Misplaced Pages

Chipaque Formation

Article snapshot taken from Wikipedia with creative commons attribution-sharealike license. Give it a read and then ask your questions in the chat. We can research this topic together.
Chipaque Formation
Stratigraphic range: Cenomanian-Turonian
~97–90 Ma PreꞒ O S D C P T J K Pg N
TypeGeological formation
Unit ofVilleta Group
UnderliesGuadalupe Gp
 Arenisca Dura Fm
OverliesUne Formation
Thicknessup to 1,700 metres (5,580 ft)
Lithology
PrimaryOrganic shale
OtherSandstone, limestone, siltstone
Location
Coordinates4°27′07″N 74°03′20″W / 4.45194°N 74.05556°W / 4.45194; -74.05556
RegionAltiplano Cundiboyacense
Eastern Ranges, Andes
Country Colombia
Type section
Named forChipaque
Named byHubach
LocationChipaque
Year defined1957
Coordinates4°27′07″N 74°03′20″W / 4.45194°N 74.05556°W / 4.45194; -74.05556
RegionCundinamarca, Boyacá
Country Colombia
Thickness at type section1,027 metres (3,370 ft)

Paleogeography of Northern South America
90 Ma, by Ron Blakey

The Chipaque Formation (Spanish: Formación Chipaque, K2cp, Kc) is a geological formation of the Altiplano Cundiboyacense, Eastern Ranges of the Colombian Andes. The formation is also described as Gachetá Formation, named after Gachetá, in the area of the Llanos foothills of the Eastern Ranges. The predominantly organic shale formation dates to the Late Cretaceous period; Cenomanian-Turonian epochs and has a maximum thickness of 1,700 metres (5,600 ft). The formation, rich in TOC, is an important oil and gas generating unit for the giant oilfields Cupiagua and Cusiana of the Eastern Ranges as well as in the Llanos Orientales.

Etymology

The formation was named in 1931 as group and as formation in 1957 by Hubach after Chipaque, Cundinamarca.

Description

Lithologies

The Chipaque Formation with a maximum thickness of 1,700 metres (5,600 ft), is characterised by a sequence of pyritic organic shales, limestones and siltstones, with sandstone banks intercalated in the formation. The Chipaque Formation contains a high density of fauna. The formation is rich in TOC and one of the principal source rocks for oil and gas generation in the foothills of the Eastern Ranges, sourcing fields as Cusiana, Cupiagua and many others. Chipaque also sourced the oilfields of the Llanos Orientales. In the Chitasugá-1 well, drilled between 1980 and 1981, from the sandstones of the Chipaque Formation half a million m of water were produced. The sandstone beds are reservoir rocks for oil in the Eastern Ranges.

Stratigraphy and depositional environment

The Chipaque Formation overlies the Une Formation and is overlain by the Guadalupe Group. The core of the Zipaquirá Anticline consists of the Chipaque Formation. The age has been estimated to be Cenomanian-Turonian. Stratigraphically, the formation is time equivalent with the Simijaca Formation. The formation has been deposited in an open to shallow marine platform setting. The deposition is represented by a maximum flooding surface and anoxic conditions.

Outcrops

Chipaque Formation is located in the Bogotá savannaChipaque Formationclass=notpageimage| Type locality of the Chipaque Formation to the south of the Bogotá savanna

The Chipaque Formation is apart from its type locality, found in the Eastern Hills of Bogotá, the Ocetá Páramo and many other locations in the Eastern Ranges. The anticlinals of the Río Blanco-Machetá, San José and Sopó-Sesquilé are composed of the Chipaque Formation.

Regional correlations

Cretaceous stratigraphy of the central Colombian Eastern Ranges
Age Paleomap VMM Guaduas-Vélez W Emerald Belt Villeta anticlinal Chiquinquirá-
Arcabuco
Tunja-
Duitama
Altiplano Cundiboyacense El Cocuy
Maastrichtian Umir Córdoba Seca eroded Guaduas Colón-Mito Juan
Umir Guadalupe
Campanian Córdoba
Oliní
Santonian La Luna Cimarrona - La Tabla La Luna
Coniacian Oliní Villeta Conejo Chipaque
Güagüaquí Loma Gorda undefined La Frontera
Turonian Hondita La Frontera Otanche
Cenomanian Simití hiatus La Corona Simijaca Capacho
Pacho Fm. Hiló - Pacho Churuvita Une Aguardiente
Albian Hiló Chiquinquirá Tibasosa Une
Tablazo Tablazo Capotes - La Palma - Simití Simití Tibú-Mercedes
Aptian Capotes Socotá - El Peñón Paja Fómeque
Paja Paja El Peñón Trincheras Río Negro
La Naveta
Barremian
Hauterivian Muzo Cáqueza Las Juntas
Rosablanca Ritoque
Valanginian Ritoque Furatena Útica - Murca Rosablanca hiatus Macanal
Rosablanca
Berriasian Cumbre Cumbre Los Medios Guavio
Tambor Arcabuco Cumbre
Sources


Stratigraphy of the Llanos Basin and surrounding provinces
Ma Age Paleomap Regional events Catatumbo Cordillera proximal Llanos distal Llanos Putumayo VSM Environments Maximum thickness Petroleum geology Notes
0.01 Holocene
Holocene volcanism
Seismic activity
alluvium Overburden
1 Pleistocene
Pleistocene volcanism
Andean orogeny 3
Glaciations
Guayabo Soatá
Sabana
Necesidad Guayabo Gigante
Neiva
Alluvial to fluvial (Guayabo) 550 m (1,800 ft)
(Guayabo)
2.6 Pliocene
Pliocene volcanism
Andean orogeny 3
GABI
Subachoque
5.3 Messinian Andean orogeny 3
Foreland
Marichuela Caimán Honda
13.5 Langhian Regional flooding León hiatus Caja León Lacustrine (León) 400 m (1,300 ft)
(León)
Seal
16.2 Burdigalian Miocene inundations
Andean orogeny 2
C1 Carbonera C1 Ospina Proximal fluvio-deltaic (C1) 850 m (2,790 ft)
(Carbonera)
Reservoir
17.3 C2 Carbonera C2 Distal lacustrine-deltaic (C2) Seal
19 C3 Carbonera C3 Proximal fluvio-deltaic (C3) Reservoir
21 Early Miocene Pebas wetlands C4 Carbonera C4 Barzalosa Distal fluvio-deltaic (C4) Seal
23 Late Oligocene
Andean orogeny 1
Foredeep
C5 Carbonera C5 Orito Proximal fluvio-deltaic (C5) Reservoir
25 C6 Carbonera C6 Distal fluvio-lacustrine (C6) Seal
28 Early Oligocene C7 C7 Pepino Gualanday Proximal deltaic-marine (C7) Reservoir
32 Oligo-Eocene C8 Usme C8 onlap Marine-deltaic (C8) Seal
Source
35 Late Eocene
Mirador Mirador Coastal (Mirador) 240 m (790 ft)
(Mirador)
Reservoir
40 Middle Eocene Regadera hiatus
45
50 Early Eocene
Socha Los Cuervos Deltaic (Los Cuervos) 260 m (850 ft)
(Los Cuervos)
Seal
Source
55 Late Paleocene PETM
2000 ppm CO2
Los Cuervos Bogotá Gualanday
60 Early Paleocene SALMA Barco Guaduas Barco Rumiyaco Fluvial (Barco) 225 m (738 ft)
(Barco)
Reservoir
65 Maastrichtian
KT extinction Catatumbo Guadalupe Monserrate Deltaic-fluvial (Guadalupe) 750 m (2,460 ft)
(Guadalupe)
Reservoir
72 Campanian End of rifting Colón-Mito Juan
83 Santonian Villeta/Güagüaquí
86 Coniacian
89 Turonian Cenomanian-Turonian anoxic event La Luna Chipaque Gachetá hiatus Restricted marine (all) 500 m (1,600 ft)
(Gachetá)
Source
93 Cenomanian
Rift 2
100 Albian Une Une Caballos Deltaic (Une) 500 m (1,600 ft)
(Une)
Reservoir
113 Aptian
Capacho Fómeque Motema Yaví Open marine (Fómeque) 800 m (2,600 ft)
(Fómeque)
Source (Fóm)
125 Barremian High biodiversity Aguardiente Paja Shallow to open marine (Paja) 940 m (3,080 ft)
(Paja)
Reservoir
129 Hauterivian
Rift 1 Tibú-
Mercedes
Las Juntas hiatus Deltaic (Las Juntas) 910 m (2,990 ft)
(Las Juntas)
Reservoir (LJun)
133 Valanginian Río Negro Cáqueza
Macanal
Rosablanca
Restricted marine (Macanal) 2,935 m (9,629 ft)
(Macanal)
Source (Mac)
140 Berriasian Girón
145 Tithonian Break-up of Pangea Jordán Arcabuco Buenavista
Batá
Saldaña Alluvial, fluvial (Buenavista) 110 m (360 ft)
(Buenavista)
"Jurassic"
150 Early-Mid Jurassic
Passive margin 2 La Quinta Montebel
Noreán
hiatus Coastal tuff (La Quinta) 100 m (330 ft)
(La Quinta)
201 Late Triassic
Mucuchachi Payandé
235 Early Triassic
Pangea hiatus "Paleozoic"
250 Permian
300 Late Carboniferous
Famatinian orogeny Cerro Neiva
()
340 Early Carboniferous Fossil fish
Romer's gap
Cuche
(355-385)
Farallones
()
Deltaic, estuarine (Cuche) 900 m (3,000 ft)
(Cuche)
360 Late Devonian
Passive margin 1 Río Cachirí
(360-419)
Ambicá
()
Alluvial-fluvial-reef (Farallones) 2,400 m (7,900 ft)
(Farallones)
390 Early Devonian
High biodiversity Floresta
(387-400)
El Tíbet
Shallow marine (Floresta) 600 m (2,000 ft)
(Floresta)
410 Late Silurian Silurian mystery
425 Early Silurian hiatus
440 Late Ordovician
Rich fauna in Bolivia San Pedro
(450-490)
Duda
()
470 Early Ordovician First fossils Busbanzá
(>470±22)
ChuscalesOtengá
Guape
()
Río Nevado
()
Hígado
()Agua Blanca
Venado
(470-475)
488 Late Cambrian
Regional intrusions Chicamocha
(490-515)
Quetame
()
Ariarí
()
SJ del Guaviare
(490-590)
San Isidro
()
515 Early Cambrian Cambrian explosion
542 Ediacaran
Break-up of Rodinia pre-Quetame post-Parguaza El Barro
()
Yellow: allochthonous basement
(Chibcha Terrane)
Green: autochthonous basement
(Río Negro-Juruena Province)
Basement
600 Neoproterozoic Cariri Velhos orogeny Bucaramanga
(600-1400)
pre-Guaviare
800
Snowball Earth
1000 Mesoproterozoic
Sunsás orogeny Ariarí
(1000)
La Urraca
(1030-1100)
1300 Rondônia-Juruá orogeny pre-Ariarí Parguaza
(1300-1400)
Garzón
(1180-1550)
1400
pre-Bucaramanga
1600 Paleoproterozoic Maimachi
(1500-1700)
pre-Garzón
1800
Tapajós orogeny Mitú
(1800)
1950 Transamazonic orogeny pre-Mitú
2200 Columbia
2530 Archean
Carajas-Imataca orogeny
3100 Kenorland
Sources
Legend
  • group
  • important formation
  • fossiliferous formation
  • minor formation
  • (age in Ma)
  • proximal Llanos (Medina)
  • distal Llanos (Saltarin 1A well)


Gallery

  • Oyster fossils from a sandstone bank of the Chipaque Formation Oyster fossils from a sandstone bank of the Chipaque Formation
  • Organic shale of the Chipaque Formation Organic shale of the Chipaque Formation
  • Chipaque Formation Ocetá Páramo Chipaque Formation
    Ocetá Páramo
  • Chipaque Formation Ocetá Páramo Chipaque Formation
    Ocetá Páramo
  • Banded shale of the Chipaque Formation Ocetá Páramo Banded shale of the Chipaque Formation
    Ocetá Páramo

See also

Notes and references

Notes

  1. based on Duarte et al. (2019), García González et al. (2009), and geological report of Villavicencio
  2. based on Duarte et al. (2019) and the hydrocarbon potential evaluation performed by the UIS and ANH in 2009

References

  1. ^ Montoya Arenas & Reyes Torres, 2005, p.26
  2. Lobo Guerrero, 1992, p.4
  3. ^ García González et al., 2009, p.49
  4. Cortés et al., 2009, p.4
  5. García González et al., 2009, p.58
  6. Lobo Guerrero, 1993, p.20
  7. García & Jiménez, 2016, p.24
  8. Montoya Arenas & Reyes Torres, 2005, p.22
  9. García González et al., 2009, p.209
  10. Villamil, 2012, p.164
  11. ^ García González et al., 2009, p.27
  12. ^ García González et al., 2009, p.50
  13. ^ García González et al., 2009, p.85
  14. ^ Barrero et al., 2007, p.60
  15. ^ Barrero et al., 2007, p.58
  16. Plancha 111, 2001, p.29
  17. ^ Plancha 177, 2015, p.39
  18. ^ Plancha 111, 2001, p.26
  19. Plancha 111, 2001, p.24
  20. Plancha 111, 2001, p.23
  21. ^ Pulido & Gómez, 2001, p.32
  22. Pulido & Gómez, 2001, p.30
  23. ^ Pulido & Gómez, 2001, pp.21-26
  24. Pulido & Gómez, 2001, p.28
  25. Correa Martínez et al., 2019, p.49
  26. Plancha 303, 2002, p.27
  27. Terraza et al., 2008, p.22
  28. Plancha 229, 2015, pp.46-55
  29. Plancha 303, 2002, p.26
  30. Moreno Sánchez et al., 2009, p.53
  31. Mantilla Figueroa et al., 2015, p.43
  32. Manosalva Sánchez et al., 2017, p.84
  33. ^ Plancha 303, 2002, p.24
  34. ^ Mantilla Figueroa et al., 2015, p.42
  35. Arango Mejía et al., 2012, p.25
  36. Plancha 350, 2011, p.49
  37. Pulido & Gómez, 2001, pp.17-21
  38. Plancha 111, 2001, p.13
  39. Plancha 303, 2002, p.23
  40. Plancha 348, 2015, p.38
  41. Planchas 367-414, 2003, p.35
  42. Toro Toro et al., 2014, p.22
  43. Plancha 303, 2002, p.21
  44. ^ Bonilla et al., 2016, p.19
  45. Gómez Tapias et al., 2015, p.209
  46. ^ Bonilla et al., 2016, p.22
  47. ^ Duarte et al., 2019
  48. García González et al., 2009
  49. Pulido & Gómez, 2001
  50. García González et al., 2009, p.60

Bibliography

  • García, Helbert; Jiménez, Giovanny (2016), "Structural analysis of the Zipaquirá Anticline (Eastern Cordillera, Colombia)", Boletín de Ciencias de la Tierra, Universidad Nacional de Colombia, 39 (39): 21–32, doi:10.15446/rbct.n39.50333
  • Schütz, Christian (2012), Combined structural and Petroleum Systems Modeling in the Eastern Cordillera Basin, Colombia (MSc. thesis), Rheinisch-Westfälische Technische Hochschule Aachen & Instituto Colombiano del Petróleo, pp. 1–161
  • Villamil, Tomas (2012), Chronology Relative Sea Level History and a New Sequence Stratigraphic Model for Basinal Cretaceous Facies of Colombia, Society for Sedimentary Geology (SEPM), pp. 161–216
  • Cortés, Martín; García, Diego; Bayona, Germán; Blanco, Yolima (2009), Timing of oil generation in the Eastern flank of the Eastern Cordillera of Colombia based on kinematic models; implications in the Llanos Foothills and Foreland charge, Asociación Colombiana de Geólogos y Geofisicos del Petróleo (ACGGP), pp. 1–8
  • García González, Mario; Mier Umaña, Ricardo; Cruz Guevara, Luis Enrique; Vásquez, Mauricio (2009), Informe Ejecutivo - evaluación del potencial hidrocarburífero de las cuencas colombianas, Universidad Industrial de Santander, pp. 1–219
  • Montoya Arenas, Diana María; Reyes Torres, Germán Alfonso (2005), Geología de la Sabana de Bogotá, INGEOMINAS, pp. 1–104
  • Guerrero Uscátegui, Alberto Lobo (1993), Informe sobre la Cuenca Petrolífera de la Sabana de Bogotá, Colombia, pp. 1–29
  • Guerrero Uscátegui, Alberto Lobo (1992), Geología e Hidrogeología de Santafé de Bogotá y su Sabana, Sociedad Colombiana de Ingenieros, pp. 1–20

Reports

Maps

External links

Categories: