Misplaced Pages

Cobalt(III) chloride

Article snapshot taken from Wikipedia with creative commons attribution-sharealike license. Give it a read and then ask your questions in the chat. We can research this topic together.
This article relies excessively on references to primary sources. Please improve this article by adding secondary or tertiary sources.
Find sources: "Cobalt(III) chloride" – news · newspapers · books · scholar · JSTOR (September 2018) (Learn how and when to remove this message)
Cobalt(III) chloride
Names
IUPAC name Cobalt(III) chloride
Other names Cobaltic chloride
Cobalt trichloride
Identifiers
CAS Number
3D model (JSmol)
ChemSpider
ECHA InfoCard 100.030.509 Edit this at Wikidata
EC Number
  • 233-574-8
PubChem CID
CompTox Dashboard (EPA)
InChI
  • InChI=1S/3ClH.Co/h3*1H;/q;;;+3/p-3Key: IEKWPPTXWFKANS-UHFFFAOYSA-K
SMILES
  • Cl(Cl)Cl
Properties
Chemical formula CoCl3
Molar mass 165.2913 g/mol (anhydrous)
Melting point Solid decomposes over −60°C
Solubility soluble in ethanol, diethyl ether
Hazards
GHS labelling:
Pictograms GHS06: Toxic
Signal word Danger
Hazard statements H300, H330
Precautionary statements P260, P264, P270, P271, P284, P301+P310, P304+P340, P310, P320, P321, P330, P403+P233, P405, P501
Except where otherwise noted, data are given for materials in their standard state (at 25 °C , 100 kPa). checkverify (what is  ?) Infobox references
Chemical compound

Cobalt(III) chloride or cobaltic chloride is an unstable and elusive compound of cobalt and chlorine with formula CoCl
3. In this compound, the cobalt atoms have a formal charge of +3.

The compound has been reported to exist in the gas phase at high temperatures, in equilibrium with cobalt(II) chloride and chlorine gas. It has also been found to be stable at very low temperatures, dispersed in a frozen argon matrix.

Some articles from the 1920s and 1930s claim the synthesis of bulk amounts of this compound in pure form; however, those results do not seem to have been reproduced, or have been attributed to other substances like the hexachlorocobaltate(III) anion CoCl
6. Those earlier reports claim that it gives green solutions in anhydrous solvents such as ethanol and diethyl ether, and that it is stable only a very low temperatures (below −60 °C).

Structure and properties

The infrared spectrum of the compound in frozen argon indicates that the isolated CoCl
3 molecule is planar with D3h symmetry.

A Scientific study of the stability of this and other metal trihalides at 50 °C was published by Nelsoon and Sharpe in 1956.

Aerodynamic properties for the gas phase have been determined by the Glushko Thermocenter of the Russian Academy of Sciences.

Preparation

Cobalts trichloride was detected in 1952 by Schäfer and Krehl in the gas phase when cobalt(II) chloride CoCl
2 is heated in an atmosphere of chlorine Cl
2. The trichloride is formed through the equilibrium

2CoCl
2 + Cl
2 ↔ 2 CoCl
3

At 918 K (below the melting point of CoCl
2, 999 K), the trichloride was the predominant cobalt species in the vapor, with partial pressure of 0.72 mm Hg versus 0.62 for the dichloride. However, equilibrium shifts to the left at higher temperatures. At 1073 K, the partial pressures were 7.3 and 31.3 mm Hg, respectively.

Cobalt trichloride, in amounts sufficient to study spectroscopically, was obtained by Green and others in 1983, by sputtering cobalt electrodes with chlorine atoms and trapping the resulting molecules in frozen argon at 14 K.

A report from 1969 claims that treatment of solid cobalt(III) hydroxide CoOOH·H
2O with anhydrous ether saturated with HCl at −20 °C produces a green solution (stable at −78 °C) with the characteristic spectrum of CoCl
3.

In a 1932 report, the compound was claimed to arise in the electrolysis of cobalt(II) chloride in anhydrous ethanol.

Related compounds

The hexachlorocobaltate(III) anion CoCl
6 has been identified in preparations of cobalt(III) salts and hydrochloric acid HCl in glacial acetic acid.

In solutions of cobalt(III) salts with chloride ions, the anionic complexes (H
2O)
5Co(Cl)
and (H
2O)
4(OH)Co(Cl)
are present.

Trichlorides of cobalt(III) complexed with various ligands, such as organic amines, can be quite stable. In particular, hexamminecobalt(III) chloride Co(NH
3)
6Cl
3 is the archetypal Werner complex and has uses in biological research. Another classical example is tris(ethylenediamine)cobalt(III) chloride Co(H
2N–C
2H
4–NH
2)
3Cl
3.

References

  1. ^ Arthur W. Chester, El-Ahmadi Heiba, Ralph M. Dessau, and William J. Koehl Jr. (1969): "The interaction of cobalt(III) with chloride ion in acetic acid". Inorganic and Nuclear Chemistry Letters, volume 5, issue 4, pages 277-283. doi:10.1016/0020-1650(69)80198-4
  2. ^ Harald Schäfer and Kurt Krehl (1952): "Das gasförmige Kobalt(III)‐chlorid und seine thermochemischen Eigenschaften". Zeitschrift für anorganische und allgemeine Chemie, volume 268, issue 1‐2, pages 25-34. doi:10.1002/zaac.19522680105
  3. ^ W. D. Halstead (1975): "A review of saturated vapour pressures and allied data for the principal corrosion products of iron, chromium, nickel and cobalt in flue gases". Corrosion Science, volume 15, issues 6–12, pages 603-625. doi:10.1016/0010-938X(75)90027-X
  4. ^ David W. Green, Dana P. McDermott, and Adelle Bergman (1983): "Infrared spectra of the matrix-isolated chlorides of iron, cobalt, and nickel." Journal of Molecular Spectroscopy, volume 98, issue 1, pages 111-124. doi:10.1016/0022-2852(83)90206-0
  5. C. Schall and H. Markgraf (1924). Transactions of the American Electrochemical Society, volume 45, page 161.
  6. D. Hibert and C. Duval (1937): Comptes rendues, volume 204, page 780.
  7. ^ C. Schall (1932): "Zur anodischen Oxydation von Co und Ni‐Dichlorid (Nachtrag)." Zeitschrift für Elektrochemie, volume 38, page 27.
  8. P. G. Nelsoon and A. G. Sharpe (1966): "The variations in the thermal stabilities of the trichlorides, tribromides, and tri-iodides of the metals of the first transition series at 50 °C". Journal of the Chemical Society A: Inorganic, Physical, Theoretical, volume 1966,pages 501-511 doi:10.1039/J19660000501
  9. Scientific Group Thermodata Europe (2001): "Thermodynamic Properties of Compounds, CoCl
    3 to NpCl
    3". In: Landolt-Börnstein - Group IV Physical Chemistry, Part 3: Compounds from CoCl
    3g to Ge
    3N
    4; volume 19 A3. doi:10.1007/10551582_3 ISBN 978-3-540-66796-4
  10. Harald Schäfer and Günther Breil (1956): "Über die Neigung zur Bildung gasförmiger Trichloride bei den Elementen Cr, Mn, Fe, Co, Ni, untersucht mit der Reaktion MeCl
    2 gas + 1/2 Cl
    2 = MeCl
    3 gas". Zeitschrift für anorganische und allgemeine Chemie, volume 283, issue 1‐6, pages 304-313. doi:10.1002/zaac.19562830130
  11. T. J. Conocchioli, G. H. Nancollas, and N. Sutin (1965): "The kinetics of the formation and dissociation of the monochloro complex of cobalt(III)". Inorganic Chemistry, volume 5, issue 1, pages 1-5. doi:10.1021/ic50035a001
Cobalt compounds
Cobalt(I)
Cobalt(II)
Cobalt(0,III)
Cobalt(II,III)
Cobalt(III)
Cobalt(III,IV)
Cobalt(IV)
Cobalt(V)
Salts and covalent derivatives of the chloride ion
HCl He
LiCl BeCl2 B4Cl4
B12Cl12
BCl3
B2Cl4
+BO3
C2Cl2
C2Cl4
C2Cl6
CCl4
+C
+CO3
NCl3
ClN3
+N
+NO3
ClxOy
Cl2O
Cl2O2
ClO
ClO2
Cl2O4
Cl2O6
Cl2O7
ClO4
+O
ClF
ClF3
ClF5
Ne
NaCl MgCl2 AlCl
AlCl3
Si5Cl12
Si2Cl6
SiCl4
P2Cl4
PCl3
PCl5
+P
S2Cl2
SCl2
SCl4
+SO4
Cl2 Ar
KCl CaCl
CaCl2
ScCl3 TiCl2
TiCl3
TiCl4
VCl2
VCl3
VCl4
VCl5
CrCl2
CrCl3
CrCl4
MnCl2
MnCl3
FeCl2
FeCl3
CoCl2
CoCl3
NiCl2 CuCl
CuCl2
ZnCl2 GaCl
GaCl3
GeCl2
GeCl4
AsCl3
AsCl5
+As
Se2Cl2
SeCl2
SeCl4
BrCl Kr
RbCl SrCl2 YCl3 ZrCl2
ZrCl3
ZrCl4
NbCl3
NbCl4
NbCl5
MoCl2
MoCl3
MoCl4
MoCl5
MoCl6
TcCl3
TcCl4
RuCl2
RuCl3
RuCl4
RhCl3 PdCl2 AgCl CdCl2 InCl
InCl2
InCl3
SnCl2
SnCl4
SbCl3
SbCl5
Te3Cl2
TeCl2
TeCl4
ICl
ICl3
XeCl
XeCl2
XeCl4
CsCl BaCl2 * LuCl3 HfCl4 TaCl3
TaCl4
TaCl5
WCl2
WCl3
WCl4
WCl5
WCl6
ReCl3
ReCl4
ReCl5
ReCl6
OsCl2
OsCl3
OsCl4
OsCl5
IrCl2
IrCl3
IrCl4
PtCl2
PtCl4
AuCl
(Au)2
AuCl3
Hg2Cl2
HgCl2
TlCl
TlCl3
PbCl2
PbCl4
BiCl3 PoCl2
PoCl4
AtCl Rn
FrCl RaCl2 ** LrCl3 RfCl4 DbCl5 SgO2Cl2 BhO3Cl Hs Mt Ds Rg Cn Nh Fl Mc Lv Ts Og
 
* LaCl3 CeCl3 PrCl3 NdCl2
NdCl3
PmCl3 SmCl2
SmCl3
EuCl2
EuCl3
GdCl3 TbCl3 DyCl2
DyCl3
HoCl3 ErCl3 TmCl2
TmCl3
YbCl2
YbCl3
** AcCl3 ThCl3
ThCl4
PaCl4
PaCl5
UCl3
UCl4
UCl5
UCl6
NpCl3 PuCl3 AmCl2
AmCl3
CmCl3 BkCl3 CfCl3
CfCl2
EsCl2
EsCl3
FmCl2 MdCl2 NoCl2
Categories: