Misplaced Pages

Rutin

Article snapshot taken from Wikipedia with creative commons attribution-sharealike license. Give it a read and then ask your questions in the chat. We can research this topic together.
(Redirected from Rutoside)
Rutin
Rutin
Names
IUPAC name 3′,4′,5,7-Tetrahydroxy-3-flavone
Systematic IUPAC name (4S,4R,4S,4S,4R,7R,7R,7R,7R,7S)-1,1,2,2,4,4,4,7,7,7-Decahydroxy-7-methyl-2H-3,6-dioxa-2(2,3)-benzopyrana-4(2,6),7(2)-bis(oxana)-1(1)-benzenaheptaphane-2-one
Other names Rutoside (INN)
Phytomelin
Sophorin
Birutan
Eldrin
Birutan Forte
Rutin trihydrate
Globularicitrin
Violaquercitrin
Quercetin rutinoside
Identifiers
CAS Number
3D model (JSmol)
ChemSpider
DrugBank
ECHA InfoCard 100.005.287 Edit this at Wikidata
KEGG
PubChem CID
RTECS number
  • VM2975000
UNII
CompTox Dashboard (EPA)
InChI
  • InChI=1S/C27H30O16/c1-8-17(32)20(35)22(37)26(40-8)39-7-15-18(33)21(36)23(38)27(42-15)43-25-19(34)16-13(31)5-10(28)6-14(16)41-24(25)9-2-3-11(29)12(30)4-9/h2-6,8,15,17-18,20-23,26-33,35-38H,7H2,1H3/t8-,15+,17-,18+,20+,21-,22+,23+,26+,27-/m0/s1
SMILES
  • CC1C(C(C(C(O1)OCC2C(C(C(C(O2)OC3=C(OC4=CC(=CC(=C4C3=O)O)O)C5=CC(=C(C=C5)O)O)O)O)O)O)O)O
Properties
Chemical formula C27H30O16
Molar mass 610.521 g·mol
Appearance Solid
Melting point 242 °C (468 °F; 515 K)
Solubility in water 12.5 mg/100 mL
13 mg/100mL
Pharmacology
ATC code C05CA01 (WHO)
Hazards
NFPA 704 (fire diamond)
NFPA 704 four-colored diamondHealth 2: Intense or continued but not chronic exposure could cause temporary incapacitation or possible residual injury. E.g. chloroformFlammability 0: Will not burn. E.g. waterInstability 0: Normally stable, even under fire exposure conditions, and is not reactive with water. E.g. liquid nitrogenSpecial hazards (white): no code
2 0 0
Except where otherwise noted, data are given for materials in their standard state (at 25 °C , 100 kPa). ☒verify (what is  ?) Infobox references
Chemical compound

Rutin (rutoside, quercetin-3-O-rutinoside or sophorin) is the glycoside combining the flavonol quercetin and the disaccharide rutinose (α-L-rhamnopyranosyl-(1→6)-β-D-glucopyranose). It is a flavonoid glycoside found in a wide variety of plants, including citrus.

Occurrences

Rutin is one of the phenolic compounds found in the plant species Carpobrotus edulis. Its name comes from the name of Ruta graveolens, a plant that also contains rutin. Various citrus fruit peels contain 32 to 49 mg/g of flavonoids expressed as rutin equivalents. Citrus leaves contain rutin at concentrations of 11 and 7 g/kg in orange and lime trees, respectively. In 2021, Samoan researchers identified rutin in the native plant matalafi (Psychotria insularum).

Metabolism

The enzyme quercitrinase found in Aspergillus flavus is in the rutin catabolic pathway.

In food

Rutin is a citrus flavonoid glycoside found in many plants, including buckwheat, the leaves and petioles of Rheum species, and asparagus. Tartary buckwheat seeds have been found to contain more rutin (about 0.8–1.7% dry weight) than common buckwheat seeds (0.01% dry weight). Rutin is one of the primary flavonols found in 'clingstone' peaches. It is also found in green tea infusions.

Approximate rutin content of selected foods, in milligrams per 100 milliliters:

Sortable table
Numeric Alphabetic
389 Tartary buckwheat, roasted bran
332 Capers, spice
68 Tartary buckwheat, roasted grain
45 Olive (black), raw
36 Buckwheat, whole grain flour
32 Green tea, infusion
23 Asparagus, raw
19 Black raspberry, raw
17 Black tea, infusion
11 Red raspberry, raw
9 Buckwheat, groats, thermally treated
6 Buckwheat, refined flour
6 Greencurrant
6 Plum, fresh
5 Blackcurrant, raw
4 Blackberry, raw
3 Tomato (cherry), whole, raw
2 Prune
2 Fenugreek
2 Marjoram, dried
1 Grape, raisin
1 Zucchini, raw
1 Apricot, raw
0 Apple
0 Redcurrant
0 Grape (green)
0 Tomato, whole, raw

Research

Rutin (rutoside or rutinoside) and other dietary flavonols are under preliminary clinical research for their potential biological effects, such as in reducing post-thrombotic syndrome, venous insufficiency, or endothelial dysfunction, but there was no high-quality evidence for their safe and effective uses as of 2018. A 2020 review indicated that oral rutosides may reduce leg edema in people with post-thrombotic syndrome, but the risk of adverse effects was higher.

As a flavonol among similar flavonoids, rutin has low bioavailability due to poor absorption, high metabolism, and rapid excretion that collectively make its potential for use as a therapeutic agent limited.

Biosynthesis

The biosynthesis pathway of rutin in mulberry (Morus alba L.) leaves begins with phenylalanine, which produces cinnamic acid under the action of phenylalanine ammonia lyase (PAL). Cinnamic acid is catalyzed by cinnamic acid-4-hydroxylase (C4H) and 4-coumarate-CoA ligase (4CL) to form p-coumaroyl-CoA. Subsequently, chalcone synthase (CHS) catalyzes the condensation of p-coumaroyl-CoA and three molecules of malonyl-CoA to produce naringenin chalcone, which is eventually converted into naringenin flavanone with the participation of chalcone isomerase (CHI). With the action of flavanone 3-hydroxylas (F3H), dihydrokaempferol (DHK) is generated. DHK can be further hydroxylated by flavonoid 3´-hydroxylase (F3'H) to produce dihydroquercetin (DHQ), which is then catalyzed by flavonol synthase (FLS) to form quercetin. After quercetin is catalyzed by UDP-glucose flavonoid 3-O-glucosyltransferase (UFGT) to form isoquercitrin, finally, the formation of rutin from isoquercitrin is catalyzed by flavonoid 3-O-glucoside L-rhamnosyltransferase.

References

  1. Merck Index, 12th Edition, 8456
  2. Krewson CF, Naghski J (November 1952). "Some physical properties of rutin". Journal of the American Pharmaceutical Association. 41 (11): 582–587. doi:10.1002/jps.3030411106. PMID 12999623.
  3. Wang, Yuan-Chuen; Chuang, Yueh-Chueh; Hsu, Hsing-Wen (2008). "The flavonoid, carotenoid and pectin content in peels of citrus cultivated in Taiwan". Food Chemistry. 106 (1): 277–284. doi:10.1016/j.foodchem.2007.05.086. ISSN 0308-8146.
  4. Soares, Márcio Santos; da Silva, Danielle Fernandes; Forim, Moacir Rossi; da Silva, Maria Fátima das Graças Fernandes; Fernandes, João Batista; Vieira, Paulo Cezar; Silva, Denise Brentan; Lopes, Norberto Peporine; de Carvalho, Sérgio Alves; de Souza, Alessandra Alves; Machado, Marcos Antônio (2015). "Quantification and localization of hesperidin and rutin in Citrus sinensis grafted on C. limonia after Xylella fastidiosa infection by HPLC-UV and MALDI imaging mass spectrometry". Phytochemistry. 115: 161–170. Bibcode:2015PChem.115..161S. doi:10.1016/j.phytochem.2015.02.011. ISSN 0031-9422. PMID 25749617.
  5. Molimau-Samasoni S, Woolner VH, Foliga ST, Robichon K, Patel V, Andreassend SK, et al. (November 2021). "Functional genomics and metabolomics advance the ethnobotany of the Samoan traditional medicine "matalafi"". Proceedings of the National Academy of Sciences of the United States of America. 118 (45): e2100880118. Bibcode:2021PNAS..11800880M. doi:10.1073/pnas.2100880118. PMC 8609454. PMID 34725148. S2CID 240423413.
  6. Tranchimand S, Brouant P, Iacazio G (November 2010). "The rutin catabolic pathway with special emphasis on quercetinase". Biodegradation. 21 (6): 833–859. doi:10.1007/s10532-010-9359-7. PMID 20419500. S2CID 30101803.
  7. ^ Kreft S, Knapp M, Kreft I (November 1999). "Extraction of rutin from buckwheat (Fagopyrum esculentumMoench) seeds and determination by capillary electrophoresis". Journal of Agricultural and Food Chemistry. 47 (11): 4649–4652. doi:10.1021/jf990186p. PMID 10552865.
  8. Chang S, Tan C, Frankel EN, Barrett DM (February 2000). "Low-density lipoprotein antioxidant activity of phenolic compounds and polyphenol oxidase activity in selected clingstone peach cultivars". Journal of Agricultural and Food Chemistry. 48 (2): 147–151. doi:10.1021/jf9904564. PMID 10691607.
  9. Malagutti AR, Zuin V, Cavalheiro ÉT, Henrique Mazo L (2006). "Determination of Rutin in Green Tea Infusions Using Square-Wave Voltammetry with a Rigid Carbon-Polyurethane Composite Electrode". Electroanalysis. 18 (10): 1028–1034. doi:10.1002/elan.200603496.
  10. "foods in which the polyphenol Quercetin 3-O-rutinoside is found". Phenol-Explorer v 3.6. June 2015.
  11. ^ Noda, T.; Ishiguro, K.; Suzuki, T.; Morishita, T. (2021). "Roasted Tartary Buckwheat Bran as a Material for Producing Rutin-Rich Tea Beverages". Plants. 10 (12): 2662. doi:10.3390/plants10122662. PMC 8704535. PMID 34961131.
  12. ^ "Flavonoids". Micronutrient Information Center, Linus Pauling Institute, Oregon State University, Corvallis, Oregon. November 2015. Retrieved 25 February 2018.
  13. Morling JR, Broderick C, Yeoh SE, Kolbach DN (November 2018). "Rutosides for treatment of post-thrombotic syndrome". The Cochrane Database of Systematic Reviews. 2018 (11): CD005625. doi:10.1002/14651858.CD005625.pub4. PMC 6517027. PMID 30406640.
  14. Martinez-Zapata, Maria José; Vernooij, Robin Wm; Simancas-Racines, Daniel; et al. (2020-11-03). "Phlebotonics for venous insufficiency". The Cochrane Database of Systematic Reviews. 2020 (11): CD003229. doi:10.1002/14651858.CD003229.pub4. ISSN 1469-493X. PMC 8094625. PMID 33141449.
  15. Martinez-Zapata, Maria José; Vernooij, Robin Wm; Simancas-Racines, Daniel; et al. (3 November 2020). "Phlebotonics for venous insufficiency". The Cochrane Database of Systematic Reviews. 2020 (11): CD003229. doi:10.1002/14651858.CD003229.pub4. ISSN 1469-493X. PMC 8094625. PMID 33141449.
  16. "Yu X, Liu J, Wan J, Zhao L, Liu Y, Wei Y, Ouyang Z. Cloning, prokaryotic expression, and enzyme activity of a UDP-glucose flavonoid 3-o-glycosyltransferase from mulberry (Morus alba L.) leaves. Phcog Mag 2020;16:441-7". Archived from the original on 2022-02-16. Retrieved 2021-06-02.

External links

  • Media related to Rutin at Wikimedia Commons
Flavonols and their conjugates
Backbone
Aglycones
Flavonols
Aglycones
Conjugates
Glycosides of herbacetin
Glycosides of kaempferol
Glycosides of myricetin
Conjugates of quercetin
Sulfates
Glycosides
O-Methylated flavonols
Aglycones
Glycosides
of isorhamnetin
other
Derivative flavonols
Aglycones
Glycosides
Pyranoflavonols
Aglycones
Furanoflavonols
Aglycones
Glycosides
Semisynthetic
Glycosides
Vasoprotectives (C05)
Antihemorrhoidals for topical use
corticosteroids
local anesthetics
other
Antivaricose therapy
heparins or heparinoids for topical use
sclerosing agents for local injection
other
Capillary stabilising agents
bioflavonoids
other
Categories: