Misplaced Pages

Van der Grinten projection

Article snapshot taken from Wikipedia with creative commons attribution-sharealike license. Give it a read and then ask your questions in the chat. We can research this topic together.

This is an old revision of this page, as edited by LinkTiger (talk | contribs) at 17:54, 28 November 2016 (Use complete sentences.). The present address (URL) is a permanent link to this revision, which may differ significantly from the current revision.

Revision as of 17:54, 28 November 2016 by LinkTiger (talk | contribs) (Use complete sentences.)(diff) ← Previous revision | Latest revision (diff) | Newer revision → (diff)
Van der Grinten projection of the world.

The van der Grinten projection is a compromise map projection that is neither equal-area nor conformal.

History

In 1904, the projection was the first of four proposed by Alphons J. van der Grinten.

In 1922, the projection was made famous when the National Geographic Society adopted it as their reference map of the world. In 1988, 66 years later, it was supplanted by the Robinson projection.

Strengths and weaknesses

Unlike perspective projections, the van der Grinten projection is an arbitrary geometric construction on the plane.

Areas of a fixed size at a distance from the equator look smaller on a van der Grinten map than they do on a Mercator map but larger than they do on a globe. Van der Grinten projects the entire Earth into a circle, although the polar regions are subject to extreme distortion.

Geometric construction

The geometric construction given by van der Grinten can be written algebraically:

x = ± π ( A ( G P 2 ) + A 2 ( G P 2 ) 2 ( P 2 + A 2 ) ( G 2 P 2 ) ) P 2 + A 2 y = ± π ( P Q A ( A 2 + 1 ) ( P 2 + A 2 ) Q 2 ) P 2 + A 2 {\displaystyle {\begin{aligned}x&={\frac {\pm \pi \left(A\left(G-P^{2}\right)+{\sqrt {A^{2}\left(G-P^{2}\right)^{2}-\left(P^{2}+A^{2}\right)\left(G^{2}-P^{2}\right)}}\right)}{P^{2}+A^{2}}}\\y&={\frac {\pm \pi \left(PQ-A{\sqrt {\left(A^{2}+1\right)\left(P^{2}+A^{2}\right)-Q^{2}}}\right)}{P^{2}+A^{2}}}\end{aligned}}}

where x takes the sign of λλ0, y takes the sign of φ and

A = 1 2 | π λ λ 0 λ λ 0 π | G = cos θ sin θ + cos θ 1 P = G ( 2 sin θ 1 ) θ = arcsin | 2 φ π | Q = A 2 + G {\displaystyle {\begin{aligned}A&={\frac {1}{2}}\left|{\frac {\pi }{\lambda -\lambda _{0}}}-{\frac {\lambda -\lambda _{0}}{\pi }}\right|\\G&={\frac {\cos \theta }{\sin \theta +\cos \theta -1}}\\P&=G\left({\frac {2}{\sin \theta }}-1\right)\\\theta &=\arcsin \left|{\frac {2\varphi }{\pi }}\right|\\Q&=A^{2}+G\end{aligned}}}

Should it occur that φ = 0, then

x = ( λ λ 0 ) y = 0 {\displaystyle {\begin{aligned}x&=\left(\lambda -\lambda _{0}\right)\\y&=0\end{aligned}}}

Similarly, if λ = λ0 or φ = ±⁠π/2⁠, then

x = 0 y = ± π tan θ 2 {\displaystyle {\begin{aligned}x&=0\\y&=\pm \pi \tan {\frac {\theta }{2}}\end{aligned}}}

In all cases, φ is the latitude, λ is the longitude, and λ0 is the central meridian of the projection.

See also

References

  1. ^ Flattening the Earth: Two Thousand Years of Map Projections, John P. Snyder, 1993, pp.258-262, ISBN 0-226-76747-7.
  2. Map Projections - A Working Manual, USGS Professional Paper 1395, John P. Snyder, 1987, pp.239-242.

Bibliography

External links

Map projection
By surface
Cylindrical
Mercator-conformal
Equal-area
Pseudocylindrical
Equal-area
Conical
Pseudoconical
Azimuthal
(planar)
General perspective
Pseudoazimuthal
By metric
Conformal
Equal-area
Bonne
Bottomley
Cylindrical
Tobler hyperelliptical
Equidistant in
some aspect
Gnomonic
Loxodromic
Retroazimuthal
(Mecca or Qibla)
By construction
Compromise
Hybrid
Perspective
Planar
Polyhedral
See also
Stub icon

This cartography or mapping term article is a stub. You can help Misplaced Pages by expanding it.

Categories: