Misplaced Pages

Industrial-grade prime

Article snapshot taken from Wikipedia with creative commons attribution-sharealike license. Give it a read and then ask your questions in the chat. We can research this topic together.

Industrial-grade primes (the term is apparently due to Henri Cohen) are integers for which primality has not been certified (i.e. rigorously proven), but they have undergone probable prime tests such as the Miller–Rabin primality test, which has a positive, but negligible, failure rate, or the Baillie–PSW primality test, which no composites are known to pass.

Industrial-grade primes are sometimes used instead of certified primes in algorithms such as RSA encryption, which require the user to generate large prime numbers. Certifying the primality of large numbers (over 100 digits for instance) is significantly harder than showing they are industrial-grade primes. The latter can be done almost instantly with a failure rate so low that it is highly unlikely to ever fail in practice. In other words, the number is believed to be prime with very high, but not absolute, confidence.

References

  1. Chris Caldwell, The Prime Glossary: probable prime at The Prime Pages.
Prime number classes
By formula
By integer sequence
By property
Base-dependent
Patterns
k-tuples
By size
  • Mega (1,000,000+ digits)
  • Largest known
  • Complex numbers
    Composite numbers
    Related topics
    First 60 primes
    List of prime numbers
    Stub icon

    This number theory-related article is a stub. You can help Misplaced Pages by expanding it.

    Categories: