Misplaced Pages

Kampé de Fériet function

Article snapshot taken from Wikipedia with creative commons attribution-sharealike license. Give it a read and then ask your questions in the chat. We can research this topic together.
(Redirected from Kampe de Feriet hypergeometric series) Special function in mathematics

In mathematics, the Kampé de Fériet function is a two-variable generalization of the generalized hypergeometric series, introduced by Joseph Kampé de Fériet.

The Kampé de Fériet function is given by

p + q F r + s ( a 1 , , a p : b 1 , b 1 ; ; b q , b q ; c 1 , , c r : d 1 , d 1 ; ; d s , d s ; x , y ) = m = 0 n = 0 ( a 1 ) m + n ( a p ) m + n ( c 1 ) m + n ( c r ) m + n ( b 1 ) m ( b 1 ) n ( b q ) m ( b q ) n ( d 1 ) m ( d 1 ) n ( d s ) m ( d s ) n x m y n m ! n ! . {\displaystyle {}^{p+q}F_{r+s}\left({\begin{matrix}a_{1},\cdots ,a_{p}\colon b_{1},b_{1}{}';\cdots ;b_{q},b_{q}{}';\\c_{1},\cdots ,c_{r}\colon d_{1},d_{1}{}';\cdots ;d_{s},d_{s}{}';\end{matrix}}x,y\right)=\sum _{m=0}^{\infty }\sum _{n=0}^{\infty }{\frac {(a_{1})_{m+n}\cdots (a_{p})_{m+n}}{(c_{1})_{m+n}\cdots (c_{r})_{m+n}}}{\frac {(b_{1})_{m}(b_{1}{}')_{n}\cdots (b_{q})_{m}(b_{q}{}')_{n}}{(d_{1})_{m}(d_{1}{}')_{n}\cdots (d_{s})_{m}(d_{s}{}')_{n}}}\cdot {\frac {x^{m}y^{n}}{m!n!}}.}

Applications

The general sextic equation can be solved in terms of Kampé de Fériet functions.

See also

References

  1. Mathworld - Sextic Equation

External links


Stub icon

This mathematical analysis–related article is a stub. You can help Misplaced Pages by expanding it.

Categories: