Misplaced Pages

Skewb Diamond

Article snapshot taken from Wikipedia with creative commons attribution-sharealike license. Give it a read and then ask your questions in the chat. We can research this topic together.
Octahedron-shaped combination puzzle
The Skewb Diamond
The Skewb Diamond, slightly twisted

The Skewb Diamond is an octahedron-shaped combination puzzle similar to the Rubik's Cube. It has 14 movable pieces which can be rearranged in a total of 138,240 possible combinations. This puzzle is the dual polyhedron of the Skewb. It was invented by Uwe Mèffert, a German puzzle inventor and designer.

Description

The Skewb Diamond has 6 octahedral corner pieces and 8 triangular face centers. All pieces can move relative to each other. It is a deep-cut puzzle; its planes of rotation bisect it.

It is very closely related to the Skewb, and shares the same piece count and mechanism. However, the triangular "corners" present on the Skewb have no visible orientation on the Skewb Diamond, and the square "centers" gain a visible orientation on the Skewb Diamond. In other words, the corners on the Skewb are equivalent to the centers on the Skewb diamond. Combining pieces from the two can either give you an unscrambleable cuboctahedron or a compound of cube and octahedron with visible orientation on all pieces. The Skewb Ultimate is mathematically equivalent to the latter case, but is shaped as a dodecahedron with two cuts per face.

Number of combinations

The purpose of the puzzle is to scramble its colors, and then restore it to its original solved state.

The puzzle has 6 corner pieces and 8 face centers. The positions of four of the face centers is completely determined by the positions of the other 4 face centers, and only even permutations of such positions are possible, so the number of arrangements of face centers is only 4!/2. Each face center has only a single orientation.

Only even permutations of the corner pieces are possible, so the number of possible arrangements of corner pieces is 6!/2. Each corner has two possible orientations (it is not possible to change their orientation by 90° without disassembling the puzzle), but the orientation of the last corner is determined by the other 5. Hence, the number of possible corner orientations is 2.

Hence, the number of possible combinations is:

4 ! × 6 ! × 2 5 4 = 138 , 240. {\displaystyle {\frac {4!\times 6!\times 2^{5}}{4}}=138,240.}

References

  1. ""Skewb Diamond" - Copyright J. A. Storer". www.cs.brandeis.edu. Retrieved 2024-02-07.

See also

External links

Rubik's Cube
Puzzle inventors
Rubik's Cubes
Variations of the
Rubik's Cube
Other cubic
combination puzzles
Non-cubic
combination puzzles
Tetrahedron
Octahedron
Dodecahedron
Icosahedron
Great dodecahedron
Truncated icosahedron
Cuboid
Virtual combination
puzzles (>3D)
Derivatives
Renowned solvers
Solutions
Speedsolving
Methods
Mathematics
Official organization
Related articles
Stub icon

This toy-related article is a stub. You can help Misplaced Pages by expanding it.

Categories: