In the mathematical field of functional analysis, the space bs consists of all infinite sequences (xi) of real numbers or complex numbers such that is finite. The set of such sequences forms a normed space with the vector space operations defined componentwise, and the norm given by
Furthermore, with respect to metric induced by this norm, bs is complete: it is a Banach space.
The space of all sequences such that the series is convergent (possibly conditionally) is denoted by cs. This is a closed vector subspace of bs, and so is also a Banach space with the same norm.
The space bs is isometrically isomorphic to the Space of bounded sequences via the mapping
Furthermore, the space of convergent sequences c is the image of cs under
See also
References
- Dunford, N.; Schwartz, J.T. (1958), Linear operators, Part I, Wiley-Interscience.
Banach space topics | |
---|---|
Types of Banach spaces | |
Banach spaces are: | |
Function space Topologies | |
Linear operators | |
Operator theory | |
Theorems |
|
Analysis | |
Types of sets |
|
Subsets / set operations | |
Examples | |
Applications |
Functional analysis (topics – glossary) | |||||
---|---|---|---|---|---|
Spaces |
| ||||
Theorems | |||||
Operators | |||||
Algebras | |||||
Open problems | |||||
Applications | |||||
Advanced topics | |||||
This mathematical analysis–related article is a stub. You can help Misplaced Pages by expanding it. |