Misplaced Pages

Good prime

Article snapshot taken from Wikipedia with creative commons attribution-sharealike license. Give it a read and then ask your questions in the chat. We can research this topic together.

A good prime is a prime number whose square is greater than the product of any two primes at the same number of positions before and after it in the sequence of primes.

That is, good prime satisfies the inequality

p n 2 > p n i p n + i {\displaystyle p_{n}^{2}>p_{n-i}\cdot p_{n+i}}

for all 1 ≤ in−1, where pk is the kth prime.

Example: the first primes are 2, 3, 5, 7 and 11. Since for 5 both the conditions

5 2 > 3 7 {\displaystyle 5^{2}>3\cdot 7}
5 2 > 2 11 {\displaystyle 5^{2}>2\cdot 11}

are fulfilled, 5 is a good prime.

There are infinitely many good primes. The first good primes are:

5, 11, 17, 29, 37, 41, 53, 59, 67, 71, 97, 101, 127, 149, 179, 191, 223, 227, 251, 257, 269, 307, 311, 331, 347, 419, 431, 541, 557, 563, 569, 587, 593, 599, 641, 727, 733, 739, 809, 821, 853, 929, 937, 967 (sequence A028388 in the OEIS).

An alternative version takes only i = 1 in the definition. With that there are more good primes:

5, 11, 17, 29, 37, 41, 53, 59, 67, 71, 79, 97, 101, 107, 127, 137, 149, 157, 163, 173, 179, 191, 197, 211, 223, 227, 239, 251, 257, 263, 269, 277, 281, 307, 311, 331, 347, 367, 373, 379, 397, 419, 431, 439, 457, 461, 479, 487, 499, 521, 541, 557, 563, 569, 587, 593, 599, 607, 613, 617, 631, 641, 653, 659, 673, 701, 719, 727, 733, 739, 751, 757, 769, 787, 809, 821, 827, 853, 857, 877, 881, 907, 929, 937, 947, 967, 977, 991 (sequence A046869 in the OEIS).

References

  1. Weisstein, Eric W. "Good Prime". MathWorld.
Prime number classes
By formula
By integer sequence
By property
Base-dependent
Patterns
k-tuples
By size
  • Mega (1,000,000+ digits)
  • Largest known
  • Complex numbers
    Composite numbers
    Related topics
    First 60 primes
    List of prime numbers
    Category: