Misplaced Pages

List of Banach spaces

Article snapshot taken from Wikipedia with creative commons attribution-sharealike license. Give it a read and then ask your questions in the chat. We can research this topic together.

In the mathematical field of functional analysis, Banach spaces are among the most important objects of study. In other areas of mathematical analysis, most spaces which arise in practice turn out to be Banach spaces as well.

Classical Banach spaces

According to Diestel (1984, Chapter VII), the classical Banach spaces are those defined by Dunford & Schwartz (1958), which is the source for the following table.

Glossary of symbols for the table below:

  • F {\displaystyle \mathbb {F} } denotes the field of real numbers R {\displaystyle \mathbb {R} } or complex numbers C . {\displaystyle \mathbb {C} .}
  • K {\displaystyle K} is a compact Hausdorff space.
  • p , q R {\displaystyle p,q\in \mathbb {R} } are real numbers with 1 < p , q < {\displaystyle 1<p,q<\infty } that are Hölder conjugates, meaning that they satisfy 1 q + 1 p = 1 {\displaystyle {\frac {1}{q}}+{\frac {1}{p}}=1} and thus also q = p p 1 . {\displaystyle q={\frac {p}{p-1}}.}
  • Σ {\displaystyle \Sigma } is a σ {\displaystyle \sigma } -algebra of sets.
  • Ξ {\displaystyle \Xi } is an algebra of sets (for spaces only requiring finite additivity, such as the ba space).
  • μ {\displaystyle \mu } is a measure with variation | μ | . {\displaystyle |\mu |.} A positive measure is a real-valued positive set function defined on a σ {\displaystyle \sigma } -algebra which is countably additive.
Classical Banach spaces
Dual space Reflexive weakly sequentially complete Norm Notes
F n {\displaystyle \mathbb {F} ^{n}} F n {\displaystyle \mathbb {F} ^{n}} Yes Yes x 2 {\displaystyle \|x\|_{2}} = ( i = 1 n | x i | 2 ) 1 / 2 {\displaystyle =\left(\sum _{i=1}^{n}|x_{i}|^{2}\right)^{1/2}} Euclidean space
p n {\displaystyle \ell _{p}^{n}} q n {\displaystyle \ell _{q}^{n}} Yes Yes x p {\displaystyle \|x\|_{p}} = ( i = 1 n | x i | p ) 1 p {\displaystyle =\left(\sum _{i=1}^{n}|x_{i}|^{p}\right)^{\frac {1}{p}}}
n {\displaystyle \ell _{\infty }^{n}} 1 n {\displaystyle \ell _{1}^{n}} Yes Yes x {\displaystyle \|x\|_{\infty }} = max 1 i n | x i | {\displaystyle =\max \nolimits _{1\leq i\leq n}|x_{i}|}
p {\displaystyle \ell ^{p}} q {\displaystyle \ell ^{q}} Yes Yes x p {\displaystyle \|x\|_{p}} = ( i = 1 | x i | p ) 1 p {\displaystyle =\left(\sum _{i=1}^{\infty }|x_{i}|^{p}\right)^{\frac {1}{p}}}
1 {\displaystyle \ell ^{1}} {\displaystyle \ell ^{\infty }} No Yes x 1 {\displaystyle \|x\|_{1}} = i = 1 | x i | {\displaystyle =\sum _{i=1}^{\infty }\left|x_{i}\right|}
{\displaystyle \ell ^{\infty }} ba {\displaystyle \operatorname {ba} } No No x {\displaystyle \|x\|_{\infty }} = sup i | x i | {\displaystyle =\sup \nolimits _{i}\left|x_{i}\right|}
c {\displaystyle \operatorname {c} } 1 {\displaystyle \ell ^{1}} No No x {\displaystyle \|x\|_{\infty }} = sup i | x i | {\displaystyle =\sup \nolimits _{i}\left|x_{i}\right|}
c 0 {\displaystyle c_{0}} 1 {\displaystyle \ell ^{1}} No No x {\displaystyle \|x\|_{\infty }} = sup i | x i | {\displaystyle =\sup \nolimits _{i}\left|x_{i}\right|} Isomorphic but not isometric to c . {\displaystyle c.}
bv {\displaystyle \operatorname {bv} } {\displaystyle \ell ^{\infty }} No Yes x b v {\displaystyle \|x\|_{bv}} = | x 1 | + i = 1 | x i + 1 x i | {\displaystyle =\left|x_{1}\right|+\sum _{i=1}^{\infty }\left|x_{i+1}-x_{i}\right|} Isometrically isomorphic to 1 . {\displaystyle \ell ^{1}.}
bv 0 {\displaystyle \operatorname {bv} _{0}} {\displaystyle \ell ^{\infty }} No Yes x b v 0 {\displaystyle \|x\|_{bv_{0}}} = i = 1 | x i + 1 x i | {\displaystyle =\sum _{i=1}^{\infty }\left|x_{i+1}-x_{i}\right|} Isometrically isomorphic to 1 . {\displaystyle \ell ^{1}.}
bs {\displaystyle \operatorname {bs} } ba {\displaystyle \operatorname {ba} } No No x b s {\displaystyle \|x\|_{bs}} = sup n | i = 1 n x i | {\displaystyle =\sup \nolimits _{n}\left|\sum _{i=1}^{n}x_{i}\right|} Isometrically isomorphic to . {\displaystyle \ell ^{\infty }.}
cs {\displaystyle \operatorname {cs} } 1 {\displaystyle \ell ^{1}} No No x b s {\displaystyle \|x\|_{bs}} = sup n | i = 1 n x i | {\displaystyle =\sup \nolimits _{n}\left|\sum _{i=1}^{n}x_{i}\right|} Isometrically isomorphic to c . {\displaystyle c.}
B ( K , Ξ ) {\displaystyle B(K,\Xi )} ba ( Ξ ) {\displaystyle \operatorname {ba} (\Xi )} No No f B {\displaystyle \|f\|_{B}} = sup k K | f ( k ) | {\displaystyle =\sup \nolimits _{k\in K}|f(k)|}
C ( K ) {\displaystyle C(K)} rca ( K ) {\displaystyle \operatorname {rca} (K)} No No x C ( K ) {\displaystyle \|x\|_{C(K)}} = max k K | f ( k ) | {\displaystyle =\max \nolimits _{k\in K}|f(k)|}
ba ( Ξ ) {\displaystyle \operatorname {ba} (\Xi )} ? No Yes μ b a {\displaystyle \|\mu \|_{ba}} = sup S Ξ | μ | ( S ) {\displaystyle =\sup \nolimits _{S\in \Xi }|\mu |(S)}
ca ( Σ ) {\displaystyle \operatorname {ca} (\Sigma )} ? No Yes μ b a {\displaystyle \|\mu \|_{ba}} = sup S Σ | μ | ( S ) {\displaystyle =\sup \nolimits _{S\in \Sigma }|\mu |(S)} A closed subspace of ba ( Σ ) . {\displaystyle \operatorname {ba} (\Sigma ).}
rca ( Σ ) {\displaystyle \operatorname {rca} (\Sigma )} ? No Yes μ b a {\displaystyle \|\mu \|_{ba}} = sup S Σ | μ | ( S ) {\displaystyle =\sup \nolimits _{S\in \Sigma }|\mu |(S)} A closed subspace of ca ( Σ ) . {\displaystyle \operatorname {ca} (\Sigma ).}
L p ( μ ) {\displaystyle L^{p}(\mu )} L q ( μ ) {\displaystyle L^{q}(\mu )} Yes Yes f p {\displaystyle \|f\|_{p}} = ( | f | p d μ ) 1 p {\displaystyle =\left(\int |f|^{p}\,d\mu \right)^{\frac {1}{p}}}
L 1 ( μ ) {\displaystyle L^{1}(\mu )} L ( μ ) {\displaystyle L^{\infty }(\mu )} No Yes f 1 {\displaystyle \|f\|_{1}} = | f | d μ {\displaystyle =\int |f|\,d\mu } The dual is L ( μ ) {\displaystyle L^{\infty }(\mu )} if μ {\displaystyle \mu } is σ {\displaystyle \sigma } -finite.
BV ( [ a , b ] ) {\displaystyle \operatorname {BV} ()} ? No Yes f B V {\displaystyle \|f\|_{BV}} = V f ( [ a , b ] ) + lim x a + f ( x ) {\displaystyle =V_{f}()+\lim \nolimits _{x\to a^{+}}f(x)} V f ( [ a , b ] ) {\displaystyle V_{f}()} is the total variation of f {\displaystyle f}
NBV ( [ a , b ] ) {\displaystyle \operatorname {NBV} ()} ? No Yes f B V {\displaystyle \|f\|_{BV}} = V f ( [ a , b ] ) {\displaystyle =V_{f}()} NBV ( [ a , b ] ) {\displaystyle \operatorname {NBV} ()} consists of BV ( [ a , b ] ) {\displaystyle \operatorname {BV} ()} functions such that lim x a + f ( x ) = 0 {\displaystyle \lim \nolimits _{x\to a^{+}}f(x)=0}
AC ( [ a , b ] ) {\displaystyle \operatorname {AC} ()} F + L ( [ a , b ] ) {\displaystyle \mathbb {F} +L^{\infty }()} No Yes f B V {\displaystyle \|f\|_{BV}} = V f ( [ a , b ] ) + lim x a + f ( x ) {\displaystyle =V_{f}()+\lim \nolimits _{x\to a^{+}}f(x)} Isomorphic to the Sobolev space W 1 , 1 ( [ a , b ] ) . {\displaystyle W^{1,1}().}
C n ( [ a , b ] ) {\displaystyle C^{n}()} rca ( [ a , b ] ) {\displaystyle \operatorname {rca} ()} No No f {\displaystyle \|f\|} = i = 0 n sup x [ a , b ] | f ( i ) ( x ) | {\displaystyle =\sum _{i=0}^{n}\sup \nolimits _{x\in }\left|f^{(i)}(x)\right|} Isomorphic to R n C ( [ a , b ] ) , {\displaystyle \mathbb {R} ^{n}\oplus C(),} essentially by Taylor's theorem.

Banach spaces in other areas of analysis

Banach spaces serving as counterexamples

See also

Notes

  1. W.T. Gowers, "A solution to the Schroeder–Bernstein problem for Banach spaces", Bulletin of the London Mathematical Society, 28 (1996) pp. 297–304.

References

Banach space topics
Types of Banach spaces
Banach spaces are:
Function space Topologies
Linear operators
Operator theory
Theorems
Analysis
Types of sets
Subsets / set operations
Examples
Applications
Functional analysis (topicsglossary)
Spaces
Properties
Theorems
Operators
Algebras
Open problems
Applications
Advanced topics
Categories: