Misplaced Pages

Bochner's formula

Article snapshot taken from Wikipedia with creative commons attribution-sharealike license. Give it a read and then ask your questions in the chat. We can research this topic together.
This article may be too technical for most readers to understand. Please help improve it to make it understandable to non-experts, without removing the technical details. (June 2012) (Learn how and when to remove this message)

In mathematics, Bochner's formula is a statement relating harmonic functions on a Riemannian manifold ( M , g ) {\displaystyle (M,g)} to the Ricci curvature. The formula is named after the American mathematician Salomon Bochner.

Formal statement

If u : M R {\displaystyle u\colon M\rightarrow \mathbb {R} } is a smooth function, then

1 2 Δ | u | 2 = g ( Δ u , u ) + | 2 u | 2 + Ric ( u , u ) {\displaystyle {\tfrac {1}{2}}\Delta |\nabla u|^{2}=g(\nabla \Delta u,\nabla u)+|\nabla ^{2}u|^{2}+{\mbox{Ric}}(\nabla u,\nabla u)} ,

where u {\displaystyle \nabla u} is the gradient of u {\displaystyle u} with respect to g {\displaystyle g} , 2 u {\displaystyle \nabla ^{2}u} is the Hessian of u {\displaystyle u} with respect to g {\displaystyle g} and Ric {\displaystyle {\mbox{Ric}}} is the Ricci curvature tensor. If u {\displaystyle u} is harmonic (i.e., Δ u = 0 {\displaystyle \Delta u=0} , where Δ = Δ g {\displaystyle \Delta =\Delta _{g}} is the Laplacian with respect to the metric g {\displaystyle g} ), Bochner's formula becomes

1 2 Δ | u | 2 = | 2 u | 2 + Ric ( u , u ) {\displaystyle {\tfrac {1}{2}}\Delta |\nabla u|^{2}=|\nabla ^{2}u|^{2}+{\mbox{Ric}}(\nabla u,\nabla u)} .

Bochner used this formula to prove the Bochner vanishing theorem.

As a corollary, if ( M , g ) {\displaystyle (M,g)} is a Riemannian manifold without boundary and u : M R {\displaystyle u\colon M\rightarrow \mathbb {R} } is a smooth, compactly supported function, then

M ( Δ u ) 2 d vol = M ( | 2 u | 2 + Ric ( u , u ) ) d vol {\displaystyle \int _{M}(\Delta u)^{2}\,d{\mbox{vol}}=\int _{M}{\Big (}|\nabla ^{2}u|^{2}+{\mbox{Ric}}(\nabla u,\nabla u){\Big )}\,d{\mbox{vol}}} .

This immediately follows from the first identity, observing that the integral of the left-hand side vanishes (by the divergence theorem) and integrating by parts the first term on the right-hand side.

Variations and generalizations

References

  1. Chow, Bennett; Lu, Peng; Ni, Lei (2006), Hamilton's Ricci flow, Graduate Studies in Mathematics, vol. 77, Providence, RI: Science Press, New York, p. 19, ISBN 978-0-8218-4231-7, MR 2274812.
Category: