Solar eclipse of March 9, 2035 | |
---|---|
Map | |
Type of eclipse | |
Nature | Annular |
Gamma | −0.4368 |
Magnitude | 0.9919 |
Maximum eclipse | |
Duration | 48 s (0 min 48 s) |
Coordinates | 29°00′S 154°54′W / 29°S 154.9°W / -29; -154.9 |
Max. width of band | 31 km (19 mi) |
Times (UTC) | |
Greatest eclipse | 23:05:54 |
References | |
Saros | 140 (30 of 71) |
Catalog # (SE5000) | 9585 |
An annular solar eclipse will occur at the Moon's descending node of orbit between Friday, March 9 and Saturday, March 10, 2035, with a magnitude of 0.9919. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. An annular solar eclipse occurs when the Moon's apparent diameter is smaller than the Sun's, blocking most of the Sun's light and causing the Sun to look like an annulus (ring). An annular eclipse appears as a partial eclipse over a region of the Earth thousands of kilometres wide. The Moon's apparent diameter will be near the average diameter because it will occur 7.6 days after apogee (on March 2, 2035, at 9:30 UTC) and 5.1 days before perigee (on March 15, 2035, at 1:40 UTC).
Annularity will be visible for parts of New Zealand. A partial eclipse will be visible for parts of Australia, Oceania, Antarctica, and central Mexico.
Images
Eclipse details
Shown below are two tables displaying details about this particular solar eclipse. The first table outlines times at which the moon's penumbra or umbra attains the specific parameter, and the second table describes various other parameters pertaining to this eclipse.
Event | Time (UTC) |
---|---|
First Penumbral External Contact | 2035 March 09 at 20:22:04.1 UTC |
First Umbral External Contact | 2035 March 09 at 21:26:19.2 UTC |
First Central Line | 2035 March 09 at 21:27:07.8 UTC |
Greatest Duration | 2035 March 09 at 21:27:07.8 UTC |
First Umbral Internal Contact | 2035 March 09 at 21:27:56.5 UTC |
Equatorial Conjunction | 2035 March 09 at 22:50:50.5 UTC |
First Penumbral Internal Contact | 2035 March 09 at 22:57:05.1 UTC |
Greatest Eclipse | 2035 March 09 at 23:05:53.6 UTC |
Ecliptic Conjunction | 2035 March 09 at 23:10:39.6 UTC |
Last Penumbral Internal Contact | 2035 March 09 at 23:15:08.3 UTC |
Last Umbral Internal Contact | 2035 March 10 at 00:44:04.1 UTC |
Last Central Line | 2035 March 10 at 00:44:49.7 UTC |
Last Umbral External Contact | 2035 March 10 at 00:45:35.2 UTC |
Last Penumbral External Contact | 2035 March 10 at 01:49:43.7 UTC |
Parameter | Value |
---|---|
Eclipse Magnitude | 0.99191 |
Eclipse Obscuration | 0.98388 |
Gamma | −0.43679 |
Sun Right Ascension | 23h20m17.6s |
Sun Declination | -04°16'22.2" |
Sun Semi-Diameter | 16'06.5" |
Sun Equatorial Horizontal Parallax | 08.9" |
Moon Right Ascension | 23h20m47.9s |
Moon Declination | -04°40'23.8" |
Moon Semi-Diameter | 15'44.9" |
Moon Equatorial Horizontal Parallax | 0°57'47.9" |
ΔT | 76.2 s |
Eclipse season
See also: Eclipse cycleThis eclipse is part of an eclipse season, a period, roughly every six months, when eclipses occur. Only two (or occasionally three) eclipse seasons occur each year, and each season lasts about 35 days and repeats just short of six months (173 days) later; thus two full eclipse seasons always occur each year. Either two or three eclipses happen each eclipse season. In the sequence below, each eclipse is separated by a fortnight.
February 22 Ascending node (full moon) |
March 9 Descending node (new moon) |
---|---|
Penumbral lunar eclipse Lunar Saros 114 |
Annular solar eclipse Solar Saros 140 |
Related eclipses
Eclipses in 2035
- A penumbral lunar eclipse on February 22.
- An annular solar eclipse on March 9.
- A partial lunar eclipse on August 19.
- A total solar eclipse on September 2.
Metonic
- Preceded by: Solar eclipse of May 21, 2031
- Followed by: Solar eclipse of December 26, 2038
Tzolkinex
- Preceded by: Solar eclipse of January 26, 2028
- Followed by: Solar eclipse of April 20, 2042
Half-Saros
- Preceded by: Lunar eclipse of March 3, 2026
- Followed by: Lunar eclipse of March 13, 2044
Tritos
- Preceded by: Solar eclipse of April 8, 2024
- Followed by: Solar eclipse of February 5, 2046
Solar Saros 140
- Preceded by: Solar eclipse of February 26, 2017
- Followed by: Solar eclipse of March 20, 2053
Inex
- Preceded by: Solar eclipse of March 29, 2006
- Followed by: Solar eclipse of February 17, 2064
Triad
- Preceded by: Solar eclipse of May 9, 1948
- Followed by: Solar eclipse of January 8, 2122
Solar eclipses of 2033–2036
This eclipse is a member of a semester series. An eclipse in a semester series of solar eclipses repeats approximately every 177 days and 4 hours (a semester) at alternating nodes of the Moon's orbit.
The partial solar eclipse on July 23, 2036 occurs in the next lunar year eclipse set.
Solar eclipse series sets from 2033 to 2036 | ||||||
---|---|---|---|---|---|---|
Descending node | Ascending node | |||||
Saros | Map | Gamma | Saros | Map | Gamma | |
120 | March 30, 2033 Total |
0.9778 | 125 | September 23, 2033 Partial |
−1.1583 | |
130 | March 20, 2034 Total |
0.2894 | 135 | September 12, 2034 Annular |
−0.3936 | |
140 | March 9, 2035 Annular |
−0.4368 | 145 | September 2, 2035 Total |
0.3727 | |
150 | February 27, 2036 Partial |
−1.1942 | 155 | August 21, 2036 Partial |
1.0825 |
Saros 140
This eclipse is a part of Saros series 140, repeating every 18 years, 11 days, and containing 71 events. The series started with a partial solar eclipse on April 16, 1512. It contains total eclipses from July 21, 1656 through November 9, 1836; hybrid eclipses from November 20, 1854 through December 23, 1908; and annular eclipses from January 3, 1927 through December 7, 2485. The series ends at member 71 as a partial eclipse on June 1, 2774. Its eclipses are tabulated in three columns; every third eclipse in the same column is one exeligmos apart, so they all cast shadows over approximately the same parts of the Earth.
The longest duration of totality was produced by member 11 at 4 minutes, 10 seconds on August 12, 1692, and the longest duration of annularity will be produced by member 53 at 7 minutes, 35 seconds on November 15, 2449. All eclipses in this series occur at the Moon’s descending node of orbit.
Series members 18–39 occur between 1801 and 2200: | ||
---|---|---|
18 | 19 | 20 |
October 29, 1818 |
November 9, 1836 |
November 20, 1854 |
21 | 22 | 23 |
November 30, 1872 |
December 12, 1890 |
December 23, 1908 |
24 | 25 | 26 |
January 3, 1927 |
January 14, 1945 |
January 25, 1963 |
27 | 28 | 29 |
February 4, 1981 |
February 16, 1999 |
February 26, 2017 |
30 | 31 | 32 |
March 9, 2035 |
March 20, 2053 |
March 31, 2071 |
33 | 34 | 35 |
April 10, 2089 |
April 23, 2107 |
May 3, 2125 |
36 | 37 | 38 |
May 14, 2143 |
May 25, 2161 |
June 5, 2179 |
39 | ||
June 15, 2197 |
Metonic series
The metonic series repeats eclipses every 19 years (6939.69 days), lasting about 5 cycles. Eclipses occur in nearly the same calendar date. In addition, the octon subseries repeats 1/5 of that or every 3.8 years (1387.94 days). All eclipses in this table occur at the Moon's descending node.
21 eclipse events between May 21, 1993 and May 20, 2069 | ||||
---|---|---|---|---|
May 20–21 | March 9 | December 25–26 | October 13–14 | August 1–2 |
118 | 120 | 122 | 124 | 126 |
May 21, 1993 |
March 9, 1997 |
December 25, 2000 |
October 14, 2004 |
August 1, 2008 |
128 | 130 | 132 | 134 | 136 |
May 20, 2012 |
March 9, 2016 |
December 26, 2019 |
October 14, 2023 |
August 2, 2027 |
138 | 140 | 142 | 144 | 146 |
May 21, 2031 |
March 9, 2035 |
December 26, 2038 |
October 14, 2042 |
August 2, 2046 |
148 | 150 | 152 | 154 | 156 |
May 20, 2050 |
March 9, 2054 |
December 26, 2057 |
October 13, 2061 |
August 2, 2065 |
158 | ||||
May 20, 2069 |
Tritos series
This eclipse is a part of a tritos cycle, repeating at alternating nodes every 135 synodic months (≈ 3986.63 days, or 11 years minus 1 month). Their appearance and longitude are irregular due to a lack of synchronization with the anomalistic month (period of perigee), but groupings of 3 tritos cycles (≈ 33 years minus 3 months) come close (≈ 434.044 anomalistic months), so eclipses are similar in these groupings.
Series members between 1801 and 2200 | ||||
---|---|---|---|---|
December 21, 1805 (Saros 119) |
November 19, 1816 (Saros 120) |
October 20, 1827 (Saros 121) |
September 18, 1838 (Saros 122) |
August 18, 1849 (Saros 123) |
July 18, 1860 (Saros 124) |
June 18, 1871 (Saros 125) |
May 17, 1882 (Saros 126) |
April 16, 1893 (Saros 127) |
March 17, 1904 (Saros 128) |
February 14, 1915 (Saros 129) |
January 14, 1926 (Saros 130) |
December 13, 1936 (Saros 131) |
November 12, 1947 (Saros 132) |
October 12, 1958 (Saros 133) |
September 11, 1969 (Saros 134) |
August 10, 1980 (Saros 135) |
July 11, 1991 (Saros 136) |
June 10, 2002 (Saros 137) |
May 10, 2013 (Saros 138) |
April 8, 2024 (Saros 139) |
March 9, 2035 (Saros 140) |
February 5, 2046 (Saros 141) |
January 5, 2057 (Saros 142) |
December 6, 2067 (Saros 143) |
November 4, 2078 (Saros 144) |
October 4, 2089 (Saros 145) |
September 4, 2100 (Saros 146) |
August 4, 2111 (Saros 147) |
July 4, 2122 (Saros 148) |
June 3, 2133 (Saros 149) |
May 3, 2144 (Saros 150) |
April 2, 2155 (Saros 151) |
March 2, 2166 (Saros 152) |
January 29, 2177 (Saros 153) |
December 29, 2187 (Saros 154) |
November 28, 2198 (Saros 155) |
Inex series
This eclipse is a part of the long period inex cycle, repeating at alternating nodes, every 358 synodic months (≈ 10,571.95 days, or 29 years minus 20 days). Their appearance and longitude are irregular due to a lack of synchronization with the anomalistic month (period of perigee). However, groupings of 3 inex cycles (≈ 87 years minus 2 months) comes close (≈ 1,151.02 anomalistic months), so eclipses are similar in these groupings.
Series members between 1801 and 2200 | ||
---|---|---|
August 17, 1803 (Saros 132) |
July 27, 1832 (Saros 133) |
July 8, 1861 (Saros 134) |
June 17, 1890 (Saros 135) |
May 29, 1919 (Saros 136) |
May 9, 1948 (Saros 137) |
April 18, 1977 (Saros 138) |
March 29, 2006 (Saros 139) |
March 9, 2035 (Saros 140) |
February 17, 2064 (Saros 141) |
January 27, 2093 (Saros 142) |
January 8, 2122 (Saros 143) |
December 19, 2150 (Saros 144) |
November 28, 2179 (Saros 145) |
References
- "March 9–10, 2035 Annular Solar Eclipse". timeanddate. Retrieved 14 August 2024.
- "Moon Distances for London, United Kingdom, England". timeanddate. Retrieved 14 August 2024.
- "Annular Solar Eclipse of 2035 Mar 09". EclipseWise.com. Retrieved 14 August 2024.
- van Gent, R.H. "Solar- and Lunar-Eclipse Predictions from Antiquity to the Present". A Catalogue of Eclipse Cycles. Utrecht University. Retrieved 6 October 2018.
- "NASA - Catalog of Solar Eclipses of Saros 140". eclipse.gsfc.nasa.gov.