntheses; Collected Volumes, vol. 3, p. 626.
  11. F. D. Bellamy & K. Ou (1984). "Selective reduction of aromatic nitro compounds with stannous chloride in non-acidic and non-aqueous medium". Tetrahedron Letters. 25 (8): 839–842. doi:10.1016/S0040-4039(01)80041-1.
  12. Kamali, Ali; Divitini, Reza; Ducati, Giorgio; Fray, Caterina; J, Derek (2014). "Transformation of molten SnCl2 to SnO2 nano-single crystals". CERI Ceramics International. 40 (6): 8533–8538. doi:10.1016/j.ceramint.2014.01.067. ISSN 0272-8842. OCLC 5902254906.
  13. Kamali, Ali Reza (2014). "Thermokinetic characterisation of tin(II) chloride". Journal of Thermal Analysis and Calorimetry. 118 (1): 99–104. doi:10.1007/s10973-014-4004-z. ISSN 1388-6150. OCLC 5690448892. S2CID 98207611.
  14. Cabral, RE; Leitão, AC; Lage, C; Caldeira-de-Araújo, A; Bernardo-Filho, M; Dantas, FJ; Cabral-Neto, JB (7 August 1998). "Mutational potentiality of stannous chloride: an important reducing agent in the Tc-99m-radiopharmaceuticals". Mutation Research. 408 (2): 129–35. doi:10.1016/s0921-8777(98)00026-3. PMID 9739815.
  15. Electrically conducting coating on glass and other ceramic bodies https://patents.google.com/patent/US2564987A/en
Tin compounds
Sn(II)
Sn(IV)
Salts and covalent derivatives of the chloride ion
HCl He
LiCl BeCl2 B4Cl4
B12Cl12
BCl3
B2Cl4
+BO3
C2Cl2
C2Cl4
C2Cl6
CCl4
+C
+CO3
NCl3
ClN3
+N
+NO3
ClxOy
Cl2O
Cl2O2
ClO
ClO2
Cl2O4
Cl2O6
Cl2O7
ClO4
+O
ClF
ClF3
ClF5
Ne
NaCl MgCl2 AlCl
AlCl3
Si5Cl12
Si2Cl6
SiCl4
P2Cl4
PCl3
PCl5
+P
S2Cl2
SCl2
SCl4
+SO4
Cl2 Ar
KCl CaCl
CaCl2
ScCl3 TiCl2
TiCl3
TiCl4
VCl2
VCl3
VCl4
VCl5
CrCl2
CrCl3
CrCl4
MnCl2
MnCl3
FeCl2
FeCl3
CoCl2
CoCl3
NiCl2 CuCl
CuCl2
ZnCl2 GaCl
GaCl3
GeCl2
GeCl4
AsCl3
AsCl5
+As
Se2Cl2
SeCl2
SeCl4
BrCl Kr
RbCl SrCl2 YCl3 ZrCl2
ZrCl3
ZrCl4
NbCl3
NbCl4
NbCl5
MoCl2
MoCl3
MoCl4
MoCl5
MoCl6
TcCl3
TcCl4
RuCl2
RuCl3
RuCl4
RhCl3 PdCl2 AgCl CdCl2 InCl
InCl2
InCl3
SnCl2
SnCl4
SbCl3
SbCl5
Te3Cl2
TeCl2
TeCl4
ICl
ICl3
XeCl
XeCl2
XeCl4
CsCl BaCl2 * LuCl3 HfCl4 TaCl3
TaCl4
TaCl5
WCl2
WCl3
WCl4
WCl5
WCl6
ReCl3
ReCl4
ReCl5
ReCl6
OsCl2
OsCl3
OsCl4
OsCl5
IrCl2
IrCl3
IrCl4
PtCl2
PtCl4
AuCl
(Au)2
AuCl3
Hg2Cl2
HgCl2
TlCl
TlCl3
PbCl2
PbCl4
BiCl3 PoCl2
PoCl4
AtCl Rn
FrCl RaCl2 ** LrCl3 RfCl4 DbCl5 SgO2Cl2 BhO3Cl Hs Mt Ds Rg Cn Nh Fl Mc Lv Ts Og
 
* LaCl3 CeCl3 PrCl3 NdCl2
NdCl3
PmCl3 SmCl2
SmCl3
EuCl2
EuCl3
GdCl3 TbCl3 DyCl2
DyCl3
HoCl3 ErCl3 TmCl2
TmCl3
YbCl2
YbCl3
** AcCl3 ThCl3
ThCl4
PaCl4
PaCl5
UCl3
UCl4
UCl5
UCl6
NpCl3 PuCl3 AmCl2
AmCl3
CmCl3 BkCl3 CfCl3
CfCl2
EsCl2
EsCl3
FmCl2 MdCl2 NoCl2
Categories: