In the mathematical field of knot theory, the crosscap number of a knot K is the minimum of
taken over all compact, connected, non-orientable surfaces S bounding K; here is the Euler characteristic. The crosscap number of the unknot is zero, as the Euler characteristic of the disk is one.
Knot sum
The crosscap number of a knot sum is bounded:
Examples
- The crosscap number of the trefoil knot is 1, as it bounds a Möbius strip and is not trivial.
- The crosscap number of a torus knot was determined by M. Teragaito.
Further reading
- Clark, B.E. "Crosscaps and Knots", Int. J. Math and Math. Sci, Vol 1, 1978, pp 113–124
- Murakami, Hitoshi and Yasuhara, Akira. "Crosscap number of a knot," Pacific J. Math. 171 (1995), no. 1, 261–273.
- Teragaito, Masakazu. "Crosscap numbers of torus knots," Topology Appl. 138 (2004), no. 1–3, 219–238.
- Teragaito, Masakazu and Hirasawa, Mikami. "Crosscap numbers of 2-bridge knots," Arxiv:math.GT/0504446.
- J.Uhing. "Zur Kreuzhaubenzahl von Knoten", diploma thesis, 1997, University of Dortmund, (German language)
External links
- "Crosscap Number", KnotInfo.
Knot theory (knots and links) | |
---|---|
Hyperbolic |
|
Satellite | |
Torus | |
Invariants | |
Notation and operations | |
Other | |
This knot theory-related article is a stub. You can help Misplaced Pages by expanding it. |