Misplaced Pages

Cerium(III) chloride

Article snapshot taken from Wikipedia with creative commons attribution-sharealike license. Give it a read and then ask your questions in the chat. We can research this topic together.
Cerium(III) chloride
Cerium(III) chloride
Names
IUPAC names Cerium(III) chloride
Cerium trichloride
Other names Cerous chloride
Identifiers
CAS Number
3D model (JSmol)
ChEBI
ChemSpider
ECHA InfoCard 100.029.298 Edit this at Wikidata
EC Number
  • 232-227-8
Gmelin Reference 1828
PubChem CID
UNII
CompTox Dashboard (EPA)
InChI
  • InChI=1S/Ce.3ClH/h;3*1H/q+3;;;/p-3Key: VYLVYHXQOHJDJL-UHFFFAOYSA-K
  • InChI=1/Ce.3ClH/h;3*1H/q+3;;;/p-3Key: VYLVYHXQOHJDJL-DFZHHIFOAZ
SMILES
  • ...
Properties
Chemical formula CeCl3
Molar mass 246.48 g/mol (anhydrous)
372.58 g/mol (heptahydrate)
Appearance fine white powder
Density 3.97 g/cm
Melting point 817 °C (1,503 °F; 1,090 K) (anhydrous)
90 °C (heptahydrate, decomposes)
Boiling point 1,727 °C (3,141 °F; 2,000 K)
Solubility soluble in alcohol
Magnetic susceptibility (χ) +2490.0·10 cm/mol
Structure
Crystal structure hexagonal (UCl3 type), hP8
Space group P63/m, No. 176
Coordination geometry Tricapped trigonal prismatic
(nine-coordinate)
Hazards
GHS labelling:
Pictograms GHS05: CorrosiveGHS07: Exclamation markGHS09: Environmental hazard
Signal word Danger
Hazard statements H315, H318, H319, H335, H410
Precautionary statements P261, P264, P271, P273, P280, P302+P352, P304+P340, P305+P351+P338, P310, P312, P321, P332+P313, P337+P313, P362, P391, P403+P233, P405, P501
Flash point Non-flammable
Related compounds
Other anions Cerium(III) oxide
Cerium(III) fluoride
Cerium(III) bromide
Cerium(III) iodide
Other cations Lanthanum(III) chloride
Praseodymium(III) chloride
Except where otherwise noted, data are given for materials in their standard state (at 25 °C , 100 kPa). ☒verify (what is  ?) Infobox references
Chemical compound

Cerium(III) chloride (CeCl3), also known as cerous chloride or cerium trichloride, is a compound of cerium and chlorine. It is a white hygroscopic salt; it rapidly absorbs water on exposure to moist air to form a hydrate, which appears to be of variable composition, though the heptahydrate CeCl3·7H2O is known. It is highly soluble in water, and (when anhydrous) it is soluble in ethanol and acetone.

Preparation of anhydrous CeCl3

Simple rapid heating of the hydrate alone may cause small amounts of hydrolysis.

A useful form of anhydrous CeCl3 can be prepared if care is taken to heat the heptahydrate gradually to 140 °C (284 °F) over many hours under vacuum. This may or may not contain a little CeOCl from hydrolysis, but it is suitable for use with organolithium and Grignard reagents. Pure anhydrous CeCl3 can be made by dehydration of the hydrate either by slowly heating to 400 °C (752 °F) with 4–6 equivalents of ammonium chloride under high vacuum, or by heating with an excess of thionyl chloride for three hours. The anhydrous halide may alternatively be prepared from cerium metal and hydrogen chloride. It is usually purified by high temperature sublimation under high vacuum. Soxhlet extraction of CeCl3 with thf gives CeCl3(thf)1.04.

Uses

Cerium(III) chloride can be used as a starting point for the preparation of other cerium salts, such as the Lewis acid cerium(III) trifluoromethanesulfonate.

Organic synthesis

Cerium(III) chloride is a reagent in several procedures used in organic synthesis. Luche reduction of alpha, beta-unsaturated carbonyl compounds has become a popular method in organic synthesis, where CeCl3·7H2O is used in conjunction with sodium borohydride. For example, carvone gives only the allylic alcohol 1 and none of the saturated alcohol 2. Without CeCl3, a mixture of 1 and 2 is formed.

Luche reduction

It can also deprotect MEM group to alcohol in the presence of other acetal protecting groups (e.g. THP.)

Another important use in organic synthesis is for alkylation of ketones, which would otherwise form enolates if simple organolithium reagents were to be used. For example, compound 3 would be expected to simply form an enolate without CeCl3 being present, but in the presence of CeCl3 smooth alkylation occurs:

CeCl3 directed alkylation reaction

It is reported that organolithium reagents work more effectively in this reaction than do Grignard reagents.

References

  1. Several great producers such as Alfa and Strem list their products simply as a "hydrate" with "xH2O" in the formula, but Aldrich sells a heptahydrate.
  2. ^ Paquette, L. A. (1999). Coates, R. M.; Denmark, S. E. (eds.). Handbook of Reagents for Organic Synthesis: Reagents, Auxiliaries and Catalysts for C-C Bond Formation. New York: Wiley. ISBN 0-471-97924-4.
  3. ^ Edelmann, F. T.; Poremba, P. (1997). Herrmann, W. A. (ed.). Synthetic Methods of Organometallic and Inorganic Chemistry. Vol. VI. Stuttgart: Georg Thieme Verlag. ISBN 3-13-103021-6.
  4. ^ Johnson, C. R.; Tait, B. D. (1987). "A cerium(III) modification of the Peterson reaction: methylenation of readily enolizable carbonyl compounds". Journal of Organic Chemistry. 52 (2): 281–283. doi:10.1021/jo00378a024. ISSN 0022-3263.
  5. Dimitrov, Vladimir; Kostova, Kalina; Genov, Miroslav (1996). "Anhydrous cerium(III) chloride — Effect of the drying process on activity and efficiency". Tetrahedron Letters. 37 (37): 6787–6790. doi:10.1016/S0040-4039(96)01479-7.
  6. Taylor, M. D.; Carter, P. C. (1962). "Preparation of anhydrous lanthanide halides, especially iodides". Journal of Inorganic and Nuclear Chemistry. 24 (4): 387–391. doi:10.1016/0022-1902(62)80034-7.
  7. Kutscher, J.; Schneider, A. (1971). "Notiz zur Präparation von wasserfreien Lanthaniden-Haloge-niden, Insbesondere von Jodiden". Inorg. Nucl. Chem. Lett. 7 (9): 815. doi:10.1016/0020-1650(71)80253-2.
  8. Greenwood, N. N.; Earnshaw, A. (1984). Chemistry of the Elements. New York: Pergamon Press. ISBN 0-08-022056-8.
  9. Freeman, J. H.; Smith, M. L. (1958). "The preparation of anhydrous inorganic chlorides by dehydration with thionyl chloride". Journal of Inorganic and Nuclear Chemistry. 7 (3): 224–227. doi:10.1016/0022-1902(58)80073-1.
  10. Druding, L. F.; Corbett, J. D. (1961). "Lower Oxidation States of the Lanthanides. Neodymium(II) Chloride and Iodide". Journal of the American Chemical Society. 83 (11): 2462–2467. doi:10.1021/ja01472a010. ISSN 0002-7863.
  11. Corbett, J. D. (1973). "Reduced Halides of the Rare Earth Elements". Rev. Chim. Minérale. 10: 239.
  12. Hirneise, Lars; Buschmann, Dennis A.; Maichle-Mössmer, Cäcilia; Anwander, Reiner (2022). "Cerium Fluorenyl Complexes Including CC Coupling Reactions". Organometallics. 41 (8): 962–976. doi:10.1021/acs.organomet.2c00029. S2CID 248065310.
  13. Mine, Norioki; Fujiwara, Yuzo; Taniguchi, Hiroshi (1986). "Trichlorolanthanoid (LnCl3)-catalyzed Friedel-Crafts alkylation reactions". Chemistry Letters. 15 (3): 357–360. doi:10.1246/cl.1986.357.
  14. Paquette, Leo A.; Sabitha, G.; Yadav, J. S.; Scheuermann, Angelique M.; Merchant, Rohan R. (2021). "Cerium(III) Chloride". Encyclopedia of Reagents for Organic Synthesis. pp. 1–15. doi:10.1002/047084289X.rc041.pub3. ISBN 9780471936237.
  15. Luche, Jean-Louis; Rodriguez-Hahn, Lydia; Crabbé, Pierre (1978). "Reduction of natural enones in the presence of cerium trichloride". Journal of the Chemical Society, Chemical Communications (14): 601–602. doi:10.1039/C39780000601.

Further reading

Cerium compounds
Cerium(II)
Cerium(III)
Organocerium(III)
Cerium(III,IV)
Cerium(IV)
Salts and covalent derivatives of the chloride ion
HCl He
LiCl BeCl2 B4Cl4
B12Cl12
BCl3
B2Cl4
+BO3
C2Cl2
C2Cl4
C2Cl6
CCl4
+C
+CO3
NCl3
ClN3
+N
+NO3
ClxOy
Cl2O
Cl2O2
ClO
ClO2
Cl2O4
Cl2O6
Cl2O7
ClO4
+O
ClF
ClF3
ClF5
Ne
NaCl MgCl2 AlCl
AlCl3
Si5Cl12
Si2Cl6
SiCl4
P2Cl4
PCl3
PCl5
+P
S2Cl2
SCl2
SCl4
+SO4
Cl2 Ar
KCl CaCl
CaCl2
ScCl3 TiCl2
TiCl3
TiCl4
VCl2
VCl3
VCl4
VCl5
CrCl2
CrCl3
CrCl4
MnCl2
MnCl3
FeCl2
FeCl3
CoCl2
CoCl3
NiCl2 CuCl
CuCl2
ZnCl2 GaCl
GaCl3
GeCl2
GeCl4
AsCl3
AsCl5
+As
Se2Cl2
SeCl2
SeCl4
BrCl Kr
RbCl SrCl2 YCl3 ZrCl2
ZrCl3
ZrCl4
NbCl3
NbCl4
NbCl5
MoCl2
MoCl3
MoCl4
MoCl5
MoCl6
TcCl3
TcCl4
RuCl2
RuCl3
RuCl4
RhCl3 PdCl2 AgCl CdCl2 InCl
InCl2
InCl3
SnCl2
SnCl4
SbCl3
SbCl5
Te3Cl2
TeCl2
TeCl4
ICl
ICl3
XeCl
XeCl2
XeCl4
CsCl BaCl2 * LuCl3 HfCl4 TaCl3
TaCl4
TaCl5
WCl2
WCl3
WCl4
WCl5
WCl6
ReCl3
ReCl4
ReCl5
ReCl6
OsCl2
OsCl3
OsCl4
OsCl5
IrCl2
IrCl3
IrCl4
PtCl2
PtCl4
AuCl
(Au)2
AuCl3
Hg2Cl2
HgCl2
TlCl
TlCl3
PbCl2
PbCl4
BiCl3 PoCl2
PoCl4
AtCl Rn
FrCl RaCl2 ** LrCl3 RfCl4 DbCl5 SgO2Cl2 BhO3Cl Hs Mt Ds Rg Cn Nh Fl Mc Lv Ts Og
 
* LaCl3 CeCl3 PrCl3 NdCl2
NdCl3
PmCl3 SmCl2
SmCl3
EuCl2
EuCl3
GdCl3 TbCl3 DyCl2
DyCl3
HoCl3 ErCl3 TmCl2
TmCl3
YbCl2
YbCl3
** AcCl3 ThCl3
ThCl4
PaCl4
PaCl5
UCl3
UCl4
UCl5
UCl6
NpCl3 PuCl3 AmCl2
AmCl3
CmCl3 BkCl3 CfCl3
CfCl2
EsCl2
EsCl3
FmCl2 MdCl2 NoCl2
Lanthanide salts of halides
La Ce Pr Nd Pm Sm Eu Gd Tb Dy Ho Er Tm Yb Lu
+4 CeF4 PrF4 NdF4 TbF4 DyF4
+3 LaF3
LaCl3
LaBr3
LaI3
CeF3
CeCl3
CeBr3
CeI3
PrF3
PrCl3
PrBr3
PrI3
NdF3
NdCl3
NdBr3
NdI3
PmF3
PmCl3
PmBr3
PmI3
SmF3
SmCl3
SmBr3
SmI3
EuF3
EuCl3
EuBr3
EuI3
GdF3
GdCl3
GdBr3
GdI3
TbF3
TbCl3
TbBr3
TbI3
DyF3
DyCl3
DyBr3
DyI3
HoF3
HoCl3
HoBr3
HoI3
ErF3
ErCl3
ErBr3
ErI3
TmF3
TmCl3
TmBr3
TmI3
YbF3
YbCl3
YbBr3
YbI3
LuF3
LuCl3
LuBr3
LuI3
+2 LaI2 CeI2 PrI2 NdF2
NdCl2
NdBr2
NdI2
SmF2
SmCl2
SmBr2
SmI2
EuF2
EuCl2
EuBr2
EuI2
GdI2 DyF2
DyCl2
DyBr2
DyI2
TmF2
TmCl2
TmBr2
TmI2
YbF2
YbCl2
YbBr2
YbI2
Categories: