This is an old revision of this page, as edited by 209.147.105.130 (talk) at 16:10, 23 October 2010 (→Relation to ideals). The present address (URL) is a permanent link to this revision, which may differ significantly from the current revision.
Revision as of 16:10, 23 October 2010 by 209.147.105.130 (talk) (→Relation to ideals)(diff) ← Previous revision | Latest revision (diff) | Newer revision → (diff)In mathematics, a subring is a subset of a ring which contains the multiplicative identity and is itself a ring under the same binary operations. Naturally, those authors who do not require rings to contain a multiplicative identity do not require subrings to possess the identity (if it exists). This leads to the added advantage that ideals become subrings (see below).
A subring of a ring (R, +, *) is a subgroup of (R, +) which contains the mutiplicative identity and is closed under multiplication.
For example, the ring Z of integers is a subring of the field of real numbers and also a subring of the ring of polynomials Z.
The ring Z has no subrings (with multiplicative identity) other than itself.
Every ring has a unique smallest subring, isomorphic to either the integers Z or some ring Z/nZ with n a nonnegative integer (see characteristic).
The subring test states that for any ring, a nonempty subset of that ring is itself a ring if it is closed under multiplication and subtraction, and has a multiplicative identity.
Subring generated by a set
Let R be a ring. Any intersection of subrings of R is again a subring of R. Therefore, if X is any subset of R, the intersection of all subrings of R containing X is a subring S of R. S is the smallest subring of R containing X. ("Smallest" means that if T is any other subring of R containing X, then S is contained in T.) S is said to be the subring of R generated by X. If S = R, we may say that the ring R is generated by X.
Relation to ideals
Proper ideals are subrings that are closed under both left and right multiplication by elements from R.
Profile by commutative subrings
A ring may be profiled by the variety of commutative subrings that it hosts:
- The quaternion ring H contains only the complex plane as a planar subring
- The coquaternion ring contains three types of commutative planar subrings: the dual number plane, the split-complex number plane, as well as the ordinary complex plane
- The ring of 3 x 3 real matrices also contains 3-dimensional commutative subrings generated by the identity matrix and a nilpotent ε of order 3 (εεε = 0 ≠ εε). For instance, the Heisenberg group can be realized as the join of the groups of units of two of these nilpotent-generated subrings of 3 x 3 matrices.
References
- Iain T. Adamson (1972). Elementary rings and modules. University Mathematical Texts. Oliver and Boyd. pp. 14–16. ISBN 0-05-002192-3.
- Page 84 of Lang, Serge (1993), Algebra (Third ed.), Reading, Mass.: Addison-Wesley, ISBN 978-0-201-55540-0, Zbl 0848.13001
- David Sharpe (1987). Rings and factorization. Cambridge University Press. pp. 15–17. ISBN 0-521-33718-6.