Misplaced Pages

Russo–Vallois integral

Article snapshot taken from Wikipedia with creative commons attribution-sharealike license. Give it a read and then ask your questions in the chat. We can research this topic together.

In mathematical analysis, the Russo–Vallois integral is an extension to stochastic processes of the classical Riemann–Stieltjes integral

f d g = f g d s {\displaystyle \int f\,dg=\int fg'\,ds}

for suitable functions f {\displaystyle f} and g {\displaystyle g} . The idea is to replace the derivative g {\displaystyle g'} by the difference quotient

g ( s + ε ) g ( s ) ε {\displaystyle g(s+\varepsilon )-g(s) \over \varepsilon } and to pull the limit out of the integral. In addition one changes the type of convergence.

Definitions

Definition: A sequence H n {\displaystyle H_{n}} of stochastic processes converges uniformly on compact sets in probability to a process H , {\displaystyle H,}

H = ucp- lim n H n , {\displaystyle H={\text{ucp-}}\lim _{n\rightarrow \infty }H_{n},}

if, for every ε > 0 {\displaystyle \varepsilon >0} and T > 0 , {\displaystyle T>0,}

lim n P ( sup 0 t T | H n ( t ) H ( t ) | > ε ) = 0. {\displaystyle \lim _{n\rightarrow \infty }\mathbb {P} (\sup _{0\leq t\leq T}|H_{n}(t)-H(t)|>\varepsilon )=0.}

One sets:

I ( ε , t , f , d g ) = 1 ε 0 t f ( s ) ( g ( s + ε ) g ( s ) ) d s {\displaystyle I^{-}(\varepsilon ,t,f,dg)={1 \over \varepsilon }\int _{0}^{t}f(s)(g(s+\varepsilon )-g(s))\,ds}
I + ( ε , t , f , d g ) = 1 ε 0 t f ( s ) ( g ( s ) g ( s ε ) ) d s {\displaystyle I^{+}(\varepsilon ,t,f,dg)={1 \over \varepsilon }\int _{0}^{t}f(s)(g(s)-g(s-\varepsilon ))\,ds}

and

[ f , g ] ε ( t ) = 1 ε 0 t ( f ( s + ε ) f ( s ) ) ( g ( s + ε ) g ( s ) ) d s . {\displaystyle _{\varepsilon }(t)={1 \over \varepsilon }\int _{0}^{t}(f(s+\varepsilon )-f(s))(g(s+\varepsilon )-g(s))\,ds.}

Definition: The forward integral is defined as the ucp-limit of

I {\displaystyle I^{-}} : 0 t f d g = ucp- lim ε ( 0 ? ) I ( ε , t , f , d g ) . {\displaystyle \int _{0}^{t}fd^{-}g={\text{ucp-}}\lim _{\varepsilon \rightarrow \infty (0?)}I^{-}(\varepsilon ,t,f,dg).}

Definition: The backward integral is defined as the ucp-limit of

I + {\displaystyle I^{+}} : 0 t f d + g = ucp- lim ε ( 0 ? ) I + ( ε , t , f , d g ) . {\displaystyle \int _{0}^{t}f\,d^{+}g={\text{ucp-}}\lim _{\varepsilon \rightarrow \infty (0?)}I^{+}(\varepsilon ,t,f,dg).}

Definition: The generalized bracket is defined as the ucp-limit of

[ f , g ] ε {\displaystyle _{\varepsilon }} : [ f , g ] ε = ucp- lim ε [ f , g ] ε ( t ) . {\displaystyle _{\varepsilon }={\text{ucp-}}\lim _{\varepsilon \rightarrow \infty }_{\varepsilon }(t).}

For continuous semimartingales X , Y {\displaystyle X,Y} and a càdlàg function H, the Russo–Vallois integral coincidences with the usual Itô integral:

0 t H s d X s = 0 t H d X . {\displaystyle \int _{0}^{t}H_{s}\,dX_{s}=\int _{0}^{t}H\,d^{-}X.}

In this case the generalised bracket is equal to the classical covariation. In the special case, this means that the process

[ X ] := [ X , X ] {\displaystyle :=\,}

is equal to the quadratic variation process.

Also for the Russo-Vallois Integral an Ito formula holds: If X {\displaystyle X} is a continuous semimartingale and

f C 2 ( R ) , {\displaystyle f\in C_{2}(\mathbb {R} ),}

then

f ( X t ) = f ( X 0 ) + 0 t f ( X s ) d X s + 1 2 0 t f ( X s ) d [ X ] s . {\displaystyle f(X_{t})=f(X_{0})+\int _{0}^{t}f'(X_{s})\,dX_{s}+{1 \over 2}\int _{0}^{t}f''(X_{s})\,d_{s}.}

By a duality result of Triebel one can provide optimal classes of Besov spaces, where the Russo–Vallois integral can be defined. The norm in the Besov space

B p , q λ ( R N ) {\displaystyle B_{p,q}^{\lambda }(\mathbb {R} ^{N})}

is given by

| | f | | p , q λ = | | f | | L p + ( 0 1 | h | 1 + λ q ( | | f ( x + h ) f ( x ) | | L p ) q d h ) 1 / q {\displaystyle ||f||_{p,q}^{\lambda }=||f||_{L_{p}}+\left(\int _{0}^{\infty }{1 \over |h|^{1+\lambda q}}(||f(x+h)-f(x)||_{L_{p}})^{q}\,dh\right)^{1/q}}

with the well known modification for q = {\displaystyle q=\infty } . Then the following theorem holds:

Theorem: Suppose

f B p , q λ , {\displaystyle f\in B_{p,q}^{\lambda },}
g B p , q 1 λ , {\displaystyle g\in B_{p',q'}^{1-\lambda },}
1 / p + 1 / p = 1  and  1 / q + 1 / q = 1. {\displaystyle 1/p+1/p'=1{\text{ and }}1/q+1/q'=1.}

Then the Russo–Vallois integral

f d g {\displaystyle \int f\,dg}

exists and for some constant c {\displaystyle c} one has

| f d g | c | | f | | p , q α | | g | | p , q 1 α . {\displaystyle \left|\int f\,dg\right|\leq c||f||_{p,q}^{\alpha }||g||_{p',q'}^{1-\alpha }.}

Notice that in this case the Russo–Vallois integral coincides with the Riemann–Stieltjes integral and with the Young integral for functions with finite p-variation.

This article includes a list of references, related reading, or external links, but its sources remain unclear because it lacks inline citations. Please help improve this article by introducing more precise citations. (January 2012) (Learn how and when to remove this message)

References

Integrals
Types of
integrals
Integration
techniques
Improper integrals
Stochastic integrals
Miscellaneous
Categories: