In mathematical analysis , the Russo–Vallois integral is an extension to stochastic processes of the classical Riemann–Stieltjes integral
∫
f
d
g
=
∫
f
g
′
d
s
{\displaystyle \int f\,dg=\int fg'\,ds}
for suitable functions
f
{\displaystyle f}
and
g
{\displaystyle g}
. The idea is to replace the derivative
g
′
{\displaystyle g'}
by the difference quotient
g
(
s
+
ε
)
−
g
(
s
)
ε
{\displaystyle g(s+\varepsilon )-g(s) \over \varepsilon }
and to pull the limit out of the integral. In addition one changes the type of convergence.
Definitions
Definition: A sequence
H
n
{\displaystyle H_{n}}
of stochastic processes converges uniformly on compact sets in probability to a process
H
,
{\displaystyle H,}
H
=
ucp-
lim
n
→
∞
H
n
,
{\displaystyle H={\text{ucp-}}\lim _{n\rightarrow \infty }H_{n},}
if, for every
ε
>
0
{\displaystyle \varepsilon >0}
and
T
>
0
,
{\displaystyle T>0,}
lim
n
→
∞
P
(
sup
0
≤
t
≤
T
|
H
n
(
t
)
−
H
(
t
)
|
>
ε
)
=
0.
{\displaystyle \lim _{n\rightarrow \infty }\mathbb {P} (\sup _{0\leq t\leq T}|H_{n}(t)-H(t)|>\varepsilon )=0.}
One sets:
I
−
(
ε
,
t
,
f
,
d
g
)
=
1
ε
∫
0
t
f
(
s
)
(
g
(
s
+
ε
)
−
g
(
s
)
)
d
s
{\displaystyle I^{-}(\varepsilon ,t,f,dg)={1 \over \varepsilon }\int _{0}^{t}f(s)(g(s+\varepsilon )-g(s))\,ds}
I
+
(
ε
,
t
,
f
,
d
g
)
=
1
ε
∫
0
t
f
(
s
)
(
g
(
s
)
−
g
(
s
−
ε
)
)
d
s
{\displaystyle I^{+}(\varepsilon ,t,f,dg)={1 \over \varepsilon }\int _{0}^{t}f(s)(g(s)-g(s-\varepsilon ))\,ds}
and
[
f
,
g
]
ε
(
t
)
=
1
ε
∫
0
t
(
f
(
s
+
ε
)
−
f
(
s
)
)
(
g
(
s
+
ε
)
−
g
(
s
)
)
d
s
.
{\displaystyle _{\varepsilon }(t)={1 \over \varepsilon }\int _{0}^{t}(f(s+\varepsilon )-f(s))(g(s+\varepsilon )-g(s))\,ds.}
Definition: The forward integral is defined as the ucp-limit of
I
−
{\displaystyle I^{-}}
:
∫
0
t
f
d
−
g
=
ucp-
lim
ε
→
∞
(
0
?
)
I
−
(
ε
,
t
,
f
,
d
g
)
.
{\displaystyle \int _{0}^{t}fd^{-}g={\text{ucp-}}\lim _{\varepsilon \rightarrow \infty (0?)}I^{-}(\varepsilon ,t,f,dg).}
Definition: The backward integral is defined as the ucp-limit of
I
+
{\displaystyle I^{+}}
:
∫
0
t
f
d
+
g
=
ucp-
lim
ε
→
∞
(
0
?
)
I
+
(
ε
,
t
,
f
,
d
g
)
.
{\displaystyle \int _{0}^{t}f\,d^{+}g={\text{ucp-}}\lim _{\varepsilon \rightarrow \infty (0?)}I^{+}(\varepsilon ,t,f,dg).}
Definition: The generalized bracket is defined as the ucp-limit of
[
f
,
g
]
ε
{\displaystyle _{\varepsilon }}
:
[
f
,
g
]
ε
=
ucp-
lim
ε
→
∞
[
f
,
g
]
ε
(
t
)
.
{\displaystyle _{\varepsilon }={\text{ucp-}}\lim _{\varepsilon \rightarrow \infty }_{\varepsilon }(t).}
For continuous semimartingales
X
,
Y
{\displaystyle X,Y}
and a càdlàg function H, the Russo–Vallois integral coincidences with the usual Itô integral :
∫
0
t
H
s
d
X
s
=
∫
0
t
H
d
−
X
.
{\displaystyle \int _{0}^{t}H_{s}\,dX_{s}=\int _{0}^{t}H\,d^{-}X.}
In this case the generalised bracket is equal to the classical covariation. In the special case, this means that the process
[
X
]
:=
[
X
,
X
]
{\displaystyle :=\,}
is equal to the quadratic variation process .
Also for the Russo-Vallois Integral an Ito formula holds: If
X
{\displaystyle X}
is a continuous semimartingale and
f
∈
C
2
(
R
)
,
{\displaystyle f\in C_{2}(\mathbb {R} ),}
then
f
(
X
t
)
=
f
(
X
0
)
+
∫
0
t
f
′
(
X
s
)
d
X
s
+
1
2
∫
0
t
f
″
(
X
s
)
d
[
X
]
s
.
{\displaystyle f(X_{t})=f(X_{0})+\int _{0}^{t}f'(X_{s})\,dX_{s}+{1 \over 2}\int _{0}^{t}f''(X_{s})\,d_{s}.}
By a duality result of Triebel one can provide optimal classes of Besov spaces , where the Russo–Vallois integral can be defined. The norm in the Besov space
B
p
,
q
λ
(
R
N
)
{\displaystyle B_{p,q}^{\lambda }(\mathbb {R} ^{N})}
is given by
|
|
f
|
|
p
,
q
λ
=
|
|
f
|
|
L
p
+
(
∫
0
∞
1
|
h
|
1
+
λ
q
(
|
|
f
(
x
+
h
)
−
f
(
x
)
|
|
L
p
)
q
d
h
)
1
/
q
{\displaystyle ||f||_{p,q}^{\lambda }=||f||_{L_{p}}+\left(\int _{0}^{\infty }{1 \over |h|^{1+\lambda q}}(||f(x+h)-f(x)||_{L_{p}})^{q}\,dh\right)^{1/q}}
with the well known modification for
q
=
∞
{\displaystyle q=\infty }
. Then the following theorem holds:
Theorem: Suppose
f
∈
B
p
,
q
λ
,
{\displaystyle f\in B_{p,q}^{\lambda },}
g
∈
B
p
′
,
q
′
1
−
λ
,
{\displaystyle g\in B_{p',q'}^{1-\lambda },}
1
/
p
+
1
/
p
′
=
1
and
1
/
q
+
1
/
q
′
=
1.
{\displaystyle 1/p+1/p'=1{\text{ and }}1/q+1/q'=1.}
Then the Russo–Vallois integral
∫
f
d
g
{\displaystyle \int f\,dg}
exists and for some constant
c
{\displaystyle c}
one has
|
∫
f
d
g
|
≤
c
|
|
f
|
|
p
,
q
α
|
|
g
|
|
p
′
,
q
′
1
−
α
.
{\displaystyle \left|\int f\,dg\right|\leq c||f||_{p,q}^{\alpha }||g||_{p',q'}^{1-\alpha }.}
Notice that in this case the Russo–Vallois integral coincides with the Riemann–Stieltjes integral and with the Young integral for functions with finite p-variation .
References
Russo, Francesco; Vallois, Pierre (1993). "Forward, backward and symmetric integration" . Prob. Th. And Rel. Fields . 97 : 403–421. doi :10.1007/BF01195073 .
Russo, F.; Vallois, P. (1995). "The generalized covariation process and Ito-formula" . Stoch. Proc. And Appl . 59 (1): 81–104. doi :10.1016/0304-4149(95)93237-A .
Zähle, Martina (2002). "Forward Integrals and Stochastic Differential Equations". In: Seminar on Stochastic Analysis, Random Fields and Applications III . Progress in Prob. Vol. 52. Birkhäuser, Basel. pp. 293–302. doi :10.1007/978-3-0348-8209-5_20 . ISBN 978-3-0348-9474-6 .
Adams, Robert A.; Fournier, John J. F. (2003). Sobolev Spaces (second ed.). Elsevier. ISBN 9780080541297 .
Categories :
Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.
**DISCLAIMER** We are not affiliated with Wikipedia, and Cloudflare.
The information presented on this site is for general informational purposes only and does not constitute medical advice.
You should always have a personal consultation with a healthcare professional before making changes to your diet, medication, or exercise routine.
AI helps with the correspondence in our chat.
We participate in an affiliate program. If you buy something through a link, we may earn a commission 💕
↑