Misplaced Pages

Goldberg polyhedron

Article snapshot taken from Wikipedia with creative commons attribution-sharealike license. Give it a read and then ask your questions in the chat. We can research this topic together.
Convex polyhedron made from hexagons and pentagons
Icosahedral Goldberg polyhedra, with pentagons in red

GP(1,4) = {5+,3}1,4

GP(4,4) = {5+,3}4,4

GP(7,0) = {5+,3}7,0

GP(3,5) = {5+,3}3,5

GP(10,0) = {5+,3}10,0,
equilateral and spherical

In mathematics, and more specifically in polyhedral combinatorics, a Goldberg polyhedron is a convex polyhedron made from hexagons and pentagons. They were first described in 1937 by Michael Goldberg (1902–1990). They are defined by three properties: each face is either a pentagon or hexagon, exactly three faces meet at each vertex, and they have rotational icosahedral symmetry. They are not necessarily mirror-symmetric; e.g. GP(5,3) and GP(3,5) are enantiomorphs of each other. A Goldberg polyhedron is a dual polyhedron of a geodesic polyhedron.

A consequence of Euler's polyhedron formula is that a Goldberg polyhedron always has exactly 12 pentagonal faces. Icosahedral symmetry ensures that the pentagons are always regular and that there are always 12 of them. If the vertices are not constrained to a sphere, the polyhedron can be constructed with planar equilateral (but not in general equiangular) faces.

Simple examples of Goldberg polyhedra include the dodecahedron and truncated icosahedron. Other forms can be described by taking a chess knight move from one pentagon to the next: first take m steps in one direction, then turn 60° to the left and take n steps. Such a polyhedron is denoted GP(m,n). A dodecahedron is GP(1,0), and a truncated icosahedron is GP(1,1).

A similar technique can be applied to construct polyhedra with tetrahedral symmetry and octahedral symmetry. These polyhedra will have triangles or squares rather than pentagons. These variations are given Roman numeral subscripts denoting the number of sides on the non-hexagon faces: GPIII(n,m), GPIV(n,m), and GPV(n,m).

Elements

The number of vertices, edges, and faces of GP(m,n) can be computed from m and n, with T = m + mn + n = (m + n) − mn, depending on one of three symmetry systems: The number of non-hexagonal faces can be determined using the Euler characteristic, as demonstrated here.

Symmetry Icosahedral Octahedral Tetrahedral
Base Dodecahedron
GPV(1,0) = {5+,3}1,0
Cube
GPIV(1,0) = {4+,3}1,0
Tetrahedron
GPIII(1,0) = {3+,3}1,0
Image Dodecahedron Cube Tetrahedron
Symbol GPV(m,n) = {5+,3}m,n GPIV(m,n) = {4+,3}m,n GPIII(m,n) = {3+,3}m,n
Vertices 20 T {\displaystyle 20T} 8 T {\displaystyle 8T} 4 T {\displaystyle 4T}
Edges 30 T {\displaystyle 30T} 12 T {\displaystyle 12T} 6 T {\displaystyle 6T}
Faces 10 T + 2 {\displaystyle 10T+2} 4 T + 2 {\displaystyle 4T+2} 2 T + 2 {\displaystyle 2T+2}
Faces by type 12 {5} and 10(T − 1) {6} 6 {4} and 4(T − 1) {6} 4 {3} and 2(T − 1) {6}

Construction

Most Goldberg polyhedra can be constructed using Conway polyhedron notation starting with (T)etrahedron, (C)ube, and (D)odecahedron seeds. The chamfer operator, c, replaces all edges by hexagons, transforming GP(m,n) to GP(2m,2n), with a T multiplier of 4. The truncated kis operator, y = tk, generates GP(3,0), transforming GP(m,n) to GP(3m,3n), with a T multiplier of 9.

For class 2 forms, the dual kis operator, z = dk, transforms GP(a,0) into GP(a,a), with a T multiplier of 3. For class 3 forms, the whirl operator, w, generates GP(2,1), with a T multiplier of 7. A clockwise and counterclockwise whirl generator, ww = wrw generates GP(7,0) in class 1. In general, a whirl can transform a GP(a,b) into GP(a + 3b,2ab) for a > b and the same chiral direction. If chiral directions are reversed, GP(a,b) becomes GP(2a + 3b,a − 2b) if a ≥ 2b, and GP(3a + b,2b − a) if a < 2b.

Class I

Class I polyhedra
Frequency (1,0) (2,0) (3,0) (4,0) (5,0) (6,0) (7,0) (8,0) (m,0)
T 1 4 9 16 25 36 49 64 m
Icosahedral (Goldberg)
regular dodecahedron

chamfered dodecahedron
more
Octahedral
cube

chamfered cube
more
Tetrahedral
tetrahedron

chamfered tetrahedron
more

Class II

Class II polyhedra
Frequency (1,1) (2,2) (3,3) (4,4) (5,5) (6,6) (7,7) (8,8) (m,m)
T 3 12 27 48 75 108 147 192 3m
Icosahedral (Goldberg)
truncated icosahedron
more
Octahedral
truncated octahedron
more
Tetrahedral
truncated tetrahedron
more

Class III

Class III polyhedra
Frequency (1,2) (1,3) (2,3) (1,4) (2,4) (3,4) (5,1) (m,n)
T 7 13 19 21 28 37 31 m+mn+n
Icosahedral (Goldberg) more
Octahedral more
Tetrahedral more

See also

Notes

  1. Clinton’s Equal Central Angle Conjecture, JOSEPH D. CLINTON

References

External links

Category: