Misplaced Pages

Vannevar Bush

Article snapshot taken from Wikipedia with creative commons attribution-sharealike license. Give it a read and then ask your questions in the chat. We can research this topic together.

This is an old revision of this page, as edited by Dr Fil (talk | contribs) at 19:40, 28 January 2013 (Put Bush's most important contribution up front). The present address (URL) is a permanent link to this revision, which may differ significantly from the current revision.

Revision as of 19:40, 28 January 2013 by Dr Fil (talk | contribs) (Put Bush's most important contribution up front)(diff) ← Previous revision | Latest revision (diff) | Newer revision → (diff)

Vannevar Bush
Vannevar Bush, ca. 1940–44
Born(1890-03-11)March 11, 1890
Everett, Massachusetts
DiedJune 28, 1974(1974-06-28) (aged 84)
Belmont, Massachusetts
NationalityUnited States of America
Alma materB.S., M.S. Tufts College 1913
D. Eng. MIT 1916
Known forNational Science Foundation
Manhattan Project
Raytheon
Differential analyzer
AwardsEdison Medal (1943)
Medal for Merit (1948)
National Medal of Science (1963)
Atomic Pioneer Award (1970)
(more, see below)
Scientific career
FieldsElectrical engineering
InstitutionsMIT
Doctoral advisorArthur Edwin Kennelly
Notable studentsClaude Shannon
Signature

Vannevar Bush (/væˈniːvɑːr/ van-NEE-var; March 11, 1890 – June 28, 1974) was an American engineer, inventor and science administrator, whose most important contribution was as head of the U.S. Office of Scientific Research and Development (OSRD) during World War II, through which almost all wartime military R&D was carried out, including initiation and early administration of the Manhattan Project. His office was considered one of the key factors in winning the war. He is also known in engineering for his work on analog computers, for founding Raytheon, and for the memex, an adjustable microfilm viewer with a structure analogous to that of the World Wide Web. In 1945, Bush published As We May Think in which he predicted that "wholly new forms of encyclopedias will appear, ready made with a mesh of associative trails running through them, ready to be dropped into the memex and there amplified". The memex influenced generations of computer scientists, who drew inspiration from its vision of the future.

For his master's thesis, Bush invented and patented a "profile tracer", a mapping device for assisting surveyors. It was the first of a string of inventions. He joined the Department of Electrical Engineering at MIT in 1919, and founded the company now known as Raytheon in 1922. Starting in 1927, Bush constructed a differential analyzer, an analog computer with some digital components that could solve differential equations with as many as 18 independent variables. An offshoot of the work at MIT by Bush and others was the beginning of digital circuit design theory. Bush became Vice President of MIT and Dean of the MIT School of Engineering in 1932, and president of the Carnegie Institution of Washington in 1938.

Bush was appointed to the National Advisory Committee for Aeronautics (NACA) in 1938, and soon became its chairman. As Chairman of the National Defense Research Committee (NDRC), and later Director of the Office of Scientific Research and Development (OSRD), Bush coordinated the activities of some six thousand leading American scientists in the application of science to warfare. Bush was a well-known policymaker and public intellectual during World War II, when he was in effect the first presidential science advisor. As head of NDRC and OSRD, he initiated the Manhattan Project, and ensured that it received top priority from the highest levels of government. In Science, The Endless Frontier, his 1945 report to the President of the United States, Bush called for an expansion of government support for science, and he pressed for the creation of the National Science Foundation.

Early life and work

Vannevar Bush was born in Everett, Massachusetts, on March 11, 1890, the third child and only son of Perry Bush, the local Universalist pastor, and his wife Emma Linwood née Paine. He was named after John Vannevar, an old friend of the family who had attended Tufts College with Perry. The family moved to Chelsea, Massachusetts, in 1892, and Bush graduated from Chelsea High School in 1909. Bush attended Tufts College, like his father before him. A popular student, he was vice president of his sophomore class, and president of his junior class. During his senior year, he managed the football team. He became a member of the Alpha Tau Omega fraternity and dated Phoebe Clara Davis, who also came from Chelsea. Tufts allowed students to gain a master's degree in four years simultaneously with a bachelor's degree, so for his master's thesis, Bush invented and patented a "profile tracer". This was a device for assisting surveyors that looked like a lawn mower. It had two bicycle wheels, and a pen that plotted the terrain over which it traveled. It was the first of a string of inventions. On graduation in 1913 he received both bachelor of science and master of science degrees.

After graduation, Bush worked at General Electric (GE) in Schenectady, New York, for $14 a week. As a "test man", his job was to test the equipment to ensure that it was safe. He transferred to GE's plant in Pittsfield, Massachusetts, to work on high voltage transformers, but after a fire broke out at the plant, Bush and the other test men were suspended. Bush returned to Tufts in October 1914 to teach mathematics for $300 a term. This was increased to $400 per term in February 1915. He spent the summer break in 1915 working at the Brooklyn Navy Yard as an electrical inspector. Bush was awarded a $1,500 scholarship to study at Clark University as a doctoral student of Arthur Gordon Webster, but Webster wanted Bush to study acoustics. Bush preferred to quit rather than study a subject he was not interested in. He then enrolled in the Massachusetts Institute of Technology (MIT) electrical engineering program. Spurred by the need for enough financial security to marry, Bush finished his thesis, entitled Oscillating-Current Circuits: An Extension of the Theory of Generalized Angular Velocities, with Applications to the Coupled Circuit and the Artificial Transmission Line, in April 1916. He married Phoebe in August. Their marriage produced two sons: Richard Davis Bush and John Hathaway Bush. He received his doctorate in engineering from MIT and Harvard University jointly in 1917, after a dispute with his adviser Arthur Edwin Kennelly, who tried to demand more work from him.

Bush accepted a job with Tufts, where he became involved with the American Radio and Research Corporation (AMRAD), which began broadcasting music from the campus on March 8, 1916. The station owner, Harold Power, hired Bush to run the company's laboratory, at a salary greater than that which Bush drew from Tufts. In 1917, following the United States' entry into World War I, Bush went to work with the National Research Council. He attempted to develop a means of detecting submarines by measuring the disturbance in the Earth's magnetic field. His device worked as designed, but only from a wooden ship, not a metal one like a destroyer, and attempts, at the U.S. Navy's insistence, to get it to work on a metal ship failed.

Meccano differential analyzer in use at the Cambridge University Mathematics Laboratory, c. 1937. Douglas Hartree, who visited Bush in his laboratory in 1933, built it based it upon Bush's design.

Bush left Tufts in 1919, although he remained employed by AMRAD, and joined the Department of Electrical Engineering at MIT, where he worked under Dugald C. Jackson. In 1922, Bush collaborated with fellow MIT professor William H. Timbie on Principles of Electrical Engineering, an introductory textbook for students. AMRAD's lucrative contracts from World War I had been cancelled, and Bush attempted to reverse the company's fortunes by developing a thermostatic switch invented by Al Spencer, an AMRAD technician, on his own time. AMRAD's management was not interested in the device, but they had no objection to its sale. He found backing from Laurence K. Marshall and Richard S. Aldrich to create the Spencer Thermostat Company, which hired Bush as a consultant. The new company soon had revenues in excess of a million dollars.

In 1924, Bush and Marshall teamed up with physicist Charles G. Smith, who had invented a device called the S-tube. This enabled radios, which had previously required two different types of batteries, to operate from mains power. Marshall raised $25,000 to set up the American Appliance Company on July 7, 1922, to market the invention, with Bush and Smith among its five directors. Bush made a lot of money from the venture. The company, now known as Raytheon, ultimately became a large electronics company and defense contractor.

Starting in 1927, Bush constructed a differential analyzer, an analog computer that could solve differential equations with as many as 18 independent variables. This invention arose from previous work performed by Herbert R. Stewart, one of Bush's masters students, who at Bush's suggestion created the product integraph in 1925, a device for solving first-order differential equations. Another student, Harold Hazen, proposed extending the device to handle second-order differential equations. Bush immediately realized the potential of such an invention, for these are much more difficult to solve, but also quite common in physics. Under Bush's supervision, Hazen was able to construct the differential analyzer, a table-like array of shafts and pens that mechanically simulated and plotted the desired equation. Unlike earlier designs that were purely mechanical, the differential analyzer had both electrical and mechanical components. Among the engineers who made use of the differential analyzer was Edith Clarke from General Electric, who used it to solve problems relating to electric power transmission. For developing the differential analyzer, Bush was awarded the Franklin Institute's Louis E. Levy Medal in 1928.

An offshoot of the work at MIT was the beginning of digital circuit design theory by one of Bush's graduate students, Claude Shannon. Working on the analytical engine, Shannon described the application of Boolean algebra to electronic circuits in his landmark master's thesis, A Symbolic Analysis of Relay and Switching Circuits.

In 1935, Bush was approached by OP-20-G, which was searching for an electronic device to aid in codebreaking. Bush was paid a $10,000 fee to design the Rapid Analytical Machine (RAM). The project went over budget and was not delivered until 1938, when it was found to be unreliable in service. Nonetheless, it was an important step toward creating such a device.

The reform of the administration of MIT began in 1930 with the appointment of Karl T. Compton as president. Bush and Compton soon clashed over the issue of limiting the amount of outside consultancy by professors, a battle Bush quickly lost, but the two men soon built a solid professional relationship. Compton appointed Bush to the newly created post of vice president in 1932. That year Bush also became the dean of the MIT School of Engineering. The two positions came with a salary of $12,000 plus $6,000 for expenses per annum.

World War II period

Bush attending a meeting at the University of California, Berkeley in 1940. From left to right: Ernest O. Lawrence, Arthur H. Compton, Bush, James B. Conant, Karl T. Compton, and Alfred L. Loomis

Carnegie Institution for Science

In May 1938, Bush accepted a prestigious appointment as president of the Carnegie Institution of Washington (CIW), which had been founded in Washington, District of Columbia. Also known as the Carnegie Institution for Science, with an endowment of $33 million, it annually spent $1.5 million in research, most of which was carried out at its eight major laboratories. Bush became its president on January 1, 1939, with an annual salary of $25,000. He was now able to influence research policy in the United States at the highest level, and could informally advise the government on scientific matters. Bush soon discovered that the CIW had serious financial problems, and he had to ask the Carnegie Corporation for additional funding.

Bush clashed over who was in charge of the institute with Cameron Forbes, CIW's chairman of the board, and with his predecessor, John Merriam, who continued to offer unwanted advice. A major embarrassment to them all was Harry H. Laughlin, the head of the Eugenics Record Office, whose activities Merriam had attempted to curtail without success. Bush made it a priority to remove him, regarding him as a scientific fraud, and one of his first acts was to ask for a review of Laughlin's work. In June 1938, Bush asked Laughlin to retire, offering him an annuity, which Laughlin reluctantly accepted. The Eugenics Record Office was renamed the Genetics Record Office, its funding was drastically cut, and it was closed completely in 1944. Senator Robert Reynolds attempted to get Laughlin reinstated, but Bush informed the trustees that an inquiry into Laughlin would "show him to be physically incapable of directing an office, and an investigation of his scientific standing would be equally conclusive."

Bush wanted the institute to concentrate on hard science. He gutted Carnegie's archeology program, setting the field back many years in the United States. He saw little value in the humanities and social sciences, and slashed funding for Isis, a journal dedicated to the history of science and technology and its cultural influence. Bush later explained that "I have a great reservation about these studies where somebody goes out and interviews a bunch of people and reads a lot of stuff and writes a book and puts it on a shelf and nobody ever reads it."

National Advisory Committee for Aeronautics

On August 23, 1938, Bush was appointed to the National Advisory Committee for Aeronautics (NACA), the predecessor of NASA. Its chairman Joseph Sweetman Ames became ill, and Bush, as vice chairman, soon had to act in his place. In December 1938, NACA asked for $11 million to establish a new aeronautical research laboratory in Sunnyvale, California, to supplement the existing Langley Memorial Aeronautical Laboratory. The California location was chosen for its proximity to some of the largest aviation corporations. This decision was supported by the Chief of the United States Army Air Corps, Major General Henry H. Arnold, and by the head of the Navy's Bureau of Aeronautics, Rear Admiral Arthur B. Cook, who between them were planning to spend $225 million on new aircraft in the year ahead. However, Congress was not convinced of its value, and Bush had to appear before the Senate Appropriations Committee on April 5, 1939. It was a frustrating experience for Bush, since he had never appeared before Congress before, and the Senators were not swayed by his arguments. Further lobbying was required before funding for the new center, now known as the Ames Research Center, was finally approved. By this time, war had broken out in Europe, and the inferiority of American aircraft engines was apparent; NACA asked for funding to build a third center in Ohio, which became the Glenn Research Center. Following Ames's retirement in October 1939, Bush became Chairman of NACA, with George J. Mead as his deputy. Bush remained a member of NACA until November 1948.

National Defense Research Committee

During World War I, Bush had become aware of poor cooperation between civilian scientists and the military. Concerned about the lack of coordination in scientific research and the requirements of defense mobilization, Bush proposed the creation of a general directive agency in the federal government, which he discussed with his colleagues. He had the secretary of NACA prepare a draft of the proposed National Defense Research Committee (NDRC) to be presented to Congress, but after the Germans invaded France in May 1940, Bush decided speed was important and approached President Franklin D. Roosevelt directly. Through the president's uncle, Frederic Delano, Bush managed to set up a meeting with Roosevelt on June 12, 1940, to which he brought a single sheet of paper describing the agency. Roosevelt approved the proposal in 15 minutes, writing "OK - FDR" on the sheet.

With Bush as chairman, NDRC was functioning even before the agency was officially established by order of the Council of National Defense on June 27, 1940. The organization operated financially on a hand-to-mouth basis with monetary support from the president's emergency fund. Bush appointed four leading scientists to the NRDC: Karl T. Compton (President of MIT), James B. Conant (President of Harvard University), Frank B. Jewett (President of the National Academy of Sciences and chairman of the Board of Directors of Bell Laboratories), and Richard C. Tolman (Dean of the graduate school at Caltech); Rear Admiral Harold G. Bowen, Sr. and Brigadier General George V. Strong represented the military. The civilians already knew each other well, which allowed the organization to begin functioning straight away. The NRDC established itself in the administration building at the Carnegie Institution of Washington. Each member of the committee was assigned an area of responsibility: Tolman for armor and ordnance, Conant for chemicals and explosives, Jewitt for communications and transportation, Compton for controls and instrumentation (including radar), and Commissioner of Patents and Trademarks Conway Peyton Coe for patents and inventions. Bush handled coordination, and a small number of projects which reported to him directly, such as the S-1 Uranium Committee. Compton's deputy, Alfred Loomis, said that "Of the men whose death in the summer of 1940 would have been the greatest calamity for America, the President is first, and Dr. Bush would be second or third."

Bush was fond of saying that "if he made any important contribution to the war effort at all, it would be to get the Army and Navy to tell each other what they were doing." Bush established a cordial relationship with the Secretary of War, Henry L. Stimson, and his assistant Harvey H. Bundy, who made it his mission to swiftly resolve any instances of military intransigence that Bush found frustrating. Bundy found Bush "impatient" and "vain", but said he was "one of the most important, able men I ever knew". Bush's relationship with the Navy was more turbulent. Bowen, the Director of the Naval Research Laboratory (NRL), saw the NDRC as a bureaucratic rival intent on supplanting rather than supplementing the activities of the NRL, and recommended abolishing the NDRC. A series of bureaucratic battles left Bowen as second best, with the NRL placed under the Bureau of Ships, and Secretary of the Navy Frank Knox leaving an unsatisfactory fitness report in Bowen's personnel file. After the war, Bowen would again try to create a rival to the NDRC inside the Navy.

On August 31, 1940, Bush met with Henry Tizard, and arranged a series of meetings between the NDRC and the Tizard Mission, a British delegation that would draw upon American expertise in science and technology for the war effort during World War II. On September 19, 1940, at a meeting hosted by Loomis at the Wardman Park Hotel in Washington, D.C., the Americans described Loomis and Compton's microwave research from earlier that year. The Americans had an experimental 10 cm wavelength short wave radar, but admitted that it did not have enough transmitter power and that they were at a dead end. Taffy Bowen and John Cockcroft of the Tizard Mission produced a cavity magnetron, a device far in advance of anything the Americans had ever seen, with an amazing power output of around 10 KW at 10 cm, enough to spot the periscope of a surfaced submarine at night from an aircraft. To exploit the invention, Bush decided to create a special laboratory. The NDRC allocated the new laboratory a budget of $455,000 for its first year. Loomis suggested that the lab should be run by the Carnegie Institution, but Bush convinced him that it would best be run by MIT. The Radiation Laboratory, as it came to be known, tested its airborne radar from an Army B-18 on March 27, 1940. By mid-1941, it had developed SCR-584 radar, a mobile radar fire control system for antiaircraft guns.

In September 1940, Norbert Wiener approached Bush with a proposal to build a digital computer. Bush declined to provide NDRC funding for it on the grounds that he did not believe that it could be completed before the end of the war. The supporters of digital computers were disappointed at the decision, which they attributed to a preference for outmoded analog technology. Eventually, the Army provided $500,000 to build the computer, which became ENIAC, the first general-purpose electronic computer. Bush was correct in that ENIAC was not completed until after the war, but his critics were also right in seeing Bush's attitude as a failure of vision.

Office of Scientific Research and Development

On June 28, 1941, Roosevelt established the Office of Scientific Research and Development (OSRD) with the signing of Executive Order 8807. Bush became director of the OSRD while Conant succeeded him as Chairman of the NDRC, which was subsumed into the OSRD. The OSRD was on a firmer financial footing than the NDRC since it received funding from Congress, with the resources and the authority to develop and produce weapons and technologies with or without the military. Furthermore, the OSRD had a broader mandate than the NDRC, moving into additional areas such as medical research and the mass production of penicillin and sulfa drugs. The organization grew to 850 full-time employees, and produced between 30,000 and 35,000 reports. The OSRD was involved in some 2,500 contracts, worth in excess of $536 million.

Bush's method of management at the OSRD was to direct overall policy while delegating supervision of divisions to qualified colleagues and letting them do their jobs without interference. He attempted to interpret the mandate of the OSRD as narrowly as possible to avoid overtaxing his office and to prevent duplicating the efforts of other agencies. Bush would often ask: "Will it help to win a war; this war?" Other problems involved obtaining adequate funds from the president and Congress and determining apportionment of research among government, academic, and industrial facilities. However, his most difficult problems, and also greatest successes, were keeping the confidence of the military, which distrusted the ability of civilians to observe security regulations and devise practical solutions, and opposing conscription of young scientists into the armed forces. This became especially difficult as the Army's manpower crisis really began to bite in 1944. In all, OSRD requested deferments for some 9,725 employees of OSRD contractors, of which all but 63 were granted. In his obituary, The New York Times described Bush as "a master craftsman at steering around obstacles, whether they were technical or political or bull-headed generals and admirals."

Proximity fuze

Cut away diagram of the proximity fuze Mark 53

In August 1940, the NDRC began work on a proximity fuze, a fuze inside an artillery shell that would explode when it came close to its target. A radar set, along with the batteries to power it, were miniaturized to fit inside a shell, and its glass vacuum tubes designed to withstand the 20,000 g force of being fired from a gun and 500 rotations per second in flight. Unlike normal radar, the proximity fuze sent out a continuous signal rather than short pulses. The NDRC created a special Section T chaired by Merle Tuve of the CIW, with Commander William S. Parsons as special assistant to Bush and liaison between the NDRC and the Navy's Bureau of Ordnance (BuOrd). In April 1942, Bush placed Section T directly under the OSRD, with Parsons in charge. The research effort remained under Tuve but moved to the Johns Hopkins University's Applied Physics Laboratory (APL), where Parsons was BuOrd's representative. In August 1942, a live firing test was conducted with the newly commissioned cruiser USS Cleveland; three pilotless drones were shot down in succession.

To preserve the secret of the proximity fuse, its use was initially permitted only over water, where a dud round could not fall into enemy hands. However in late 1943, the Army obtained permission to use the weapon over land. The proximity fuse proved particularly effective against the V-1 flying bomb over England, and later Antwerp, in 1944. A version was also developed for use with howitzers against ground targets. Bush met with the Joint Chiefs of Staff in October 1944 to press for its use, arguing that the Germans would be unable to copy and produce it before the war was over. Eventually, they agreed to allow its use from December 25. In response to the German Ardennes Offensive on December 16, 1944, the immediate use of the proximity fuze was authorized, and it went into action with deadly effect. By the end of 1944, VT fuzes were coming off the production lines at the rate of 40,000 per day. "If one looks at the proximity fuze program as a whole," historian James Phinney Baxter III wrote, "the magnitude and complexity of the effort rank it among the three or four most extraordinary scientific achievements of the war."

The German V-1 flying bomb demonstrated a serious omission in OSRD's portfolio: guided missiles. While the OSRD had some success developing unguided rockets, it had nothing comparable to the V-1, the V-2 or the Henschel Hs 293 air-to-ship gliding guided bomb. Although the United States trailed the Germans and Japanese in several areas, this represented an entire field that had been left to the enemy. Bush did not seek the advice of Dr. Robert H. Goddard. Goddard would come to be regarded as America's pioneer of rocketry, but many contemporaries regarded him as a crank. Before the war, Bush had gone on the record as saying, "I don't understand how a serious scientist or engineer can play around with rockets", but in May 1944, he was forced to travel to London to warn General Dwight Eisenhower of the danger posed by the V-1 and V-2. Bush could only recommend that the launch sites be bombed, which was done.

Manhattan Project

Bush played a critical role in persuading the United States government to undertake a crash program to create an atomic bomb. When the NDRC was formed, the Committee on Uranium was placed under it, reporting directly to Bush as the Uranium Committee. Bush reorganized the committee, strengthening its scientific component by adding Tuve, George B. Pegram, Jesse W. Beams, Ross Gunn and Harold Urey. When the OSRD was formed in June 1941, the Uranium Committee was again placed directly under Bush. For security reasons, its name was soon changed to the S-1 Section.

Roosevelt, Bush and Vice President Henry A. Wallace met on October 9, 1941, to discuss the project. Bush briefed Roosevelt on Tube Alloys, the British atomic bomb project, and its Maud Committee, which had concluded that an atomic bomb was feasible, and on the German nuclear energy project, about which little was known. Roosevelt approved and expedited the atomic program. To control it, he created a Top Policy Group consisting of himself—although he never attended a meeting—Wallace, Bush, Conant, Stimson and the Chief of Staff of the Army, General George Marshall. On Bush's advice, Roosevelt chose the Army to run the project rather than the Navy, although the Navy had shown far more interest in the field, and was already conducting research into atomic energy for powering ships. Bush's negative experiences with the Navy had convinced him that it would not listen to his advice, and could not handle large-scale construction projects.

Bush sent a report to Roosevelt in March 1942. In it, he outlined work by Robert Oppenheimer on the nuclear cross section of uranium-235. Oppenheimer's calculations, which Bush had George Kistiakowsky check, estimated that the critical mass of a sphere of uranium-235 was in the range of 2.5 to 5 kilograms, with a destructive power of around 2,000 tons of TNT. Moreover, it appeared that plutonium might be even more fissile. After conferring with Brigadier General Lucius D. Clay about the construction requirements, Bush drew up a submission for $85 million in fiscal year 1943 for four pilot plants, which he forwarded to Roosevelt on June 17, 1942. With the Army on board, Bush moved to streamline oversight of the project by the OSRD, replacing the S-1 Section with a new S-1 Executive Committee.

Bush soon became dissatisfied with the dilatory way the project was run, with its indecisiveness over the selection of sites for the pilot plants. He was particularly disturbed at the allocation of an AA-3 priority which would delay completion of the pilot plants by three months. Bush complained about these problems to Bundy and Under Secretary of War Robert P. Patterson. Major General Brehon B. Somervell, the commander of the Army's Services of Supply, appointed Brigadier General Leslie R. Groves as project director in September. Within days of taking over, Groves approved the proposed site at Oak Ridge, Tennessee, and obtained a AAA priority. At a meeting in Stimson's office on September 23 attended by Bundy, Bush, Conant, Groves, Marshall Somervell and Stimson, Bush put forward his proposal for steering the project by a small committee answerable to the Top Policy Group. The meeting agreed with Bush, and created a Military Policy Committee chaired by Bush himself, with Somervell's Chief of Staff, Brigadier General Wilhelm D. Styer, representing the Army, and Rear Admiral William R. Purnell representing the Navy.

At the meeting with Roosevelt on October 9, 1941, Bush advocated cooperating with the United Kingdom, and he began corresponding with his British counterpart, Sir John Anderson. But by October 1942, Conant and Bush agreed that a joint project would pose security risks and be more complicated to manage. Roosevelt approved a Military Policy Committee recommendation stating that information given to the British should be limited to technologies that they were actively working on and should not extend to post-war developments. In July 1943, on a visit to London to learn about British progress on antisubmarine technology, Bush, Stimson and Bundy met with Anderson, Lord Cherwell and Winston Churchill at 10 Downing Street. At the meeting, Churchill forcefully pressed for a renewal of interchange, while Bush defended current policy. Only when he returned to Washington did he discover that Roosevelt had agreed with the British. The Quebec Agreement merged the two atomic bomb projects, creating a Combined Policy Committee with Stimson, Bush and Conant as United States representatives.

Bush appeared on the cover of Time magazine on April 3, 1944. He toured the Western Front in October 1944, and spoke to ordnance officers, but no senior commander would meet with him. Bush was able to meet with Samuel Goudsmit and other members of the Alsos Mission, who assured him that there was no danger from the German project; Bush conveyed this assessment to Lieutenant General Bedell Smith. In May 1945, Bush became part of the Interim Committee formed to advise the new President, Harry S. Truman, on nuclear weapons. The Interim Committee advised that the atomic bomb should be used against an industrial target in Japan as soon as possible and without warning. Bush was present at the Alamogordo Bombing and Gunnery Range on July 16, 1945, for the Trinity nuclear test, the first detonation of an atomic bomb. Afterwards, Bush took his hat off to Oppenheimer in tribute.

In As We May Think Bush wrote: "This has not been a scientist's war; it has been a war in which all have had a part. The scientists, burying their old professional competition in the demand of a common cause, have shared greatly and learned much. It has been exhilarating to work in effective partnership."

Post-war years

Memex concept

Bush introduced the concept of the memex during the 1930s, which he imagined as a form of memory augmentation involving a microfilm-based "device in which an individual stores all his books, records, and communications, and which is mechanized so that it may be consulted with exceeding speed and flexibility. It is an enlarged intimate supplement to his memory." He wanted the memex to behave like the "intricate web of trails carried by the cells of the brain", but easily accessible as "a future device for individual use ... a sort of mechanized private file and library" in the shape of a desk. The memex was also intended as a tool to study the "awe-inspiring" brain, particularly the way the brain links data by association rather than by indexes and traditional, heirarchical storage paradigms.

After thinking about the potential of augmented memory for several years, Bush set out his thoughts at length in As We May Think, an essay published in the Atlantic Monthly in July 1945. In the article, Bush predicted that "wholly new forms of encyclopedias will appear, ready made with a mesh of associative trails running through them, ready to be dropped into the memex and there amplified". A few months later, Life magazine published a condensed version of As We May Think, accompanied by several illustrations showing the possible appearance of a memex machine and its companion devices.

Library scientist Michael Buckland regards the memex as severely flawed. Buckland blames the weakness of the device on Bush's limited understanding of information science and microfilm. In his popular essay, Bush did not refer to the microfilm-based workstation proposed by Leonard Townsend during 1938, or the microfilm and electronics-based selector described in more detail and patented by Emanuel Goldberg in 1931. Shortly after As We May Think was originally published, Douglas Engelbart read it, and with Bush's visions in mind, commenced work that would later lead to the invention of the mouse. Ted Nelson, who coined the terms "hypertext" and "hypermedia", was also greatly influenced by Bush's essay.

National Science Foundation

The OSRD continued to function actively until some time after the end of hostilities, but by 1946 and 1947 it had been reduced to a minimal staff charged with finishing work remaining from the war period; Bush was calling for its closure even before the war had ended. During the war, the OSRD had issued contracts as it had seen fit. Just eight contractors had accounted for half of OSRD's spending. MIT was the largest contractor to receive funds, with its obvious ties to Bush and his close associates. Efforts to obtain legislation exempting the OSRD from the usual government conflict of interest regulations failed, leaving Bush and other OSRD principals open to prosecution. Bush therefore pressed for OSRD to be wound up as soon as possible.

With its dissolution, Bush and others had hoped that an equivalent peacetime government research and development agency would replace the OSRD. Bush felt that basic research was important to national survival for both military and commercial reasons, requiring continued government support for science and technology; technical superiority could be a deterrent to future enemy aggression. In Science, The Endless Frontier, a July 1945 report to the president, Bush maintained that basic research was "the pacemaker of technological progress". "New products and new processes do not appear full-grown," Bush wrote in the report. "They are founded on new principles and new conceptions, which in turn are painstakingly developed by research in the purest realms of science!" In Bush's view, the "purest realms" were the physical and medical sciences; he did not propose funding the social sciences. In Science, The Endless Frontier, science historian Daniel Kevles later wrote, Bush "insisted upon the principle of Federal patronage for the advancement of knowledge in the United States, a departure that came to govern Federal science policy after World War II."

Bush (left) with Truman (center) and Conant (right).

In July 1945, the Kilgore bill was introduced in Congress, proposing the appointment and removal of a single science administrator by the president, with emphasis on applied research, and a patent clause favoring a government monopoly. In contrast, the competing Magnuson bill was similar to Bush's proposal to vest control in a panel of top scientists and civilian administrators with the executive director appointed by them. The Magnuson bill emphasized basic research and protected private patent rights. A compromise Kilgore–Magnuson bill of February 1946 passed the Senate but expired in the House because Bush favored a competing bill that was a virtual duplicate of the original Magnuson bill. A Senate bill was introduced in February 1947 to create the National Science Foundation (NSF) to replace the OSRD. This bill favored most of the features advocated by Bush, including the controversial administration by an autonomous scientific board. The bill passed the Senate and the House, but was pocket vetoed by Truman on August 6, on the grounds that the administrative officers were not properly responsible to either the president or Congress. The OSRD was abolished without a successor organization on December 31, 1947.

Without a National Science Foundation, the military stepped in, with the Office of Naval Research (ONR) filling the gap. The war had accustomed many scientists to working without the budgetary constraints imposed by pre-war universities. Bush helped create the Joint Research and Development Board (JRDB) of the Army and Navy, of which he was chairman. With passage of the National Security Act on July 26, 1947, the JRDB became the Research and Development Board (RDB). Its role was to promote research through the military until a bill creating the National Science Foundation finally became law. By 1953, the Department of Defense was spending $1.6 billion a year on research; physicists were spending 70 percent of their time on defense related research, and 98 percent of the money spent on physics came from either the Department of Defense or the Atomic Energy Commission (AEC), which took over from the Manhattan Project on January 1, 1947. Legislation to create the National Science Foundation finally passed through Congress and was signed into law by Truman in 1950.

The authority that Bush had as chairman of the RDB was much different from the power and influence he enjoyed as director of OSRD and would have enjoyed in the agency he had hoped would be independent of the Executive branch and Congress. He was never happy with the position and resigned as chairman of the RDB after a year, but remained on the oversight committee. He continued to be skeptical about rockets and missiles, writing in his 1949 book, Modern Arms and Free Men, that intercontinental ballistic missiles would not be technically feasible "for a long time to come ... if ever".

Later life

With Truman as president, cronies like John R. Steelman, who was appointed Chairman of the President's Scientific Research Board in October 1946, came to prominence. While Bush remained a revered figure, his authority, both among scientists and politicians, suffered a rapid decline. However, he still remained a public authority figure. In September 1949, Bush was appointed to head a scientific panel that included Oppenheimer to review the evidence that the Soviet Union had tested its first atomic bomb. The panel concluded that it had, and this finding was relayed to Truman, who made the public announcement. Bush was outraged when the Oppenheimer security hearing stripped Oppenheimer of his security clearance in 1954; he issued a strident attack on Oppenheimer's accusers in the New York Times. Alfred Friendly summed up the feeling of many scientists in declaring that Bush had become "the Grand Old Man of American science".

Bush continued to serve on the NACA through 1948 and expressed annoyance with aircraft companies for delaying development of a turbojet engine because of the huge expense of research and development plus retooling from older piston engines. Bush was similarly disappointed with the automobile industry, which showed no interest in his proposals for more fuel efficient engines. General Motors told him that "even if it were a better engine, would not be interested in it." Bush likewise deplored trends in advertising. "Madison Avenue believes," he said, "that if you tell the public something absurd, but do it enough times, the public will ultimately register it in its stock of accepted verities."

From 1947 to 1962, Bush was on the board of directors for American Telephone and Telegraph. He retired as president of the Carnegie Institution and returned to Massachusetts in 1955, but remained a director of Metals and Controls Corporation from 1952 to 1959, and of Merck & Co. from 1949 to 1962. Bush served as chairman of the board at Merck from 1957 to 1962. He was a trustee of Tufts College from 1943 to 1962, of Johns Hopkins University from 1943 to 1955, of the Carnegie Corporation of New York from 1939 to 1950, the Carnegie Institution of Washington from 1958 to 1974, and the George Putnam Fund of Boston from 1956 to 1972, and was a regent of the Smithsonian Institution from 1943 to 1955.

Bush received the AIEE's Edison Medal in 1943, "for his contribution to the advancement of electrical engineering, particularly through the development of new applications of mathematics to engineering problems, and for his eminent service to the nation in guiding the war research program." In 1945, Bush was awarded the Public Welfare Medal from the National Academy of Sciences. In 1949, he received the IRI Medal from the Industrial Research Institute in recognition of his contributions as a leader of research and development. President Truman awarded Bush the Medal of Merit with bronze oak leaf cluster in 1948, President Lyndon Johnson awarded him the National Medal of Science in 1963, and President Richard Nixon presented him with the Atomic Pioneers Award from the Atomic Energy Commission in February 1970. Bush was also made a Knight Commander of the British Empire in 1948, and an Officer of the French Legion of Honor in 1955.

After suffering a stroke in 1974, Bush died in Belmont, Massachusetts, at the age of 84 from pneumonia on June 28, 1974. He was survived by his sons Richard, a surgeon, and John, president of Millipore Corporation, and by six grandchildren and his sister Edith. Bush's wife had died in 1969. He was buried at South Dennis Cemetery in South Dennis, Massachusetts, after a private funeral service. At a public memorial subsequently held by MIT, Jerome Wiesner declared "No American has had greater influence in the growth of science and technology than Vannevar Bush".

In 1980, the National Science Foundation created the Vannevar Bush Award to honor his contributions to public service. The Vannevar Bush papers are located in several places, with the majority of the collection held at the Library of Congress. Additional papers are held by the MIT Institute Archives and Special Collections, the Carnegie Institution, and the National Archives and Records Administration.

MIT's Building 13 is named the Vannevar Bush Building in his honor, and is the home of the Center for Materials Science and Engineering.

Bibliography

  • Timbie, W. H.; Bush, Vannevar (1922). Principles of Electrical Engineering. New York: J. Wiley & Sons. OCLC 854652.
  • Bush, Vannevar; Wiener, Norbert (1929). Operational Circuit Analysis. New York: J. Wiley & Sons. OCLC 2167931.
  • Bush, Vannevar (1945). Science, the Endless Frontier: a Report to the President. Washington, D. C.: U.S. Government Printing Office. OCLC 1594001. Retrieved 25 May 2012. {{cite book}}: Unknown parameter |authormask= ignored (|author-mask= suggested) (help)
  • Bush, Vannevar (1946). Endless Horizons. Washington, D.C.: Public Affairs Press. OCLC 1152058. {{cite book}}: Unknown parameter |authormask= ignored (|author-mask= suggested) (help)
  • Bush, Vannevar (1949). Modern Arms and Free Men: a Discussion of the Role of Science in Preserving Democracy. New York: Simon and Schuster. OCLC 568075. {{cite book}}: Unknown parameter |authormask= ignored (|author-mask= suggested) (help)
  • Bush, Vannevar (1967). Science Is Not Enough. New York: Morrow. OCLC 520108. {{cite book}}: Unknown parameter |authormask= ignored (|author-mask= suggested) (help)
  • Bush, Vannevar (1970). Pieces of the Action. New York: Morrow. OCLC 93366. {{cite book}}: Invalid |ref=harv (help); Unknown parameter |authormask= ignored (|author-mask= suggested) (help)
  • For a complete list of his published papers, see Wiesner 1979, pp. 107–117.

Notes

  1. ^ Bush, Vannevar (July 1945). "As We May Think". The Atlantic Monthly. Retrieved 20 April 2012.
  2. Zachary 1997, pp. 12–13.
  3. Zachary 1997, p. 22.
  4. Zachary 1997, pp. 25–27.
  5. Wiesner 1979, pp. 90–91.
  6. ^ Zachary 1997, pp. 28–32.
  7. Puchta 1996, p. 58.
  8. Zachary 1997, pp. 41, 245.
  9. Zachary 1997, pp. 33–38.
  10. Owens 1991, p. 15.
  11. ^ Zachary 1997, pp. 39–43.
  12. "Raytheon Company". International Directory of Company Histories, Vol. 38. St. James Press. 2001. Retrieved May 31, 2012.
  13. Owens 1991, pp. 6–11.
  14. Brittain 2008, pp. 2132–2133.
  15. Wiesner 1979, p. 106.
  16. "Claude E. Shannon, an oral history conducted in 1982 by Robert Price". IEEE Global History Network. New Brunswick, New Jersey: IEEE History Center. 1982. Retrieved July 14, 2011.
  17. "MIT Professor Claude Shannon dies; was founder of digital communications". MIT News. February 27, 2001. {{cite news}}: |access-date= requires |url= (help); Check date values in: |accessdate= (help)
  18. Zachary 1997, pp. 76–78.
  19. Zachary 1997, pp. 55–56.
  20. ^ Zachary 1997, pp. 83–85.
  21. ^ Zachary 1997, pp. 91–95.
  22. Zachary 1997, p. 93.
  23. Zachary 1997, p. 94.
  24. Zachary 1997, pp. 98–99.
  25. Roland 1985, p. 427.
  26. Zachary 1997, pp. 104–112.
  27. ^ Zachary 1997, p. 129.
  28. Stewart 1948, p. 7.
  29. Zachary 1997, p. 119.
  30. Stewart 1948, pp. 10–12.
  31. Zachary 1997, p. 106.
  32. Zachary 1997, p. 125.
  33. Zachary 1997, pp. 124–127.
  34. Conant 2002, pp. 168–169, 182.
  35. Zachary 1997, pp. 132–134.
  36. Zachary 1997, pp. 226–227.
  37. Roosevelt, Franklin D. (June 28, 1941). "Executive Order 8807 Establishing the Office of Scientific Research and Development". The American Presidency Project. Retrieved June 28, 2011.
  38. Zachary 1997, pp. 127–129.
  39. Stewart 1948, p. 189.
  40. Stewart 1948, p. 185.
  41. Stewart 1948, p. 190.
  42. Stewart 1948, p. 322.
  43. ^ Zachary 1997, pp. 130–131.
  44. Zachary 1997, pp. 124–125.
  45. ^ Stewart 1948, p. 276.
  46. Reinholds, Robert. "Dr. Vannevar Bush Is Dead at 84; Dr. Vannevar Bush, Who Marshaled Nation's Wartime Technology and Ushered in Atomic Age, is Dead at 84". New York Times. p. 1. {{cite news}}: |section= ignored (help)
  47. ^ Furer 1959, pp. 346–347.
  48. "Section T "Proximity Fuze" Records, 1940- (bulk 1941-1943)". Carnegie Institution of Washington. Retrieved June 7, 2012.
  49. Christman 1998, pp. 86–91.
  50. Furer 1959, p. 348.
  51. ^ Furer 1959, p. 349.
  52. Zachary 1997, pp. 176, 180–183.
  53. Baxter 1946, p. 241.
  54. Zachary 1997, p. 179.
  55. Zachary 1997, p. 177.
  56. Bush 1970, p. 307.
  57. Goldberg 1992, p. 451.
  58. Hewlett & Anderson 1962, p. 25.
  59. Hewlett & Anderson 1962, pp. 40–41.
  60. Hewlett & Anderson 1962, pp. 45–46.
  61. Zachary 1997, p. 203.
  62. Hewlett & Anderson 1962, pp. 51, 71–72.
  63. Hewlett & Anderson 1962, p. 61.
  64. Hewlett & Anderson 1962, pp. 72–75.
  65. Hewlett & Anderson 1962, pp. 78–83.
  66. Hewlett & Anderson 1962, pp. 259–260.
  67. Hewlett & Anderson 1962, pp. 264–270.
  68. Zachary 1997, p. 211.
  69. Hewlett & Anderson 1962, pp. 276–280.
  70. Dr. Vannevar Bush, Time, April 3, 1944, Vol. XLIII, No. 14.
  71. Bush 1970, pp. 114–116.
  72. Hewlett & Anderson 1962, pp. 344–345.
  73. Hewlett & Anderson 1962, pp. 360–361.
  74. Hewlett & Anderson 1962, p. 378.
  75. Zachary 1997, p. 280.
  76. Bush, Vannevar (September 10, 1945). "As We May Think". Life magazine. pp. 112–124. Retrieved April 20, 2012. {{cite news}}: Italic or bold markup not allowed in: |newspaper= (help)
  77. Buckland 1992, pp. 284–294.
  78. "A Lifetime Pursuit". Doug Engelbart Institute. Retrieved April 25, 2012.
  79. "Hypertext". Doug Engelbart Institute. Retrieved April 25, 2012.
  80. Crawford 1996, p. 671.
  81. Zachary 1997, pp. 246–249.
  82. "Science the Endless Frontier: A Report to the President by Vannevar Bush, Director of the Office of Scientific Research and Development". National Science Foundation. July 1945. Retrieved April 22, 2012.
  83. Greenberg 2001, pp. 44–45.
  84. Greenberg 2001, p. 52.
  85. Zachary 1997, pp. 253–256.
  86. Zachary 1997, p. 328.
  87. Zachary 1997, p. 332.
  88. "Records of the Office of Scientific Research and Development (OSRD)". National Archives and Records Administration. Retrieved May 21, 2012.
  89. Hershberg 1993, p. 397.
  90. Zachary 1997, pp. 318–323.
  91. Hershberg 1993, pp. 305–309.
  92. Zachary 1997, pp. 368–369.
  93. Zachary 1997, pp. 336–345.
  94. Hershberg 1993, p. 393.
  95. Zachary 1997, pp. 330–331.
  96. Zachary 1997, pp. 346–347.
  97. Zachary 1997, pp. 348–349.
  98. ^ Zachary 1997, pp. 377–378.
  99. Dawson 1991, p. 80.
  100. Zachary 1997, p. 387.
  101. Zachary 1997, p. 386.
  102. ^ Wiesner 1979, p. 108.
  103. ^ Wiesner 1979, p. 107.
  104. "Vannevar Bush". IEEE Global History Network. IEEE. Retrieved July 25, 2011.
  105. "Public Welfare Award". National Academy of Sciences. Retrieved February 14, 2011.
  106. "The President's National Medal of Science". National Science Foundation. Retrieved April 22, 2012.
  107. Nixon, Richard (February 27, 1970). "Remarks on Presenting the Atomic Pioneers Award". The American Presidency Project. Retrieved April 22, 2012.
  108. Wiesner 1979, p. 105.
  109. Vannevar Bush at Find a Grave Retrieved June 13, 2011.
  110. Zachary 1997, p. 407.
  111. "Vannevar Bush Award". National Science Foundation. Retrieved April 22, 2012.
  112. "MIT Institute Archives & Special Collections - Vannevar Bush Papers, 1921-1975 Manuscript Collection - MC 78". MIT. Retrieved May 26, 2012.
  113. "Vannevar Bush Papers 1901–1974". Library of Congress. Retrieved May 21, 2012.
  114. "Carnegie Institution of Washington Administration Records, 1890-2001". Carnegie Institution of Washington. Retrieved May 21, 2012.
  115. Wiesner 1979, p. 101.

References

External links

Government offices
Preceded byNew office Chairman, Research and Development Board
1947–1948
Succeeded byKarl T. Compton
Government offices
Preceded byNew office Director, Office of Scientific Research and Development
1941–1947
Succeeded byExtinct
Government offices
Preceded byNew office Chairman, National Defense Research Committee
1940–1941
Succeeded byJames B. Conant
Government offices
Preceded byJoseph S. Ames Chairman, National Advisory Committee for Aeronautics
1940–1941
Succeeded byJerome C. Hunsaker
IEEE Edison Medal
1926–1950
United States National Medal of Science laureates
Behavioral and social science
1960s
1964
Neal Elgar Miller
1980s
1986
Herbert A. Simon
1987
Anne Anastasi
George J. Stigler
1988
Milton Friedman
1990s
1990
Leonid Hurwicz
Patrick Suppes
1991
George A. Miller
1992
Eleanor J. Gibson
1994
Robert K. Merton
1995
Roger N. Shepard
1996
Paul Samuelson
1997
William K. Estes
1998
William Julius Wilson
1999
Robert M. Solow
2000s
2000
Gary Becker
2003
R. Duncan Luce
2004
Kenneth Arrow
2005
Gordon H. Bower
2008
Michael I. Posner
2009
Mortimer Mishkin
2010s
2011
Anne Treisman
2014
Robert Axelrod
2015
Albert Bandura
2020s
2023
Huda Akil
Shelley E. Taylor
2025
Larry Bartels
Biological sciences
1960s
1963
C. B. van Niel
1964
Theodosius Dobzhansky
Marshall W. Nirenberg
1965
Francis P. Rous
George G. Simpson
Donald D. Van Slyke
1966
Edward F. Knipling
Fritz Albert Lipmann
William C. Rose
Sewall Wright
1967
Kenneth S. Cole
Harry F. Harlow
Michael Heidelberger
Alfred H. Sturtevant
1968
Horace Barker
Bernard B. Brodie
Detlev W. Bronk
Jay Lush
Burrhus Frederic Skinner
1969
Robert Huebner
Ernst Mayr
1970s
1970
Barbara McClintock
Albert B. Sabin
1973
Daniel I. Arnon
Earl W. Sutherland Jr.
1974
Britton Chance
Erwin Chargaff
James V. Neel
James Augustine Shannon
1975
Hallowell Davis
Paul Gyorgy
Sterling B. Hendricks
Orville Alvin Vogel
1976
Roger Guillemin
Keith Roberts Porter
Efraim Racker
E. O. Wilson
1979
Robert H. Burris
Elizabeth C. Crosby
Arthur Kornberg
Severo Ochoa
Earl Reece Stadtman
George Ledyard Stebbins
Paul Alfred Weiss
1980s
1981
Philip Handler
1982
Seymour Benzer
Glenn W. Burton
Mildred Cohn
1983
Howard L. Bachrach
Paul Berg
Wendell L. Roelofs
Berta Scharrer
1986
Stanley Cohen
Donald A. Henderson
Vernon B. Mountcastle
George Emil Palade
Joan A. Steitz
1987
Michael E. DeBakey
Theodor O. Diener
Harry Eagle
Har Gobind Khorana
Rita Levi-Montalcini
1988
Michael S. Brown
Stanley Norman Cohen
Joseph L. Goldstein
Maurice R. Hilleman
Eric R. Kandel
Rosalyn Sussman Yalow
1989
Katherine Esau
Viktor Hamburger
Philip Leder
Joshua Lederberg
Roger W. Sperry
Harland G. Wood
1990s
1990
Baruj Benacerraf
Herbert W. Boyer
Daniel E. Koshland Jr.
Edward B. Lewis
David G. Nathan
E. Donnall Thomas
1991
Mary Ellen Avery
G. Evelyn Hutchinson
Elvin A. Kabat
Robert W. Kates
Salvador Luria
Paul A. Marks
Folke K. Skoog
Paul C. Zamecnik
1992
Maxine Singer
Howard Martin Temin
1993
Daniel Nathans
Salome G. Waelsch
1994
Thomas Eisner
Elizabeth F. Neufeld
1995
Alexander Rich
1996
Ruth Patrick
1997
James Watson
Robert A. Weinberg
1998
Bruce Ames
Janet Rowley
1999
David Baltimore
Jared Diamond
Lynn Margulis
2000s
2000
Nancy C. Andreasen
Peter H. Raven
Carl Woese
2001
Francisco J. Ayala
George F. Bass
Mario R. Capecchi
Ann Graybiel
Gene E. Likens
Victor A. McKusick
Harold Varmus
2002
James E. Darnell
Evelyn M. Witkin
2003
J. Michael Bishop
Solomon H. Snyder
Charles Yanofsky
2004
Norman E. Borlaug
Phillip A. Sharp
Thomas E. Starzl
2005
Anthony Fauci
Torsten N. Wiesel
2006
Rita R. Colwell
Nina Fedoroff
Lubert Stryer
2007
Robert J. Lefkowitz
Bert W. O'Malley
2008
Francis S. Collins
Elaine Fuchs
J. Craig Venter
2009
Susan L. Lindquist
Stanley B. Prusiner
2010s
2010
Ralph L. Brinster
Rudolf Jaenisch
2011
Lucy Shapiro
Leroy Hood
Sallie Chisholm
2012
May Berenbaum
Bruce Alberts
2013
Rakesh K. Jain
2014
Stanley Falkow
Mary-Claire King
Simon Levin
2020s
2023
Gebisa Ejeta
Eve Marder
Gregory Petsko
Sheldon Weinbaum
2025
Bonnie Bassler
Angela Belcher
Helen Blau
Emery N. Brown
G. David Tilman
Teresa Woodruff
Chemistry
1960s
1964
Roger Adams
1980s
1982
F. Albert Cotton
Gilbert Stork
1983
Roald Hoffmann
George C. Pimentel
Richard N. Zare
1986
Harry B. Gray
Yuan Tseh Lee
Carl S. Marvel
Frank H. Westheimer
1987
William S. Johnson
Walter H. Stockmayer
Max Tishler
1988
William O. Baker
Konrad E. Bloch
Elias J. Corey
1989
Richard B. Bernstein
Melvin Calvin
Rudolph A. Marcus
Harden M. McConnell
1990s
1990
Elkan Blout
Karl Folkers
John D. Roberts
1991
Ronald Breslow
Gertrude B. Elion
Dudley R. Herschbach
Glenn T. Seaborg
1992
Howard E. Simmons Jr.
1993
Donald J. Cram
Norman Hackerman
1994
George S. Hammond
1995
Thomas Cech
Isabella L. Karle
1996
Norman Davidson
1997
Darleane C. Hoffman
Harold S. Johnston
1998
John W. Cahn
George M. Whitesides
1999
Stuart A. Rice
John Ross
Susan Solomon
2000s
2000
John D. Baldeschwieler
Ralph F. Hirschmann
2001
Ernest R. Davidson
Gábor A. Somorjai
2002
John I. Brauman
2004
Stephen J. Lippard
2005
Tobin J. Marks
2006
Marvin H. Caruthers
Peter B. Dervan
2007
Mostafa A. El-Sayed
2008
Joanna Fowler
JoAnne Stubbe
2009
Stephen J. Benkovic
Marye Anne Fox
2010s
2010
Jacqueline K. Barton
Peter J. Stang
2011
Allen J. Bard
M. Frederick Hawthorne
2012
Judith P. Klinman
Jerrold Meinwald
2013
Geraldine L. Richmond
2014
A. Paul Alivisatos
2025
R. Lawrence Edwards
Engineering sciences
1960s
1962
Theodore von Kármán
1963
Vannevar Bush
John Robinson Pierce
1964
Charles S. Draper
Othmar H. Ammann
1965
Hugh L. Dryden
Clarence L. Johnson
Warren K. Lewis
1966
Claude E. Shannon
1967
Edwin H. Land
Igor I. Sikorsky
1968
J. Presper Eckert
Nathan M. Newmark
1969
Jack St. Clair Kilby
1970s
1970
George E. Mueller
1973
Harold E. Edgerton
Richard T. Whitcomb
1974
Rudolf Kompfner
Ralph Brazelton Peck
Abel Wolman
1975
Manson Benedict
William Hayward Pickering
Frederick E. Terman
Wernher von Braun
1976
Morris Cohen
Peter C. Goldmark
Erwin Wilhelm Müller
1979
Emmett N. Leith
Raymond D. Mindlin
Robert N. Noyce
Earl R. Parker
Simon Ramo
1980s
1982
Edward H. Heinemann
Donald L. Katz
1983
Bill Hewlett
George Low
John G. Trump
1986
Hans Wolfgang Liepmann
Tung-Yen Lin
Bernard M. Oliver
1987
Robert Byron Bird
H. Bolton Seed
Ernst Weber
1988
Daniel C. Drucker
Willis M. Hawkins
George W. Housner
1989
Harry George Drickamer
Herbert E. Grier
1990s
1990
Mildred Dresselhaus
Nick Holonyak Jr.
1991
George H. Heilmeier
Luna B. Leopold
H. Guyford Stever
1992
Calvin F. Quate
John Roy Whinnery
1993
Alfred Y. Cho
1994
Ray W. Clough
1995
Hermann A. Haus
1996
James L. Flanagan
C. Kumar N. Patel
1998
Eli Ruckenstein
1999
Kenneth N. Stevens
2000s
2000
Yuan-Cheng B. Fung
2001
Andreas Acrivos
2002
Leo Beranek
2003
John M. Prausnitz
2004
Edwin N. Lightfoot
2005
Jan D. Achenbach
2006
Robert S. Langer
2007
David J. Wineland
2008
Rudolf E. Kálmán
2009
Amnon Yariv
2010s
2010
Shu Chien
2011
John B. Goodenough
2012
Thomas Kailath
2020s
2023
Subra Suresh
2025
John Dabiri
Mathematical, statistical, and computer sciences
1960s
1963
Norbert Wiener
1964
Solomon Lefschetz
H. Marston Morse
1965
Oscar Zariski
1966
John Milnor
1967
Paul Cohen
1968
Jerzy Neyman
1969
William Feller
1970s
1970
Richard Brauer
1973
John Tukey
1974
Kurt Gödel
1975
John W. Backus
Shiing-Shen Chern
George Dantzig
1976
Kurt Otto Friedrichs
Hassler Whitney
1979
Joseph L. Doob
Donald E. Knuth
1980s
1982
Marshall H. Stone
1983
Herman Goldstine
Isadore Singer
1986
Peter Lax
Antoni Zygmund
1987
Raoul Bott
Michael Freedman
1988
Ralph E. Gomory
Joseph B. Keller
1989
Samuel Karlin
Saunders Mac Lane
Donald C. Spencer
1990s
1990
George F. Carrier
Stephen Cole Kleene
John McCarthy
1991
Alberto Calderón
1992
Allen Newell
1993
Martin David Kruskal
1994
John Cocke
1995
Louis Nirenberg
1996
Richard Karp
Stephen Smale
1997
Shing-Tung Yau
1998
Cathleen Synge Morawetz
1999
Felix Browder
Ronald R. Coifman
2000s
2000
John Griggs Thompson
Karen Uhlenbeck
2001
Calyampudi R. Rao
Elias M. Stein
2002
James G. Glimm
2003
Carl R. de Boor
2004
Dennis P. Sullivan
2005
Bradley Efron
2006
Hyman Bass
2007
Leonard Kleinrock
Andrew J. Viterbi
2009
David B. Mumford
2010s
2010
Richard A. Tapia
S. R. Srinivasa Varadhan
2011
Solomon W. Golomb
Barry Mazur
2012
Alexandre Chorin
David Blackwell
2013
Michael Artin
2020s
2025
Ingrid Daubechies
Cynthia Dwork
Physical sciences
1960s
1963
Luis W. Alvarez
1964
Julian Schwinger
Harold Urey
Robert Burns Woodward
1965
John Bardeen
Peter Debye
Leon M. Lederman
William Rubey
1966
Jacob Bjerknes
Subrahmanyan Chandrasekhar
Henry Eyring
John H. Van Vleck
Vladimir K. Zworykin
1967
Jesse Beams
Francis Birch
Gregory Breit
Louis Hammett
George Kistiakowsky
1968
Paul Bartlett
Herbert Friedman
Lars Onsager
Eugene Wigner
1969
Herbert C. Brown
Wolfgang Panofsky
1970s
1970
Robert H. Dicke
Allan R. Sandage
John C. Slater
John A. Wheeler
Saul Winstein
1973
Carl Djerassi
Maurice Ewing
Arie Jan Haagen-Smit
Vladimir Haensel
Frederick Seitz
Robert Rathbun Wilson
1974
Nicolaas Bloembergen
Paul Flory
William Alfred Fowler
Linus Carl Pauling
Kenneth Sanborn Pitzer
1975
Hans A. Bethe
Joseph O. Hirschfelder
Lewis Sarett
Edgar Bright Wilson
Chien-Shiung Wu
1976
Samuel Goudsmit
Herbert S. Gutowsky
Frederick Rossini
Verner Suomi
Henry Taube
George Uhlenbeck
1979
Richard P. Feynman
Herman Mark
Edward M. Purcell
John Sinfelt
Lyman Spitzer
Victor F. Weisskopf
1980s
1982
Philip W. Anderson
Yoichiro Nambu
Edward Teller
Charles H. Townes
1983
E. Margaret Burbidge
Maurice Goldhaber
Helmut Landsberg
Walter Munk
Frederick Reines
Bruno B. Rossi
J. Robert Schrieffer
1986
Solomon J. Buchsbaum
H. Richard Crane
Herman Feshbach
Robert Hofstadter
Chen-Ning Yang
1987
Philip Abelson
Walter Elsasser
Paul C. Lauterbur
George Pake
James A. Van Allen
1988
D. Allan Bromley
Paul Ching-Wu Chu
Walter Kohn
Norman Foster Ramsey Jr.
Jack Steinberger
1989
Arnold O. Beckman
Eugene Parker
Robert Sharp
Henry Stommel
1990s
1990
Allan M. Cormack
Edwin M. McMillan
Robert Pound
Roger Revelle
1991
Arthur L. Schawlow
Ed Stone
Steven Weinberg
1992
Eugene M. Shoemaker
1993
Val Fitch
Vera Rubin
1994
Albert Overhauser
Frank Press
1995
Hans Dehmelt
Peter Goldreich
1996
Wallace S. Broecker
1997
Marshall Rosenbluth
Martin Schwarzschild
George Wetherill
1998
Don L. Anderson
John N. Bahcall
1999
James Cronin
Leo Kadanoff
2000s
2000
Willis E. Lamb
Jeremiah P. Ostriker
Gilbert F. White
2001
Marvin L. Cohen
Raymond Davis Jr.
Charles Keeling
2002
Richard Garwin
W. Jason Morgan
Edward Witten
2003
G. Brent Dalrymple
Riccardo Giacconi
2004
Robert N. Clayton
2005
Ralph A. Alpher
Lonnie Thompson
2006
Daniel Kleppner
2007
Fay Ajzenberg-Selove
Charles P. Slichter
2008
Berni Alder
James E. Gunn
2009
Yakir Aharonov
Esther M. Conwell
Warren M. Washington
2010s
2011
Sidney Drell
Sandra Faber
Sylvester James Gates
2012
Burton Richter
Sean C. Solomon
2014
Shirley Ann Jackson
2020s
2023
Barry Barish
Myriam Sarachik
2025
Richard Alley
Wendy Freedman
Keivan Stassun

Template:Computable knowledge

Manhattan Project
Timeline
Sites
Administrators
Scientists
Operations
Weapons
Related topics
Category
Massachusetts Institute of Technology
Academics
Research
People
Culture
Campus
History
Athletics
Notable projects
Portals:Vannevar Bush at Misplaced Pages's sister projects:


Template:Persondata

Template:Link FA

Categories: