Misplaced Pages

Subring

Article snapshot taken from Wikipedia with creative commons attribution-sharealike license. Give it a read and then ask your questions in the chat. We can research this topic together.

This is an old revision of this page, as edited by Heinrich5991 (talk | contribs) at 15:05, 20 November 2018 (Undid revision 866230157 by 2601:648:8700:E34:347A:2F9B:8FFB:8C73 (talk): The changed text implied that the natural numbers are a subring of the integers, but they're not. See also the talk page: https://en.wikipedia.org/Talk:Subring#subtraction?). The present address (URL) is a permanent link to this revision, which may differ significantly from the current revision.

Revision as of 15:05, 20 November 2018 by Heinrich5991 (talk | contribs) (Undid revision 866230157 by 2601:648:8700:E34:347A:2F9B:8FFB:8C73 (talk): The changed text implied that the natural numbers are a subring of the integers, but they're not. See also the talk page: https://en.wikipedia.org/Talk:Subring#subtraction?)(diff) ← Previous revision | Latest revision (diff) | Newer revision → (diff)
This article includes a list of references, related reading, or external links, but its sources remain unclear because it lacks inline citations. Please help improve this article by introducing more precise citations. (November 2018) (Learn how and when to remove this message)

In mathematics, a subring of R is a subset of a ring that is itself a ring when binary operations of addition and multiplication on R are restricted to the subset, and which shares the same multiplicative identity as R. For those who define rings without requiring the existence of a multiplicative identity, a subring of R is just a subset of R that is a ring for the operations of R (this does imply it contains the additive identity of R). The latter gives a strictly weaker condition, even for rings that do have a multiplicative identity, so that for instance all ideals become subrings (and they may have a multiplicative identity that differs from the one of R). With definition requiring a multiplicative identity (which is used in this article), the only ideal of R that is a subring of R is R itself.

Formal definition

A subring of a ring (R, +, ∗, 0, 1) is a subset S of R that preserves the structure of the ring, i.e. a ring (S, +, ∗, 0, 1) with SR. Equivalently, it is both a subgroup of (R, +, 0) and a submonoid of (R, ∗, 1).

Examples

The ring Z and its quotients Z/nZ have no subrings (with multiplicative identity) other than the full ring.

Every ring has a unique smallest subring, isomorphic to some ring Z/nZ with n a nonnegative integer (see characteristic). The integers Z correspond to n = 0 in this statement, since Z is isomorphic to Z/0Z.

Subring test

The subring test is a theorem that states that for any ring R, a subset of R is a subring if it is closed under multiplication and subtraction, and contains the multiplicative identity of R.

As an example, the ring Z of integers is a subring of the field of real numbers and also a subring of the ring of polynomials Z.

Ring extensions

Not to be confused with a ring-theoretic analog of a group extension. For that, see Ring extension.

If S is a subring of a ring R, then equivalently R is said to be a ring extension of S, written as R/S in similar notation to that for field extensions.

Subring generated by a set

Let R be a ring. Any intersection of subrings of R is again a subring of R. Therefore, if X is any subset of R, the intersection of all subrings of R containing X is a subring S of R. S is the smallest subring of R containing X. ("Smallest" means that if T is any other subring of R containing X, then S is contained in T.) S is said to be the subring of R generated by X. If S = R, we may say that the ring R is generated by X.

Relation to ideals

Proper ideals are subrings that are closed under both left and right multiplication by elements from R.

If one omits the requirement that rings have a unity element, then subrings need only be non-empty and otherwise conform to the ring structure, and ideals become subrings. Ideals may or may not have their own multiplicative identity (distinct from the identity of the ring):

  • The ideal I = {(z,0) | z in Z} of the ring Z × Z = {(x,y) | x,y in Z} with componentwise addition and multiplication has the identity (1,0), which is different from the identity (1,1) of the ring. So I is a ring with unity, and a "subring-without-unity", but not a "subring-with-unity" of Z × Z.
  • The proper ideals of Z have no multiplicative identity.

If I is a prime ideal of a commutative ring R, then the intersection of I with any subring S of R remains prime in S. In this case one says that I lies over I ∩ S. The situation is more complicated when R is not commutative.

Profile by commutative subrings

A ring may be profiled by the variety of commutative subrings that it hosts:

See also

References

Category: