Misplaced Pages

Cellobiose

Article snapshot taken from Wikipedia with creative commons attribution-sharealike license. Give it a read and then ask your questions in the chat. We can research this topic together.
Cellobiose
Names
IUPAC name 4-O-β-D-Glucopyranosyl-β-D-glucopyranose
Systematic IUPAC name (2Ξ,3R,4R,5S,6R)-6-(Hydroxymethyl)-5-{oxy}oxane-2,3,4-triol
Identifiers
CAS Number
3D model (JSmol)
ChEBI
ChEMBL
ChemSpider
DrugBank
ECHA InfoCard 100.007.670 Edit this at Wikidata
KEGG
PubChem CID
UNII
CompTox Dashboard (EPA)
InChI
  • InChI=1S/C12H22O11/c13-1-3-5(15)6(16)9(19)12(22-3)23-10-4(2-14)21-11(20)8(18)7(10)17/h3-20H,1-2H2/t3-,4-,5-,6+,7-,8-,9-,10-,11?,12+/m1/s1Key: GUBGYTABKSRVRQ-CUHNMECISA-N
SMILES
  • O2(O1O(CO)(O)(O)1O)(OC(O)2O)CO
Properties
Chemical formula C12H22O11
Molar mass 342.297 g·mol
Appearance White, hard powder
Odor Odorless
Density 1.768 g/mL
Melting point 203.5 °C (398.3 °F; 476.6 K) (decomposes)
Solubility in water 12 g/100 mL
Solubility Very slightly soluble in alcohol
insoluble in ether, chloroform
log P −5.03
Acidity (pKa) 12.39
Hazards
NFPA 704 (fire diamond)
NFPA 704 four-colored diamondHealth 1: Exposure would cause irritation but only minor residual injury. E.g. turpentineFlammability 0: Will not burn. E.g. waterInstability 0: Normally stable, even under fire exposure conditions, and is not reactive with water. E.g. liquid nitrogenSpecial hazards (white): no code
1 0 0
Safety data sheet (SDS) Sigma-Aldrich
Except where otherwise noted, data are given for materials in their standard state (at 25 °C , 100 kPa). ☒verify (what is  ?) Infobox references
Chemical compound

Cellobiose is a disaccharide with the formula (C6H7(OH)4O)2O. It is classified as a reducing sugar - any sugar that possesses the ability or function of a reducing agent. The chemical structure of cellobiose is derived from the condensation of a pair of β-glucose molecules forming a β(1→4) bond. It can be hydrolyzed to glucose enzymatically or with acid. Cellobiose has eight free alcohol (OH) groups, one acetal linkage, and one hemiacetal linkage, which give rise to strong inter- and intramolecular hydrogen bonds. It is a white solid.

It can be obtained by enzymatic or acidic hydrolysis of cellulose and cellulose-rich materials such as cotton, jute, or paper. Cellobiose can be used as an indicator carbohydrate for Crohn's disease and malabsorption syndrome.

Treatment of cellulose with acetic anhydride and sulfuric acid gives cellobiose acetoacetate, of which there is no longer a hydrogen bond donor (though it is still a hydrogen bond acceptor) and possesses aspects of being soluble in nonpolar organic solvents.

References

  1. Wilson, David B. (2009). "Cellulases and biofuels". Current Opinion in Biotechnology. 20 (3): 295–299. doi:10.1016/j.copbio.2009.05.007. PMID 19502046.
  2. "Human Metabolome Database: Showing metabocard for Cellobiose (HMDB0000055)".
  3. Braun, G. (1943). "α-Cellobiose Octaacetate" (PDF). Organic Syntheses. Collected Volume 2: 124. and Braun, G. (1937). "α-Cellobiose Octaacetate". Organic Syntheses. 17: 36. doi:10.15227/orgsyn.017.0036.
Types of carbohydrates
General
Geometry
Monosaccharides
Dioses
Trioses
Tetroses
Pentoses
Hexoses
Heptoses
Above 7
Multiple
Disaccharides
Trisaccharides
Tetrasaccharides
Other
oligosaccharides
Polysaccharides
Categories: