Misplaced Pages

Euclidean topology

Article snapshot taken from Wikipedia with creative commons attribution-sharealike license. Give it a read and then ask your questions in the chat. We can research this topic together.
Topological structure of Euclidean space

In mathematics, and especially general topology, the Euclidean topology is the natural topology induced on n {\displaystyle n} -dimensional Euclidean space R n {\displaystyle \mathbb {R} ^{n}} by the Euclidean metric.

Definition

The Euclidean norm on R n {\displaystyle \mathbb {R} ^{n}} is the non-negative function : R n R {\displaystyle \|\cdot \|:\mathbb {R} ^{n}\to \mathbb {R} } defined by ( p 1 , , p n )   :=   p 1 2 + + p n 2 . {\displaystyle \left\|\left(p_{1},\ldots ,p_{n}\right)\right\|~:=~{\sqrt {p_{1}^{2}+\cdots +p_{n}^{2}}}.}

Like all norms, it induces a canonical metric defined by d ( p , q ) = p q . {\displaystyle d(p,q)=\|p-q\|.} The metric d : R n × R n R {\displaystyle d:\mathbb {R} ^{n}\times \mathbb {R} ^{n}\to \mathbb {R} } induced by the Euclidean norm is called the Euclidean metric or the Euclidean distance and the distance between points p = ( p 1 , , p n ) {\displaystyle p=\left(p_{1},\ldots ,p_{n}\right)} and q = ( q 1 , , q n ) {\displaystyle q=\left(q_{1},\ldots ,q_{n}\right)} is d ( p , q )   =   p q   =   ( p 1 q 1 ) 2 + ( p 2 q 2 ) 2 + + ( p i q i ) 2 + + ( p n q n ) 2 . {\displaystyle d(p,q)~=~\|p-q\|~=~{\sqrt {\left(p_{1}-q_{1}\right)^{2}+\left(p_{2}-q_{2}\right)^{2}+\cdots +\left(p_{i}-q_{i}\right)^{2}+\cdots +\left(p_{n}-q_{n}\right)^{2}}}.}

In any metric space, the open balls form a base for a topology on that space. The Euclidean topology on R n {\displaystyle \mathbb {R} ^{n}} is the topology generated by these balls. In other words, the open sets of the Euclidean topology on R n {\displaystyle \mathbb {R} ^{n}} are given by (arbitrary) unions of the open balls B r ( p ) {\displaystyle B_{r}(p)} defined as B r ( p ) := { x R n : d ( p , x ) < r } , {\displaystyle B_{r}(p):=\left\{x\in \mathbb {R} ^{n}:d(p,x)<r\right\},} for all real r > 0 {\displaystyle r>0} and all p R n , {\displaystyle p\in \mathbb {R} ^{n},} where d {\displaystyle d} is the Euclidean metric.

Properties

When endowed with this topology, the real line R {\displaystyle \mathbb {R} } is a T5 space. Given two subsets say A {\displaystyle A} and B {\displaystyle B} of R {\displaystyle \mathbb {R} } with A ¯ B = A B ¯ = , {\displaystyle {\overline {A}}\cap B=A\cap {\overline {B}}=\varnothing ,} where A ¯ {\displaystyle {\overline {A}}} denotes the closure of A , {\displaystyle A,} there exist open sets S A {\displaystyle S_{A}} and S B {\displaystyle S_{B}} with A S A {\displaystyle A\subseteq S_{A}} and B S B {\displaystyle B\subseteq S_{B}} such that S A S B = . {\displaystyle S_{A}\cap S_{B}=\varnothing .}

See also

References

  1. Metric space#Open and closed sets.2C topology and convergence
  2. Steen, L. A.; Seebach, J. A. (1995), Counterexamples in Topology, Dover, ISBN 0-486-68735-X
Categories: