Misplaced Pages

Barium chloride

Article snapshot taken from Wikipedia with creative commons attribution-sharealike license. Give it a read and then ask your questions in the chat. We can research this topic together.
Barium chloride
Names
Other names
  • Barium dichloride
  • Barium muriate
  • Muryate of Barytes
  • Neutral barium chloride
Identifiers
CAS Number
3D model (JSmol)
ChemSpider
ECHA InfoCard 100.030.704 Edit this at Wikidata
EC Number
  • 233-788-1
PubChem CID
RTECS number
  • CQ8750000 (anhydrous)
    CQ8751000 (dihydrate)
UNII
UN number 1564
CompTox Dashboard (EPA)
InChI
  • InChI=1S/Ba.2ClH/h;2*1H/q+2;;/p-2Key: WDIHJSXYQDMJHN-UHFFFAOYSA-L
  • InChI=1/Ba.2ClH/h;2*1H/q+2;;/p-2Key: WDIHJSXYQDMJHN-NUQVWONBAL
SMILES
  • ..
Properties
Chemical formula BaCl2
Molar mass 208.23 g/mol (anhydrous)
244.26 g/mol (dihydrate)
Appearance White powder, or colourless or white crystals (anhydrous)
Colourless rhomboidal crystals (dihydrate)
Odor Odourless
Density 3.856 g/cm (anhydrous)
3.0979 g/cm (dihydrate)
Melting point 962 °C (1,764 °F; 1,235 K) (960 °C, dihydrate)
Boiling point 1,560 °C (2,840 °F; 1,830 K)
Solubility in water
  • 31.2 g/(100 mL) (0 °C)
  • 35.8 g/(100 mL) (20 °C)
  • 59.4 g/(100 mL) (100 °C)
Solubility Soluble in methanol, insoluble ethyl acetate, slightly soluble in hydrochloric acid and nitric acid, very slightly soluble in ethanol. The dihydrate of barium chloride is soluble in methanol, almost insoluble in ethanol, acetone and ethyl acetate.
Magnetic susceptibility (χ) −72.6·10 cm/mol
Structure
Crystal structure PbCl2-type orthorhombic (anhydrous)
monoclinic (dihydrate)
Coordination geometry
  • Of the Ba cations:
  • 8 (the fluorite polymorph)
  • 9 (the cotunnite polymorph)
  • 10 (the post-cotunnite polymorph at pressures of 7–10 GPa)
Thermochemistry
Std molar
entropy
(S298)
123.9 J/(mol·K)
Std enthalpy of
formation
fH298)
−858.56 kJ/mol
Hazards
Occupational safety and health (OHS/OSH):
Main hazards Highly toxic, corrosive
GHS labelling:
Pictograms GHS06: Toxic
Signal word Danger
Hazard statements H301, H302, H332
Precautionary statements P261, P264, P270, P271, P301+P310, P304+P312, P304+P340, P312, P321, P330, P405, P501
NFPA 704 (fire diamond)
NFPA 704 four-colored diamondHealth 3: Short exposure could cause serious temporary or residual injury. E.g. chlorine gasFlammability 0: Will not burn. E.g. waterInstability 0: Normally stable, even under fire exposure conditions, and is not reactive with water. E.g. liquid nitrogenSpecial hazards (white): no code
3 0 0
Flash point Non-flammable
Lethal dose or concentration (LD, LC):
LD50 (median dose) 78 mg/kg (rat, oral)
50 mg/kg (guinea pig, oral)
LDLo (lowest published) 112 mg/kg (as Ba) (rabbit, oral)
59 mg/kg (as Ba) (dog, oral)
46 mg/kg (as Ba) (mouse, oral)
NIOSH (US health exposure limits):
PEL (Permissible) TWA 0.5 mg/m
REL (Recommended) TWA 0.5 mg/m
IDLH (Immediate danger) 50 mg/m
Safety data sheet (SDS) NIH BaCl
Related compounds
Other anions
Other cations
Supplementary data page
Barium chloride (data page)
Except where otherwise noted, data are given for materials in their standard state (at 25 °C , 100 kPa). ☒verify (what is  ?) Infobox references
Chemical compound

Barium chloride is an inorganic compound with the formula BaCl2. It is one of the most common water-soluble salts of barium. Like most other water-soluble barium salts, it is a white powder, highly toxic, and imparts a yellow-green coloration to a flame. It is also hygroscopic, converting to the dihydrate BaCl2·2H2O, which are colourless crystals with a bitter salty taste. It has limited use in the laboratory and industry.

Preparation

On an industrial scale, barium chloride is prepared via a two step process from barite (barium sulfate). The first step requires high temperatures.

BaSO4 + 4 C → BaS + 4 CO

The second step requires reaction between barium sulfide and hydrogen chloride:

BaS + 2 HCl → BaCl2 + H2S

or between barium sulfide and calcium chloride:

BaS + CaCl2 → CaS + BaCl2

In place of HCl, chlorine can be used. Barium chloride is extracted out from the mixture with water. From water solutions of barium chloride, its dihydrate (BaCl2·2H2O) can be crystallized as colorless crystals.

Barium chloride can in principle be prepared by the reaction between barium hydroxide or barium carbonate with hydrogen chloride. These basic salts react with hydrochloric acid to give hydrated barium chloride.

Ba(OH)2 + 2 HCl → BaCl2 + 2 H2O
BaCO3 + 2 HCl → BaCl2 + H2O + CO2

Structure and properties

BaCl2 crystallizes in two forms (polymorphs). At room temperature, the compound is stable in the orthorhombic cotunnite (PbCl2) structure, whereas the cubic fluorite structure (CaF2) is stable between 925 and 963 °C. Both polymorphs accommodate the preference of the large Ba ion for coordination numbers greater than six. The coordination of Ba is 8 in the fluorite structure and 9 in the cotunnite structure. When cotunnite-structure BaCl2 is subjected to pressures of 7–10 GPa, it transforms to a third structure, a monoclinic post-cotunnite phase. The coordination number of Ba increases from 9 to 10.

In aqueous solution BaCl2 behaves as a simple salt; in water it is a 1:2 electrolyte and the solution exhibits a neutral pH. Its solutions react with sulfate ion to produce a thick white solid precipitate of barium sulfate.

BaCl2 + Na2SO4 → 2 NaCl + BaSO4

This precipitation reaction is used in chlor-alkali plants to control the sulfate concentration in the feed brine for electrolysis.

Oxalate effects a similar reaction:

BaCl2 + Na2C2O4 → 2 NaCl + BaC2O4

When it is mixed with sodium hydroxide, it gives barium hydroxide, which is moderately soluble in water.

BaCl2 + 2 NaOH → 2 NaCl + Ba(OH)2

BaCl2·2H2O is stable in the air at room temperature, but loses one water of crystallization above 55 °C (131 °F), becoming BaCl2·H2O, and becomes anhydrous above 121 °C (250 °F). BaCl2·H2O may be formed by shaking the dihydrate with methanol.

BaCl2 readily forms eutectics with alkali metal chlorides.

Uses

Although inexpensive, barium chloride finds limited applications in the laboratory and industry.

Its main laboratory use is as a reagent for the gravimetric determination of sulfates. The sulfate compound being analyzed is dissolved in water and hydrochloric acid is added. When barium chloride solution is added, the sulfate present precipitates as barium sulfate, which is then filtered through ashless filter paper. The paper is burned off in a muffle furnace, the resulting barium sulfate is weighed, and the purity of the sulfate compound is thus calculated.

In industry, barium chloride is mainly used in the purification of brine solution in caustic chlorine plants and also in the manufacture of heat treatment salts, case hardening of steel. It is also used to make red pigments such as Lithol red and Red Lake C. Its toxicity limits its applicability.

Toxicity

Barium chloride, along with other water-soluble barium salts, is highly toxic. It irritates eyes and skin, causing redness and pain. It damages kidneys. Fatal dose of barium chloride for a human has been reported to be about 0.8-0.9 g. Systemic effects of acute barium chloride toxicity include abdominal pain, diarrhea, nausea, vomiting, cardiac arrhythmia, muscular paralysis, and death. The Ba ions compete with the K ions, causing the muscle fibers to be electrically unexcitable, thus causing weakness and paralysis of the body. Sodium sulfate and magnesium sulfate are potential antidotes because they form barium sulfate BaSO4, which is relatively non-toxic because of its insolubility in water.

Barium chloride is not classified as a human carcinogen.

References

  1. Chemical Recreations: A Series of Amusing and Instructive Experiments, which May be Performed with Ease, Safety, Success, and Economy ; to which is Added, the Romance of Chemistry : An Inquiry into the Fallacies of the Prevailing Theory of Chemistry : With a New Theory and a New Nomenclature. R. Griffin & Company. 1834.
  2. ^ "Barium Chloride - an overview | ScienceDirect Topics".
  3. ^ "Barium chloride".
  4. Handbook of Chemistry and Physics, 71st edition, CRC Press, Ann Arbor, Michigan, 1990.
  5. ^ NIOSH Pocket Guide to Chemical Hazards. "#0045". National Institute for Occupational Safety and Health (NIOSH).
  6. ^ "Barium (soluble compounds, as Ba)". Immediately Dangerous to Life or Health Concentrations (IDLH). National Institute for Occupational Safety and Health (NIOSH).
  7. ^ Kresse, Robert; Baudis, Ulrich; Jäger, Paul; Riechers, H. Hermann; Wagner, Heinz; Winkler, Jocher; Wolf, Hans Uwe (2007). "Barium and Barium Compounds". In Ullman, Franz (ed.). Ullmann's Encyclopedia of Industrial Chemistry. Wiley-VCH. doi:10.1002/14356007.a03_325.pub2. ISBN 978-3527306732.
  8. Greenwood, Norman N.; Earnshaw, Alan (1997). Chemistry of the Elements (2nd ed.). Butterworth-Heinemann. ISBN 978-0-08-037941-8.
  9. Edgar, A.; Zimmermann, J.; von Seggern, H.; Varoy, C. R. (2010-04-15). "Lanthanum-stabilized europium-doped cubic barium chloride: An efficient x-ray phosphor". Journal of Applied Physics. 107 (8). AIP Publishing: 083516–083516–7. Bibcode:2010JAP...107h3516E. doi:10.1063/1.3369162. ISSN 0021-8979.
  10. Wells, A. F. (1984) Structural Inorganic Chemistry, Oxford: Clarendon Press. ISBN 0-19-855370-6.
  11. Haase, A.; Brauer, G. (1978). "Hydratstufen und Kristallstrukturen von Bariumchlorid". Z. anorg. allg. Chem. 441: 181–195. doi:10.1002/zaac.19784410120.
  12. Brackett, E. B.; Brackett, T. E.; Sass, R. L. (1963). "The Crystal Structures of Barium Chloride, Barium Bromide, and Barium Iodide". J. Phys. Chem. 67 (10): 2132. doi:10.1021/j100804a038.
  13. Léger, J. M.; Haines, J.; Atouf, A. (1995). "The Post-Cotunnite Phase in BaCl2, BaBr2 and BaI2 under High Pressure". J. Appl. Crystallogr. 28 (4): 416. Bibcode:1995JApCr..28..416L. doi:10.1107/S0021889895001580.
  14. The Merck Index, 7th edition, Merck & Co., Rahway, New Jersey, 1960.

External links

Barium compounds
Salts and covalent derivatives of the chloride ion
HCl He
LiCl BeCl2 B4Cl4
B12Cl12
BCl3
B2Cl4
+BO3
C2Cl2
C2Cl4
C2Cl6
CCl4
+C
+CO3
NCl3
ClN3
+N
+NO3
ClxOy
Cl2O
Cl2O2
ClO
ClO2
Cl2O4
Cl2O6
Cl2O7
ClO4
+O
ClF
ClF3
ClF5
Ne
NaCl MgCl2 AlCl
AlCl3
Si5Cl12
Si2Cl6
SiCl4
P2Cl4
PCl3
PCl5
+P
S2Cl2
SCl2
SCl4
+SO4
Cl2 Ar
KCl CaCl
CaCl2
ScCl3 TiCl2
TiCl3
TiCl4
VCl2
VCl3
VCl4
VCl5
CrCl2
CrCl3
CrCl4
MnCl2
MnCl3
FeCl2
FeCl3
CoCl2
CoCl3
NiCl2 CuCl
CuCl2
ZnCl2 GaCl
GaCl3
GeCl2
GeCl4
AsCl3
AsCl5
+As
Se2Cl2
SeCl2
SeCl4
BrCl Kr
RbCl SrCl2 YCl3 ZrCl2
ZrCl3
ZrCl4
NbCl3
NbCl4
NbCl5
MoCl2
MoCl3
MoCl4
MoCl5
MoCl6
TcCl3
TcCl4
RuCl2
RuCl3
RuCl4
RhCl3 PdCl2 AgCl CdCl2 InCl
InCl2
InCl3
SnCl2
SnCl4
SbCl3
SbCl5
Te3Cl2
TeCl2
TeCl4
ICl
ICl3
XeCl
XeCl2
XeCl4
CsCl BaCl2 * LuCl3 HfCl4 TaCl3
TaCl4
TaCl5
WCl2
WCl3
WCl4
WCl5
WCl6
ReCl3
ReCl4
ReCl5
ReCl6
OsCl2
OsCl3
OsCl4
OsCl5
IrCl2
IrCl3
IrCl4
PtCl2
PtCl4
AuCl
(Au)2
AuCl3
Hg2Cl2
HgCl2
TlCl
TlCl3
PbCl2
PbCl4
BiCl3 PoCl2
PoCl4
AtCl Rn
FrCl RaCl2 ** LrCl3 RfCl4 DbCl5 SgO2Cl2 BhO3Cl Hs Mt Ds Rg Cn Nh Fl Mc Lv Ts Og
 
* LaCl3 CeCl3 PrCl3 NdCl2
NdCl3
PmCl3 SmCl2
SmCl3
EuCl2
EuCl3
GdCl3 TbCl3 DyCl2
DyCl3
HoCl3 ErCl3 TmCl2
TmCl3
YbCl2
YbCl3
** AcCl3 ThCl3
ThCl4
PaCl4
PaCl5
UCl3
UCl4
UCl5
UCl6
NpCl3 PuCl3 AmCl2
AmCl3
CmCl3 BkCl3 CfCl3
CfCl2
EsCl2
EsCl3
FmCl2 MdCl2 NoCl2
Categories: