Misplaced Pages

Subring

Article snapshot taken from Wikipedia with creative commons attribution-sharealike license. Give it a read and then ask your questions in the chat. We can research this topic together.

This is an old revision of this page, as edited by 209.147.105.130 (talk) at 16:10, 23 October 2010 (Relation to ideals). The present address (URL) is a permanent link to this revision, which may differ significantly from the current revision.

Revision as of 16:10, 23 October 2010 by 209.147.105.130 (talk) (Relation to ideals)(diff) ← Previous revision | Latest revision (diff) | Newer revision → (diff)

In mathematics, a subring is a subset of a ring which contains the multiplicative identity and is itself a ring under the same binary operations. Naturally, those authors who do not require rings to contain a multiplicative identity do not require subrings to possess the identity (if it exists). This leads to the added advantage that ideals become subrings (see below).

A subring of a ring (R, +, *) is a subgroup of (R, +) which contains the mutiplicative identity and is closed under multiplication.

For example, the ring Z of integers is a subring of the field of real numbers and also a subring of the ring of polynomials Z.

The ring Z has no subrings (with multiplicative identity) other than itself.

Every ring has a unique smallest subring, isomorphic to either the integers Z or some ring Z/nZ with n a nonnegative integer (see characteristic).

The subring test states that for any ring, a nonempty subset of that ring is itself a ring if it is closed under multiplication and subtraction, and has a multiplicative identity.

Subring generated by a set

Let R be a ring. Any intersection of subrings of R is again a subring of R. Therefore, if X is any subset of R, the intersection of all subrings of R containing X is a subring S of R. S is the smallest subring of R containing X. ("Smallest" means that if T is any other subring of R containing X, then S is contained in T.) S is said to be the subring of R generated by X. If S = R, we may say that the ring R is generated by X.

Relation to ideals

Proper ideals are subrings that are closed under both left and right multiplication by elements from R.

Profile by commutative subrings

A ring may be profiled by the variety of commutative subrings that it hosts:

References

Category: