The Hayward metric is the simplest description of a black hole which is non-singular. The metric was written down by Sean Hayward as the minimal model which is regular, static, spherically symmetric and asymptotically flat. The metric is not derived from any particular alternative theory of gravity, but provides a framework to test the formation and evaporation of non-singular black holes both within general relativity and beyond. Hayward first published his metric in 2005 and numerous papers have studied it since.
References
- Hayward, Sean A. (26 January 2006). "Formation and evaporation of non-singular black holes". Physical Review Letters. 96 (3): 031103. arXiv:gr-qc/0506126. Bibcode:2006PhRvL..96c1103H. doi:10.1103/PhysRevLett.96.031103. PMID 16486679. S2CID 15851759.
- De Lorenzo, Tommaso; Pacilio, Costantino; Rovelli, Carlo; Speziale, Simone (1 April 2015). "On the Effective Metric of a Planck Star". General Relativity and Gravitation. 47 (4): 41. arXiv:1412.6015. Bibcode:2015GReGr..47...41D. doi:10.1007/s10714-015-1882-8. S2CID 118431674.
- Chiba, Takeshi; Kimura, Masashi (1 April 2017). "A Note on Geodesics in Hayward Metric". Progress of Theoretical and Experimental Physics. 2017 (4). arXiv:1701.04910. doi:10.1093/ptep/ptx037.
- Contreras, E.; Bargueño, P. (20 October 2018). "Scale--dependent Hayward black hole and the generalized uncertainty principle". Modern Physics Letters A. 33 (32): 1850184–1850228. arXiv:1809.00785. Bibcode:2018MPLA...3350184C. doi:10.1142/S0217732318501845. S2CID 59946026.
- Frolov, Valeri P. (28 November 2016). "Notes on non-singular models of black holes". Physical Review D. 94 (10): 104056. arXiv:1609.01758. Bibcode:2016PhRvD..94j4056F. doi:10.1103/PhysRevD.94.104056. S2CID 119309868.
This relativity-related article is a stub. You can help Misplaced Pages by expanding it. |