Misplaced Pages

Logical constant

Article snapshot taken from Wikipedia with creative commons attribution-sharealike license. Give it a read and then ask your questions in the chat. We can research this topic together.
Symbol with a fixed meaning in logic, such as "and", "or", or "not"

In logic, a logical constant or constant symbol of a language L {\displaystyle {\mathcal {L}}} is a symbol that has the same semantic value under every interpretation of L {\displaystyle {\mathcal {L}}} . Two important types of logical constants are logical connectives and quantifiers. The equality predicate (usually written '=') is also treated as a logical constant in many systems of logic.

One of the fundamental questions in the philosophy of logic is "What is a logical constant?"; that is, what special feature of certain constants makes them logical in nature?

Some symbols that are commonly treated as logical constants are:

Symbol Meaning in English
T "true"
F, ⊥ "false"
¬ "not"
"and"
"or"
"implies", "if...then"
"for all"
"there exists", "for some"
= "equals"
{\displaystyle \Box } "necessarily"
{\displaystyle \Diamond } "possibly"

Many of these logical constants are sometimes denoted by alternate symbols (for instance, the use of the symbol "&" rather than "∧" to denote the logical and).

Defining logical constants is a major part of the work of Gottlob Frege and Bertrand Russell. Russell returned to the subject of logical constants in the preface to the second edition (1937) of The Principles of Mathematics noting that logic becomes linguistic: "If we are to say anything definite about them, must be treated as part of the language, not as part of what the language speaks about." The text of this book uses relations R, their converses and complements as primitive notions, also taken as logical constants in the form aRb.

See also

References

  1. Peacocke, Christopher (May 6, 1976). "What is a Logical Constant?". The Journal of Philosophy. 73 (9): 221–240. doi:10.2307/2025420. JSTOR 2025420. Retrieved Jan 12, 2022.
  2. Carnap, Rudolf (1958). Introduction to symbolic logic and its applications. New York: Dover.
  3. Bertrand Russell (1937) Preface to The Principles of Mathematics, pages ix to xi

External links

Mathematical logic
General
Theorems (list)
 and paradoxes
Logics
Traditional
Propositional
Predicate
Set theory
Types of sets
Maps and cardinality
Set theories
Formal systems (list),
language and syntax
Example axiomatic
systems
 (list)
Proof theory
Model theory
Computability theory
Related
icon Mathematics portal
Stub icon

This logic-related article is a stub. You can help Misplaced Pages by expanding it.

Categories: