Misplaced Pages

Mare Orientale

Article snapshot taken from Wikipedia with creative commons attribution-sharealike license. Give it a read and then ask your questions in the chat. We can research this topic together.
Lunar mare on the western border of the near side and far side of the Moon "Oriental Sea" redirects here. For other uses, see East Sea (disambiguation). Feature on the moon
Mare Orientale
1967 Lunar Orbiter 4 image
Coordinates19°24′S 92°48′W / 19.4°S 92.8°W / -19.4; -92.8
Diameter294 km (183 mi)
EponymEastern Sea

Mare Orientale /ɔːriɛnˈteɪliː/ (Latin orientāle, the "eastern sea") is a lunar mare. It is located on the western border of the near side and far side of the Moon, and is difficult to see from an Earthbound perspective. Images from spacecraft have revealed it to be one of the most striking large scale lunar features, resembling a target ring bullseye.

Geology

During the 1960s, rectified images of Mare Orientale by Gerard Kuiper at the Lunar and Planetary Laboratory gave rise to the notion of it being an impact crater. The structure, with the flat plain of the mare in the center, is about 900 kilometres (560 mi) across and was formed by the impact of an asteroid-sized object, possibly 64 km (40 mi) in diameter and travelling at 15 km/s (9.3 mi/s). Compared with most other lunar basins, Mare Orientale is less flooded by mare basalts, so that much of the basin structure is visible. The basalt in the central portion of the Orientale basin is probably less than 1 km (0.62 mi) in thickness which is much less than mare basins on the Earth-facing side of the Moon. The collision caused ripples in the lunar crust, resulting in the three concentric circular features. The innermost rings of this vast, multi-ringed crater are the inner and outer Montes Rook, and the outermost ring are the Montes Cordillera, 930 km (580 mi) in diameter. Outward from here, ejecta extend some 500 km (310 mi) from the foot of the mountains and form a rough surface with hummocks and with features radially aligned towards the center.

The Apollo program did not sample rocks from Mare Orientale so its precise age is not known. However, it is the Moon's most recent impact basin, probably younger than the Imbrium Basin, which is about 3.85 billion years old, with an estimated age of around 3.7-3.8 billion years. The surrounding basin material is of the Lower Imbrian epoch with the mare material being of the Upper Imbrian epoch.

Global seismic shaking following the impact that created the basin has been credited with the levelling of almost all slopes steeper than 35° in layers of Imbrian age and older on the Moon.

Located at the antipode of Mare Orientale is Mare Marginis.

A mass concentration (mascon), or gravitational high, was identified in the center of Mare Orientale from Doppler tracking of the five Lunar Orbiter spacecraft in 1968. The mascon was confirmed and mapped at higher resolution with later orbiters such as Lunar Prospector and GRAIL.

Discovery and name

Mare Orientale is difficult to observe from Earth, as it lies at the extreme western edge of the near side. All that can be seen are the rough mountain ranges—the Montes Rook and the Montes Cordillera—and some glimpses of the dark mare material beyond them. However, the Moon's libration means that on rare occasions Mare Orientale is turned slightly more toward the Earth, and becomes a little more discernible.

Although various astronomers had observed hints of the mare, it was first fully described by the German astronomer Julius Franz in his 1906 book Der Mond ("The Moon"). Franz also gave the mare its name, the "Eastern Sea", as it was located on what the convention at the time considered was the eastern side of the Moon as viewed from Earth, though it is the western side as viewed by an astronaut walking on the Moon. In 1961, however, the International Astronomical Union adopted the astronautic convention for East and West on the Moon and this limb became the western edge.

The first detailed study of the Mare Orientale was by Hugh Percy Wilkins, who called it "Lunar Mare X". Franz's discoveries were not well known, and in the 1976 edition of his book Guide to the Moon, Patrick Moore claims that he and Wilkins discovered and named Mare Orientale in 1946. However, Moore credits Franz as discoverer in his 2009 Yearbook of Astronomy (p. 133–135).

Gallery

  • Topographic map Topographic map
  • Gravity map based on GRAIL Gravity map based on GRAIL
  • Albedo mosaic of Clementine images Albedo mosaic of Clementine images
  • 2010 photomosaic by Lunar Reconnaissance Orbiter 2010 photomosaic by Lunar Reconnaissance Orbiter
  • Photograph from Earth at full moon with Mare Orientale marked on the limb Photograph from Earth at full moon with Mare Orientale marked on the limb
  • Dome-shaped hills at the southern edge of Mare Orientale Basin, possibly formed by lava flows. Dome-shaped hills at the southern edge of Mare Orientale Basin, possibly formed by lava flows.
  • Apollo 17 photographed eastern Mare Orientale in the faint light of earthshine. Apollo 17 photographed eastern Mare Orientale in the faint light of earthshine.

See also

References

  1. "Mare Orientale". Gazetteer of Planetary Nomenclature. USGS Astrogeology Research Program.
  2. Head 1991.
  3. Beals & Tanner 1975, p. 299–306.
  4. Hartmann & Kuiper 1962, pp. 51–66.
  5. ^ Kiefer, Walter S. "Lunar Orbiter: Impact Basin Geology". Lunar and Planetary Institute. Retrieved 29 October 2013.
  6. Benningfield, Damond (17 June 2008). "Mare Orientale". StarDate.org. McDonald Observatory. Archived from the original on 26 January 2021. Retrieved 29 October 2013.
  7. Schwenzer, Susanne (3 November 2016). "Study sheds light on violent asteroid crash that caused mysterious 'crater rings' on the moon". The Conversation. Retrieved 3 November 2016.
  8. Johnson, Brandon C.; Blair, David M.; Collins, Gareth S.; Melosh, H. Jay; Freed, Andrew M.; et al. (28 October 2016). "Formation of the Orientale lunar multiring basin". Science. 354 (6311): 441–444. Bibcode:2016Sci...354..441J. doi:10.1126/science.aag0518. hdl:10044/1/42189. PMID 27789836.
  9. Robbins, Stuart J. (2022-12-01). "Inconsistency between the Ancient Mars and Moon Impact Records of Megameter-scale Craters". The Planetary Science Journal. 3 (12): 274. Bibcode:2022PSJ.....3..274R. doi:10.3847/PSJ/aca282. ISSN 2632-3338.
  10. "The Isabel Williamson Lunar Observing Program" (PDF). Royal Astronomical Society of Canada. March 2013. Archived from the original (PDF) on 5 July 2013. Retrieved 29 October 2013.
  11. The geologic history of the Moon. USGS Professional Paper 1348. By Don E. Wilhelms, John F. McCauley, and Newell J. Trask. U.S. Government Printing Office, Washington: 1987. Chapter 10.
  12. Kreslavsky, Mikhail A.; Head, James W. (2016). "The steepest slopes on the Moon from Lunar Orbiter Laser Altimeter (LOLA) Data: Spatial Distribution and Correlation with Geologic Features". Icarus. 273: 329–336. Bibcode:2016Icar..273..329K. doi:10.1016/j.icarus.2016.02.036. eISSN 1090-2643.
  13. P. M. Muller, W. L. Sjogren (1968). "Mascons: Lunar Mass Concentrations". Science. 161 (3842): 680–684. Bibcode:1968Sci...161..680M. doi:10.1126/science.161.3842.680. PMID 17801458. S2CID 40110502.
  14. Consolmagno & Davis 2011.
  15. ^ Baum & Whitaker 2007, p. 129.
  16. Baum & Whitaker 2007, p. 132.
  17. ^ Baum & Whitaker 2007, p. 133.

Bibliography

Lunar maria
Oceanus
Mare
Lacus
Sinus
Paludes
Categories: