Misplaced Pages

Methylcyclopentane

Article snapshot taken from Wikipedia with creative commons attribution-sharealike license. Give it a read and then ask your questions in the chat. We can research this topic together.

This is the current revision of this page, as edited by 5.178.188.143 (talk) at 16:22, 19 December 2024. The present address (URL) is a permanent link to this version.

Revision as of 16:22, 19 December 2024 by 5.178.188.143 (talk)(diff) ← Previous revision | Latest revision (diff) | Newer revision → (diff)
Methylcyclopentane
Names
Preferred IUPAC name Methylcyclopentane
Identifiers
CAS Number
3D model (JSmol)
ChEBI
ChEMBL
ChemSpider
ECHA InfoCard 100.002.277 Edit this at Wikidata
EC Number
  • 202-503-2
PubChem CID
UNII
UN number 2298
CompTox Dashboard (EPA)
InChI
  • InChI=1S/C6H12/c1-6-4-2-3-5-6/h6H,2-5H2,1H3
SMILES
  • CC1CCCC1
Properties
Chemical formula C6H12
Molar mass 84.162 g·mol
Appearance Colorless liquid
Density 0.749 g/cm
Melting point −142.4 °C (−224.3 °F; 130.8 K)
Boiling point 71.8 °C (161.2 °F; 344.9 K)
Solubility in water Insoluble
Magnetic susceptibility (χ) -70.17·10 cm/mol
Hazards
Occupational safety and health (OHS/OSH):
Main hazards flammable
Flash point −4 °C (25 °F; 269 K)
Autoignition
temperature
260 °C (500 °F; 533 K)
Except where otherwise noted, data are given for materials in their standard state (at 25 °C , 100 kPa). ☒verify (what is  ?) Infobox references
Chemical compound

Methylcyclopentane is an organic compound with the chemical formula CH3C5H9. It is a colourless, flammable liquid with a faint odor. It is a component of the naphthene fraction of petroleum usually obtained as a mixture with cyclohexane. It is mainly converted in naphthene reformers to benzene.

As of early 1990s, it was present in American and European gasoline in small amounts, and by 2011 its share in US gasoline varied between 1 and 3%. It has a research octane number of 103 and motor octane number of 95.

The C6 core of methylcyclopentane is not perfectly planar and can pucker to alleviate stress in its structure.

The conversion of methylcyclopentane to benzene is a classic aromatization reaction, specifically a dehydroisomerization. This platinum (Pt)-catalyzed process is practiced on scale in the production of gasoline from petroleum.

History

Methylcyclopentane was first synthesized in 1888 by Paul Caspar Freer [Wikidata] and W. H. Perkin Jr. by a Wurtz reaction of sodium and 1,5-dibromohexane. They named it methylpentamethylene since the modern nomenclature wasn't developed until 1892 Geneva Rules.

In 1895, Nikolai Kischner discovered that methylcyclopentane was the reaction product of hydrogenation of benzene using hydriodic acid. Prior to that, several chemists (such as Marcellin Berthelot in 1867, and Adolf von Baeyer in 1870) had tried and failed to synthesize cyclohexane using this method.

References

  1. ^ Lide, David. R, ed. (2009). CRC Handbook of Chemistry and Physics (89th ed.). CRC Press. ISBN 978-1-4200-6679-1.
  2. M. Larry Campbell (2012). "Cyclohexane". Ullmann's Encyclopedia of Industrial Chemistry. Weinheim: Wiley-VCH. doi:10.1002/14356007.a08_209.pub2. ISBN 978-3527306732.
  3. Doskey, Paul V.; Porter, Joseph A.; Scheff, Peter A. (November 1992). "Source Fingerprints for Volatile Non-Methane Hydrocarbons". Journal of the Air & Waste Management Association. 42 (11): 1437–1445. doi:10.1080/10473289.1992.10467090. ISSN 1047-3289.
  4. Östermark, Ulf; Petersson, Göran (1992-09-01). "Assessment of hydrocarbons in vapours of conventional and alkylate-based petrol" (PDF). Chemosphere. 25 (6): 763–768. doi:10.1016/0045-6535(92)90066-Z. ISSN 0045-6535.
  5. "Hydrocarbon Composition of Gasoline Vapor Emissions from Enclosed Fuel Tanks". nepis.epa.gov. United States Environmental Protection Agency. 2011.
  6. Lokachari, Nitin; Wagnon, Scott W.; Kukkadapu, Goutham; Pitz, William J.; Curran, Henry J. (2021-03-01). "An experimental and kinetic modeling study of cyclopentane and dimethyl ether blends". Combustion and Flame. 225: 255–271. doi:10.1016/j.combustflame.2020.10.017. hdl:10379/16483. ISSN 0010-2180.
  7. Carey, Francis; Giuliano, Robert (2014). "3". Organic Chemistry (9 ed.). McGraw-Hill. pp. 97–131. ISBN 978-0073402741.
  8. Freer, Paul C.; Perkin, W. H. (1888). "The synthetical formation of closed carbon-chains. Part IV. Some derivatives of hexamethylene". Journal of the Chemical Society, Transactions. 53 (0): 202–215. doi:10.1039/CT8885300202. ISSN 0368-1645.
  9. Bertholet (1867). "Nouvelles applications des méthodes de réduction en chimie organique" [New applications of reduction methods in organic chemistry]. Bulletin de la Société Chimique de Paris (in French). series 2 (7): 53–65.
  10. Bertholet (1868). "Méthode universelle pour réduire et saturer d'hydrogène les composés organiques" [Universal method for reducing and saturating organic compounds with hydrogen]. Bulletin de la Société Chimique de Paris (in French). series 2 (9): 8–31. En effet, la benzine, chauffée à 280° pendant 24 heures avec 80 fois son poids d'une solution aqueuse saturée à froid d'acide iodhydrique, se change à peu près entièrement en hydrure d'hexylène, C12H14, en fixant 4 fois son volume d'hydrogène: C12H6 + 4H2 = C12H14 … Le nouveau carbure formé par la benzine est un corps unique et défini: il bout à 69°, et offre toutes les propriétés et la composition de l'hydrure d'hexylène extrait des pétroles. [In effect, benzene, heated to 280° for 24 hours with 80 times its weight of an aqueous solution of cold saturated hydroiodic acid, is changed almost entirely into hydride of hexylene, C12H14, by fixing 4 times its volume of hydrogen: C12H6 + 4H2 = C12H14 The new carbon compound formed by benzene is a unique and well-defined substance: it boils at 69° and presents all the properties and the composition of hydride of hexylene extracted from oil.)]
  11. Adolf Baeyer (1870). "Ueber die Reduction aromatischer Kohlenwasserstoffe durch Jodphosphonium" [On the reduction of aromatic compound by phosphonium iodide ]. Annalen der Chemie und Pharmacie. 55: 266–281. Bei der Reduction mit Natriumamalgam oder Jodphosphonium addiren sich im höchsten Falle sechs Atome Wasserstoff, und es entstehen Abkömmlinge, die sich von einem Kohlenwasserstoff C6H12 ableiten. Dieser Kohlenwasserstoff ist aller Wahrscheinlichkeit nach ein geschlossener Ring, da seine Derivate, das Hexahydromesitylen und Hexahydromellithsäure, mit Leichtigkeit wieder in Benzolabkömmlinge übergeführt werden können. [During the reduction with sodium amalgam or phosphonium iodide, six atoms of hydrogen are added in the extreme case, and there arise derivatives, which derive from a hydrocarbon C6H12. This hydrocarbon is in all probability a closed ring, since its derivatives — hexahydromesitylene and hexahydromellithic acid — can be converted with ease again into benzene derivatives.]
Hydrocarbons
Saturated
aliphatic
hydrocarbons
Alkanes
CnH2n + 2
Linear alkanes
Branched alkanes
Cycloalkanes
Alkylcycloalkanes
Bicycloalkanes
Polycycloalkanes
Other
Unsaturated
aliphatic
hydrocarbons
Alkenes
CnH2n
Linear alkenes
Branched alkenes
Alkynes
CnH2n − 2
Linear alkynes
Branched alkynes
Cycloalkenes
Alkylcycloalkenes
Bicycloalkenes
Cycloalkynes
Dienes
Other
Aromatic
hydrocarbons
PAHs
Acenes
Other
Alkylbenzenes
C2-Benzenes
Xylenes
Other
C3-Benzenes
Trimethylbenzenes
Other
C4-Benzenes
Cymenes
Tetramethylbenzenes
Other
Other
Vinylbenzenes
Other
Other
Categories: