Misplaced Pages

Martin David Kruskal

Article snapshot taken from Wikipedia with creative commons attribution-sharealike license. Give it a read and then ask your questions in the chat. We can research this topic together.
(Redirected from Martin D. Kruskal) American mathematician
This article is written like an obituary. Misplaced Pages is not a memorial site; please help improve the article to make it more encyclopedic. (May 2022)
Martin Kruskal
BornMartin David Kruskal
(1925-09-28)September 28, 1925
New York City, New York, US
DiedDecember 26, 2006(2006-12-26) (aged 81)
Princeton, New Jersey, US
CitizenshipUnited States
Alma mater
Known forKruskal–Szekeres coordinates
Kruskal–Shafranov instability
Bernstein–Greene–Kruskal modes
Kruskal–Schwarzchild instability
Theory of solitons
Kruskal count
Awards
Scientific career
FieldsMathematical physics
Institutions
Doctoral advisorRichard Courant
Doctoral students

Martin David Kruskal (/ˈkrʌskəl/; September 28, 1925 – December 26, 2006) was an American mathematician and physicist. He made fundamental contributions in many areas of mathematics and science, ranging from plasma physics to general relativity and from nonlinear analysis to asymptotic analysis. His most celebrated contribution was in the theory of solitons.

He was a student at the University of Chicago and at New York University, where he completed his Ph.D. under Richard Courant in 1952. He spent much of his career at Princeton University, as a research scientist at the Plasma Physics Laboratory starting in 1951, and then as a professor of astronomy (1961), founder and chair of the Program in Applied and Computational Mathematics (1968), and professor of mathematics (1979). He retired from Princeton University in 1989 and joined the mathematics department of Rutgers University, holding the David Hilbert Chair of Mathematics.

Apart from serious mathematical work, Kruskal was known for mathematical diversions. For example, he invented the Kruskal count, a magical effect that has been known to perplex professional magicians because it was based not on sleight of hand but on a mathematical phenomenon.

Personal life

Martin David Kruskal was born to a Jewish family in New York City and grew up in New Rochelle. He was generally known as Martin to the world and David to his family. His father, Joseph B. Kruskal Sr., was a successful fur wholesaler. His mother, Lillian Rose Vorhaus Kruskal Oppenheimer, became a noted promoter of the art of origami during the early era of television and founded the Origami Center of America in New York City, which later became OrigamiUSA. He was one of five children. His two brothers, both eminent mathematicians, were Joseph Kruskal (1928–2010; discoverer of multidimensional scaling, the Kruskal tree theorem, and Kruskal's algorithm) and William Kruskal (1919–2005; discoverer of the Kruskal–Wallis test).

Martin Kruskal's wife, Laura Kruskal, was a lecturer and writer about origami and originator of many new models. They were married for 56 years. Martin Kruskal also invented several origami models including an envelope for sending secret messages. The envelope could be easily unfolded, but it could not then be easily refolded to conceal the deed. Their three children are Karen (an attorney), Kerry (an author of children's books), and Clyde, a computer scientist.

Research

This section may require cleanup to meet Misplaced Pages's quality standards. The specific problem is: Too continuous, can be broken down in sections or sub sections. Please help improve this section if you can. (May 2024) (Learn how and when to remove this message)

Martin Kruskal's scientific interests covered a wide range of topics in pure mathematics and applications of mathematics to the sciences. He had lifelong interests in many topics in partial differential equations and nonlinear analysis and developed fundamental ideas about asymptotic expansions, adiabatic invariants, and numerous related topics.

His Ph.D. dissertation, written under the direction of Richard Courant and Bernard Friedman at New York University, was on the topic "The Bridge Theorem For Minimal Surfaces". He received his Ph.D. in 1952.

In the 1950s and early 1960s, he worked largely on plasma physics, developing many ideas that are now fundamental in the field. His theory of adiabatic invariants was important in fusion research. Important concepts of plasma physics that bear his name include the Kruskal–Shafranov instability and the Bernstein–Greene–Kruskal (BGK) modes. With I. B. Bernstein, E. A. Frieman, and R. M. Kulsrud, he developed the MHD (or magnetohydrodynamic) Energy Principle. His interests extended to plasma astrophysics as well as laboratory plasmas.

In 1960, Kruskal discovered the full classical spacetime structure of the simplest type of black hole in general relativity. A spherically symmetric spacetime can be described by the Schwarzschild solution, which was discovered in the early days of general relativity. However, in its original form, this solution only describes the region exterior to the event horizon of the black hole. Kruskal (in parallel with George Szekeres) discovered the maximal analytic continuation of the Schwarzschild solution, which he exhibited elegantly using what are now called Kruskal–Szekeres coordinates.

This led Kruskal to the astonishing discovery that the interior of the black hole looks like a "wormhole" connecting two identical, asymptotically flat universes. This was the first real example of a wormhole solution in general relativity. The wormhole collapses to a singularity before any observer or signal can travel from one universe to the other. This is now believed to be the general fate of wormholes in general relativity. In the 1970s, when the thermal nature of black hole physics was discovered, the wormhole property of the Schwarzschild solution turned out to be an important ingredient. Nowadays, it is considered a fundamental clue in attempts to understand quantum gravity.

Kruskal's most widely known work was the discovery in the 1960s of the integrability of certain nonlinear partial differential equations involving functions of one spatial variable as well as time. These developments began with a pioneering computer simulation by Kruskal and Norman Zabusky (with some assistance from Harry Dym) of a nonlinear equation known as the Korteweg–de Vries equation (KdV). The KdV equation is an asymptotic model of the propagation of nonlinear dispersive waves. But Kruskal and Zabusky made the startling discovery of a "solitary wave" solution of the KdV equation that propagates non-dispersively and even regains its shape after a collision with other such waves. Because of the particle-like properties of such a wave, they named it a "soliton", a term that caught on almost immediately.

This work was partly motivated by the near-recurrence paradox that had been observed in a very early computer simulation of a certain nonlinear lattice by Enrico Fermi, John Pasta, Stanislaw Ulam and Mary Tsingou at Los Alamos in 1955. Those authors had observed long-time nearly recurrent behavior of a one-dimensional chain of anharmonic oscillators, in contrast to the rapid thermalization that had been expected. Kruskal and Zabusky simulated the KdV equation, which Kruskal had obtained as a continuum limit of that one-dimensional chain, and found solitonic behavior, which is the opposite of thermalization. That turned out to be the heart of the phenomenon.

Solitary wave phenomena had been a 19th-century mystery dating back to work by John Scott Russell who, in 1834, observed what we now call a soliton, propagating in a canal, and chased it on horseback. In spite of his observations of solitons in wave tank experiments, Scott Russell never recognized them as such, because of his focus on the "great wave of translation," the largest amplitude solitary wave. His experimental observations, presented in his Report on Waves to the British Association for the Advancement of Science in 1844, were viewed with skepticism by George Airy and George Stokes because their linear water wave theories were unable to explain them. Joseph Boussinesq (1871) and Lord Rayleigh (1876) published mathematical theories justifying Scott Russell's observations. In 1895, Diederik Korteweg and Gustav de Vries formulated the KdV equation to describe shallow water waves (such as the waves in the canal observed by Russell), but the essential properties of this equation were not understood until the work of Kruskal and his collaborators in the 1960s.

Solitonic behavior suggested that the KdV equation must have conservation laws beyond the obvious conservation laws of mass, energy, and momentum. A fourth conservation law was discovered by Gerald Whitham and a fifth one by Kruskal and Zabusky. Several new conservation laws were discovered by hand by Robert Miura, who also showed that many conservation laws existed for a related equation known as the Modified Korteweg–de Vries (MKdV) equation. With these conservation laws, Miura showed a connection (called the Miura transformation) between solutions of the KdV and MKdV equations. This was a clue that enabled Kruskal, with Clifford S. Gardner, John M. Greene, and Miura (GGKM), to discover a general technique for exact solution of the KdV equation and understanding of its conservation laws. This was the inverse scattering method, a surprising and elegant method that demonstrates that the KdV equation admits an infinite number of Poisson-commuting conserved quantities and is completely integrable. This discovery gave the modern basis for understanding of the soliton phenomenon: the solitary wave is recreated in the outgoing state because this is the only way to satisfy all of the conservation laws. Soon after GGKM, Peter Lax famously interpreted the inverse scattering method in terms of isospectral deformations and Lax pairs.

The inverse scattering method has had an astonishing variety of generalizations and applications in different areas of mathematics and physics. Kruskal himself pioneered some of the generalizations, such as the existence of infinitely many conserved quantities for the sine-Gordon equation. This led to the discovery of an inverse scattering method for that equation by M. J. Ablowitz, D. J. Kaup, A. C. Newell, and H. Segur (AKNS). The sine-Gordon equation is a relativistic wave equation in 1+1 dimensions that also exhibits the soliton phenomenon and which became an important model of solvable relativistic field theory. In seminal work preceding AKNS, Zakharov and Shabat discovered an inverse scattering method for the nonlinear Schrödinger equation.

Solitons are now known to be ubiquitous in nature, from physics to biology. In 1986, Kruskal and Zabusky shared the Howard N. Potts Gold Medal from the Franklin Institute "for contributions to mathematical physics and early creative combinations of analysis and computation, but most especially for seminal work in the properties of solitons". In awarding the 2006 Steele Prize to Gardner, Greene, Kruskal, and Miura, the American Mathematical Society stated that before their work "there was no general theory for the exact solution of any important class of nonlinear differential equations". The AMS added, "In applications of mathematics, solitons and their descendants (kinks, anti-kinks, instantons, and breathers) have entered and changed such diverse fields as nonlinear optics, plasma physics, and ocean, atmospheric, and planetary sciences. Nonlinearity has undergone a revolution: from a nuisance to be eliminated, to a new tool to be exploited."

Kruskal received the National Medal of Science in 1993 "for his influence as a leader in nonlinear science for more than two decades as the principal architect of the theory of soliton solutions of nonlinear equations of evolution".

In an article surveying the state of mathematics at the turn of the millennium, the eminent mathematician Philip A. Griffiths wrote that the discovery of integrability of the KdV equation "exhibited in the most beautiful way the unity of mathematics. It involved developments in computation, and in mathematical analysis, which is the traditional way to study differential equations. It turns out that one can understand the solutions to these differential equations through certain very elegant constructions in algebraic geometry. The solutions are also intimately related to representation theory, in that these equations turn out to have an infinite number of hidden symmetries. Finally, they relate back to problems in elementary geometry."

In the 1980s, Kruskal developed an acute interest in the Painlevé equations. They frequently arise as symmetry reductions of soliton equations, and Kruskal was intrigued by the intimate relationship that appeared to exist between the properties characterizing these equations and completely integrable systems. Much of his subsequent research was driven by a desire to understand this relationship and to develop new direct and simple methods for studying the Painlevé equations. Kruskal was rarely satisfied with the standard approaches to differential equations.

The six Painlevé equations have a characteristic property called the Painlevé property: their solutions are single-valued around all singularities whose locations depend on the initial conditions. In Kruskal's opinion, since this property defines the Painlevé equations, one should be able to start with this, without any additional unnecessary structures, to work out all the required information about their solutions. The first result was an asymptotic study of the Painlevé equations with Nalini Joshi, unusual at the time in that it did not require the use of associated linear problems. His persistent questioning of classical results led to a direct and simple method, also developed with Joshi, to prove the Painlevé property of the Painlevé equations.

In the later part of his career, one of Kruskal's chief interests was the theory of surreal numbers. Surreal numbers, which are defined constructively, have all the basic properties and operations of the real numbers. They include the real numbers alongside many types of infinities and infinitesimals. Kruskal contributed to the foundation of the theory, to defining surreal functions, and to analyzing their structure. He discovered a remarkable link between surreal numbers, asymptotics, and exponential asymptotics. A major open question, raised by Conway, Kruskal and Norton in the late 1970s, and investigated by Kruskal with great tenacity, is whether sufficiently well behaved surreal functions possess definite integrals. This question was answered negatively in the full generality, for which Conway et al. had hoped, by Costin, Friedman and Ehrlich in 2015. However, the analysis of Costin et al. shows that definite integrals do exist for a sufficiently broad class of surreal functions for which Kruskal's vision of asymptotic analysis, broadly conceived, goes through. At the time of his death, Kruskal was in the process of writing a book on surreal analysis with O. Costin.

Kruskal coined the term asymptotology to describe the "art of dealing with applied mathematical systems in limiting cases". He formulated seven Principles of Asymptotology: 1. The Principle of Simplification; 2. The Principle of Recursion; 3. The Principle of Interpretation; 4. The Principle of Wild Behaviour; 5. The Principle of Annihilation; 6. The Principle of Maximal Balance; 7. The Principle of Mathematical Nonsense.

The term asymptotology is not so widely used as the term soliton. Asymptotic methods of various types have been successfully used since almost the birth of science itself. Nevertheless, Kruskal tried to show that asymptotology is a special branch of knowledge, intermediate, in some sense, between science and art. His proposal has been found to be very fruitful.


Awards and honors

Kruskal's honors and awards included:

See also

References

  1. ^ Gibbon, John D.; Cowley, Steven C.; Joshi, Nalini; MacCallum, Malcolm A. H. (2017). "Martin David Kruskal. 28 September 1925 — 26 December 2006". Biographical Memoirs of Fellows of the Royal Society. 64: 261–284. arXiv:1707.00139. doi:10.1098/rsbm.2017.0022. ISSN 0080-4606. S2CID 67365148.
  2. ^ "Fellowship of the Royal Society 1660-2015". London, UK: Royal Society. 2015. Archived from the original on 2015-10-15.
  3. ^ Martin David Kruskal at the Mathematics Genealogy Project
  4. O'Connor, John J.; Robertson, Edmund F., "Martin David Kruskal", MacTutor History of Mathematics Archive, University of St Andrews
  5. American Jewish Archives: "Two Baltic Families Who Came to America The Jacobsons and the Kruskals, 1870-1970" by Richard D. Brown January 24, 1972
  6. "'Origami Crowns: A Collection by Laura Kruskal, the Queen of Crowns!'". Origami USA.
  7. "Origami laura l. kruskal | Gilad's Origami Page". www.giladorigami.com.
  8. "Martin Kruskal - School of Natural Sciences | Institute for Advanced Study". www.ias.edu. 2018-01-19. Retrieved 2024-12-28.
  9. "Karen L. Kruskal". www.pressman-kruskal.com. Archived from the original on 2009-01-06. Retrieved 2024-12-28.
  10. "Tewiggly - Wriggley Rex by Kerry Kruskal...Princeton Pedagogical Publications". www.atlasbooks.com. Archived from the original on 2009-06-02. Retrieved 2024-12-28.
  11. Dorch, Søren Bertil F. (2007-04-13). "Magnetohydrodynamics". Scholarpedia. 2 (4): 2295. Bibcode:2007SchpJ...2.2295D. doi:10.4249/scholarpedia.2295. ISSN 1941-6016.
  12. N. J. Zabusky, Fermi–Pasta–Ulam Archived 2012-07-10 at archive.today
  13. "John Scott Russell and the solitary wave". www.ma.hw.ac.uk. Retrieved 2024-12-28.
  14. Modified Korteweg–de Vries (MKdV) Equation Archived 2006-09-02 at archive.today, tosio.math.toronto.edu
  15. Gardner, Clifford S.; Greene, John M.; Kruskal, Martin D.; Miura, Robert M. (1967-11-06). "Method for Solving the Korteweg-deVries Equation". Physical Review Letters. 19 (19): 1095–1097. Bibcode:1967PhRvL..19.1095G. doi:10.1103/PhysRevLett.19.1095.
  16. Ablowitz, Mark J.; Kaup, David J.; Newell, Alan C. (1974-12-01). "The Inverse Scattering Transform-Fourier Analysis for Nonlinear Problems". Studies in Applied Mathematics. 53 (4): 249–315. doi:10.1002/sapm1974534249. ISSN 1467-9590.
  17. P. A. Griffiths "Mathematics At The Turn Of The Millennium," Amer. Mathematical Monthly Vol. 107, No. 1 (Jan., 2000), pp. 1–14, doi:10.1080/00029890.2000.12005154
  18. Ovidiu Costin, Philip Ehrlich, and Harvey M. Friedman, Integration on the surreals: A conjecture of Conway, Kruskal and Norton, 2015, arXiv.org/abs/1505.02478
  19. Kruskal M. D. Asymptotology Archived 2016-03-03 at the Wayback Machine. Proceedings of Conference on Mathematical Models on Physical Sciences. Englewood Cliffs, NJ: Prentice–Hall, 1963, 17–48.
  20. Barantsev R. G. Asymptotic versus classical mathematics // Topics in Math. Analysis. Singapore e.a.: 1989, 49–64.
  21. Andrianov I. V., Manevitch L. I. Asymptotology: Ideas, Methods, and Applications. Dordrecht, Boston, London: Kluwer Academic Publishers, 2002.
  22. Dewar R. L. Asymptotology – a cautionary tale. ANZIAM J., 2002, 44, 33–40.
  23. Deift, Percy Alec (2016). "Martin D. Kruskal, 1925–2006: Biographical Memoirs" (PDF).

External links

United States National Medal of Science laureates
Behavioral and social science
1960s
1964
Neal Elgar Miller
1980s
1986
Herbert A. Simon
1987
Anne Anastasi
George J. Stigler
1988
Milton Friedman
1990s
1990
Leonid Hurwicz
Patrick Suppes
1991
George A. Miller
1992
Eleanor J. Gibson
1994
Robert K. Merton
1995
Roger N. Shepard
1996
Paul Samuelson
1997
William K. Estes
1998
William Julius Wilson
1999
Robert M. Solow
2000s
2000
Gary Becker
2003
R. Duncan Luce
2004
Kenneth Arrow
2005
Gordon H. Bower
2008
Michael I. Posner
2009
Mortimer Mishkin
2010s
2011
Anne Treisman
2014
Robert Axelrod
2015
Albert Bandura
2020s
2023
Huda Akil
Shelley E. Taylor
2025
Larry Bartels
Biological sciences
1960s
1963
C. B. van Niel
1964
Theodosius Dobzhansky
Marshall W. Nirenberg
1965
Francis P. Rous
George G. Simpson
Donald D. Van Slyke
1966
Edward F. Knipling
Fritz Albert Lipmann
William C. Rose
Sewall Wright
1967
Kenneth S. Cole
Harry F. Harlow
Michael Heidelberger
Alfred H. Sturtevant
1968
Horace Barker
Bernard B. Brodie
Detlev W. Bronk
Jay Lush
Burrhus Frederic Skinner
1969
Robert Huebner
Ernst Mayr
1970s
1970
Barbara McClintock
Albert B. Sabin
1973
Daniel I. Arnon
Earl W. Sutherland Jr.
1974
Britton Chance
Erwin Chargaff
James V. Neel
James Augustine Shannon
1975
Hallowell Davis
Paul Gyorgy
Sterling B. Hendricks
Orville Alvin Vogel
1976
Roger Guillemin
Keith Roberts Porter
Efraim Racker
E. O. Wilson
1979
Robert H. Burris
Elizabeth C. Crosby
Arthur Kornberg
Severo Ochoa
Earl Reece Stadtman
George Ledyard Stebbins
Paul Alfred Weiss
1980s
1981
Philip Handler
1982
Seymour Benzer
Glenn W. Burton
Mildred Cohn
1983
Howard L. Bachrach
Paul Berg
Wendell L. Roelofs
Berta Scharrer
1986
Stanley Cohen
Donald A. Henderson
Vernon B. Mountcastle
George Emil Palade
Joan A. Steitz
1987
Michael E. DeBakey
Theodor O. Diener
Harry Eagle
Har Gobind Khorana
Rita Levi-Montalcini
1988
Michael S. Brown
Stanley Norman Cohen
Joseph L. Goldstein
Maurice R. Hilleman
Eric R. Kandel
Rosalyn Sussman Yalow
1989
Katherine Esau
Viktor Hamburger
Philip Leder
Joshua Lederberg
Roger W. Sperry
Harland G. Wood
1990s
1990
Baruj Benacerraf
Herbert W. Boyer
Daniel E. Koshland Jr.
Edward B. Lewis
David G. Nathan
E. Donnall Thomas
1991
Mary Ellen Avery
G. Evelyn Hutchinson
Elvin A. Kabat
Robert W. Kates
Salvador Luria
Paul A. Marks
Folke K. Skoog
Paul C. Zamecnik
1992
Maxine Singer
Howard Martin Temin
1993
Daniel Nathans
Salome G. Waelsch
1994
Thomas Eisner
Elizabeth F. Neufeld
1995
Alexander Rich
1996
Ruth Patrick
1997
James Watson
Robert A. Weinberg
1998
Bruce Ames
Janet Rowley
1999
David Baltimore
Jared Diamond
Lynn Margulis
2000s
2000
Nancy C. Andreasen
Peter H. Raven
Carl Woese
2001
Francisco J. Ayala
George F. Bass
Mario R. Capecchi
Ann Graybiel
Gene E. Likens
Victor A. McKusick
Harold Varmus
2002
James E. Darnell
Evelyn M. Witkin
2003
J. Michael Bishop
Solomon H. Snyder
Charles Yanofsky
2004
Norman E. Borlaug
Phillip A. Sharp
Thomas E. Starzl
2005
Anthony Fauci
Torsten N. Wiesel
2006
Rita R. Colwell
Nina Fedoroff
Lubert Stryer
2007
Robert J. Lefkowitz
Bert W. O'Malley
2008
Francis S. Collins
Elaine Fuchs
J. Craig Venter
2009
Susan L. Lindquist
Stanley B. Prusiner
2010s
2010
Ralph L. Brinster
Rudolf Jaenisch
2011
Lucy Shapiro
Leroy Hood
Sallie Chisholm
2012
May Berenbaum
Bruce Alberts
2013
Rakesh K. Jain
2014
Stanley Falkow
Mary-Claire King
Simon Levin
2020s
2023
Gebisa Ejeta
Eve Marder
Gregory Petsko
Sheldon Weinbaum
2025
Bonnie Bassler
Angela Belcher
Helen Blau
Emery N. Brown
G. David Tilman
Teresa Woodruff
Chemistry
1960s
1964
Roger Adams
1980s
1982
F. Albert Cotton
Gilbert Stork
1983
Roald Hoffmann
George C. Pimentel
Richard N. Zare
1986
Harry B. Gray
Yuan Tseh Lee
Carl S. Marvel
Frank H. Westheimer
1987
William S. Johnson
Walter H. Stockmayer
Max Tishler
1988
William O. Baker
Konrad E. Bloch
Elias J. Corey
1989
Richard B. Bernstein
Melvin Calvin
Rudolph A. Marcus
Harden M. McConnell
1990s
1990
Elkan Blout
Karl Folkers
John D. Roberts
1991
Ronald Breslow
Gertrude B. Elion
Dudley R. Herschbach
Glenn T. Seaborg
1992
Howard E. Simmons Jr.
1993
Donald J. Cram
Norman Hackerman
1994
George S. Hammond
1995
Thomas Cech
Isabella L. Karle
1996
Norman Davidson
1997
Darleane C. Hoffman
Harold S. Johnston
1998
John W. Cahn
George M. Whitesides
1999
Stuart A. Rice
John Ross
Susan Solomon
2000s
2000
John D. Baldeschwieler
Ralph F. Hirschmann
2001
Ernest R. Davidson
Gábor A. Somorjai
2002
John I. Brauman
2004
Stephen J. Lippard
2005
Tobin J. Marks
2006
Marvin H. Caruthers
Peter B. Dervan
2007
Mostafa A. El-Sayed
2008
Joanna Fowler
JoAnne Stubbe
2009
Stephen J. Benkovic
Marye Anne Fox
2010s
2010
Jacqueline K. Barton
Peter J. Stang
2011
Allen J. Bard
M. Frederick Hawthorne
2012
Judith P. Klinman
Jerrold Meinwald
2013
Geraldine L. Richmond
2014
A. Paul Alivisatos
2025
R. Lawrence Edwards
Engineering sciences
1960s
1962
Theodore von Kármán
1963
Vannevar Bush
John Robinson Pierce
1964
Charles S. Draper
Othmar H. Ammann
1965
Hugh L. Dryden
Clarence L. Johnson
Warren K. Lewis
1966
Claude E. Shannon
1967
Edwin H. Land
Igor I. Sikorsky
1968
J. Presper Eckert
Nathan M. Newmark
1969
Jack St. Clair Kilby
1970s
1970
George E. Mueller
1973
Harold E. Edgerton
Richard T. Whitcomb
1974
Rudolf Kompfner
Ralph Brazelton Peck
Abel Wolman
1975
Manson Benedict
William Hayward Pickering
Frederick E. Terman
Wernher von Braun
1976
Morris Cohen
Peter C. Goldmark
Erwin Wilhelm Müller
1979
Emmett N. Leith
Raymond D. Mindlin
Robert N. Noyce
Earl R. Parker
Simon Ramo
1980s
1982
Edward H. Heinemann
Donald L. Katz
1983
Bill Hewlett
George Low
John G. Trump
1986
Hans Wolfgang Liepmann
Tung-Yen Lin
Bernard M. Oliver
1987
Robert Byron Bird
H. Bolton Seed
Ernst Weber
1988
Daniel C. Drucker
Willis M. Hawkins
George W. Housner
1989
Harry George Drickamer
Herbert E. Grier
1990s
1990
Mildred Dresselhaus
Nick Holonyak Jr.
1991
George H. Heilmeier
Luna B. Leopold
H. Guyford Stever
1992
Calvin F. Quate
John Roy Whinnery
1993
Alfred Y. Cho
1994
Ray W. Clough
1995
Hermann A. Haus
1996
James L. Flanagan
C. Kumar N. Patel
1998
Eli Ruckenstein
1999
Kenneth N. Stevens
2000s
2000
Yuan-Cheng B. Fung
2001
Andreas Acrivos
2002
Leo Beranek
2003
John M. Prausnitz
2004
Edwin N. Lightfoot
2005
Jan D. Achenbach
2006
Robert S. Langer
2007
David J. Wineland
2008
Rudolf E. Kálmán
2009
Amnon Yariv
2010s
2010
Shu Chien
2011
John B. Goodenough
2012
Thomas Kailath
2020s
2023
Subra Suresh
2025
John Dabiri
Mathematical, statistical, and computer sciences
1960s
1963
Norbert Wiener
1964
Solomon Lefschetz
H. Marston Morse
1965
Oscar Zariski
1966
John Milnor
1967
Paul Cohen
1968
Jerzy Neyman
1969
William Feller
1970s
1970
Richard Brauer
1973
John Tukey
1974
Kurt Gödel
1975
John W. Backus
Shiing-Shen Chern
George Dantzig
1976
Kurt Otto Friedrichs
Hassler Whitney
1979
Joseph L. Doob
Donald E. Knuth
1980s
1982
Marshall H. Stone
1983
Herman Goldstine
Isadore Singer
1986
Peter Lax
Antoni Zygmund
1987
Raoul Bott
Michael Freedman
1988
Ralph E. Gomory
Joseph B. Keller
1989
Samuel Karlin
Saunders Mac Lane
Donald C. Spencer
1990s
1990
George F. Carrier
Stephen Cole Kleene
John McCarthy
1991
Alberto Calderón
1992
Allen Newell
1993
Martin David Kruskal
1994
John Cocke
1995
Louis Nirenberg
1996
Richard Karp
Stephen Smale
1997
Shing-Tung Yau
1998
Cathleen Synge Morawetz
1999
Felix Browder
Ronald R. Coifman
2000s
2000
John Griggs Thompson
Karen Uhlenbeck
2001
Calyampudi R. Rao
Elias M. Stein
2002
James G. Glimm
2003
Carl R. de Boor
2004
Dennis P. Sullivan
2005
Bradley Efron
2006
Hyman Bass
2007
Leonard Kleinrock
Andrew J. Viterbi
2009
David B. Mumford
2010s
2010
Richard A. Tapia
S. R. Srinivasa Varadhan
2011
Solomon W. Golomb
Barry Mazur
2012
Alexandre Chorin
David Blackwell
2013
Michael Artin
2020s
2025
Ingrid Daubechies
Cynthia Dwork
Physical sciences
1960s
1963
Luis W. Alvarez
1964
Julian Schwinger
Harold Urey
Robert Burns Woodward
1965
John Bardeen
Peter Debye
Leon M. Lederman
William Rubey
1966
Jacob Bjerknes
Subrahmanyan Chandrasekhar
Henry Eyring
John H. Van Vleck
Vladimir K. Zworykin
1967
Jesse Beams
Francis Birch
Gregory Breit
Louis Hammett
George Kistiakowsky
1968
Paul Bartlett
Herbert Friedman
Lars Onsager
Eugene Wigner
1969
Herbert C. Brown
Wolfgang Panofsky
1970s
1970
Robert H. Dicke
Allan R. Sandage
John C. Slater
John A. Wheeler
Saul Winstein
1973
Carl Djerassi
Maurice Ewing
Arie Jan Haagen-Smit
Vladimir Haensel
Frederick Seitz
Robert Rathbun Wilson
1974
Nicolaas Bloembergen
Paul Flory
William Alfred Fowler
Linus Carl Pauling
Kenneth Sanborn Pitzer
1975
Hans A. Bethe
Joseph O. Hirschfelder
Lewis Sarett
Edgar Bright Wilson
Chien-Shiung Wu
1976
Samuel Goudsmit
Herbert S. Gutowsky
Frederick Rossini
Verner Suomi
Henry Taube
George Uhlenbeck
1979
Richard P. Feynman
Herman Mark
Edward M. Purcell
John Sinfelt
Lyman Spitzer
Victor F. Weisskopf
1980s
1982
Philip W. Anderson
Yoichiro Nambu
Edward Teller
Charles H. Townes
1983
E. Margaret Burbidge
Maurice Goldhaber
Helmut Landsberg
Walter Munk
Frederick Reines
Bruno B. Rossi
J. Robert Schrieffer
1986
Solomon J. Buchsbaum
H. Richard Crane
Herman Feshbach
Robert Hofstadter
Chen-Ning Yang
1987
Philip Abelson
Walter Elsasser
Paul C. Lauterbur
George Pake
James A. Van Allen
1988
D. Allan Bromley
Paul Ching-Wu Chu
Walter Kohn
Norman Foster Ramsey Jr.
Jack Steinberger
1989
Arnold O. Beckman
Eugene Parker
Robert Sharp
Henry Stommel
1990s
1990
Allan M. Cormack
Edwin M. McMillan
Robert Pound
Roger Revelle
1991
Arthur L. Schawlow
Ed Stone
Steven Weinberg
1992
Eugene M. Shoemaker
1993
Val Fitch
Vera Rubin
1994
Albert Overhauser
Frank Press
1995
Hans Dehmelt
Peter Goldreich
1996
Wallace S. Broecker
1997
Marshall Rosenbluth
Martin Schwarzschild
George Wetherill
1998
Don L. Anderson
John N. Bahcall
1999
James Cronin
Leo Kadanoff
2000s
2000
Willis E. Lamb
Jeremiah P. Ostriker
Gilbert F. White
2001
Marvin L. Cohen
Raymond Davis Jr.
Charles Keeling
2002
Richard Garwin
W. Jason Morgan
Edward Witten
2003
G. Brent Dalrymple
Riccardo Giacconi
2004
Robert N. Clayton
2005
Ralph A. Alpher
Lonnie Thompson
2006
Daniel Kleppner
2007
Fay Ajzenberg-Selove
Charles P. Slichter
2008
Berni Alder
James E. Gunn
2009
Yakir Aharonov
Esther M. Conwell
Warren M. Washington
2010s
2011
Sidney Drell
Sandra Faber
Sylvester James Gates
2012
Burton Richter
Sean C. Solomon
2014
Shirley Ann Jackson
2020s
2023
Barry Barish
Myriam Sarachik
2025
Richard Alley
Wendy Freedman
Keivan Stassun
John von Neumann Lecturers
Fellows of the Royal Society elected in 1997
Fellows
Foreign
Categories: