Misplaced Pages

Stochastic logarithm

Article snapshot taken from Wikipedia with creative commons attribution-sharealike license. Give it a read and then ask your questions in the chat. We can research this topic together.
Term in stochastic calculus

In stochastic calculus, stochastic logarithm of a semimartingale Y {\displaystyle Y} such that Y 0 {\displaystyle Y\neq 0} and Y 0 {\displaystyle Y_{-}\neq 0} is the semimartingale X {\displaystyle X} given by d X t = d Y t Y t , X 0 = 0. {\displaystyle dX_{t}={\frac {dY_{t}}{Y_{t-}}},\quad X_{0}=0.} In layperson's terms, stochastic logarithm of Y {\displaystyle Y} measures the cumulative percentage change in Y {\displaystyle Y} .

Notation and terminology

The process X {\displaystyle X} obtained above is commonly denoted L ( Y ) {\displaystyle {\mathcal {L}}(Y)} . The terminology stochastic logarithm arises from the similarity of L ( Y ) {\displaystyle {\mathcal {L}}(Y)} to the natural logarithm log ( Y ) {\displaystyle \log(Y)} : If Y {\displaystyle Y} is absolutely continuous with respect to time and Y 0 {\displaystyle Y\neq 0} , then X {\displaystyle X} solves, path-by-path, the differential equation d X t d t = d Y t d t Y t , {\displaystyle {\frac {dX_{t}}{dt}}={\frac {\frac {dY_{t}}{dt}}{Y_{t}}},} whose solution is X = log | Y | log | Y 0 | {\displaystyle X=\log |Y|-\log |Y_{0}|} .

General formula and special cases

  • Without any assumptions on the semimartingale Y {\displaystyle Y} (other than Y 0 , Y 0 {\displaystyle Y\neq 0,Y_{-}\neq 0} ), one has L ( Y ) t = log | Y t Y 0 | + 1 2 0 t d [ Y ] s c Y s 2 + s t ( log | 1 + Δ Y s Y s | Δ Y s Y s ) , t 0 , {\displaystyle {\mathcal {L}}(Y)_{t}=\log {\Biggl |}{\frac {Y_{t}}{Y_{0}}}{\Biggl |}+{\frac {1}{2}}\int _{0}^{t}{\frac {d_{s}^{c}}{Y_{s-}^{2}}}+\sum _{s\leq t}{\Biggl (}\log {\Biggl |}1+{\frac {\Delta Y_{s}}{Y_{s-}}}{\Biggr |}-{\frac {\Delta Y_{s}}{Y_{s-}}}{\Biggr )},\qquad t\geq 0,} where [ Y ] c {\displaystyle ^{c}} is the continuous part of quadratic variation of Y {\displaystyle Y} and the sum extends over the (countably many) jumps of Y {\displaystyle Y} up to time t {\displaystyle t} .
  • If Y {\displaystyle Y} is continuous, then L ( Y ) t = log | Y t Y 0 | + 1 2 0 t d [ Y ] s c Y s 2 , t 0. {\displaystyle {\mathcal {L}}(Y)_{t}=\log {\Biggl |}{\frac {Y_{t}}{Y_{0}}}{\Biggl |}+{\frac {1}{2}}\int _{0}^{t}{\frac {d_{s}^{c}}{Y_{s-}^{2}}},\qquad t\geq 0.} In particular, if Y {\displaystyle Y} is a geometric Brownian motion, then X {\displaystyle X} is a Brownian motion with a constant drift rate.
  • If Y {\displaystyle Y} is continuous and of finite variation, then L ( Y ) = log | Y Y 0 | . {\displaystyle {\mathcal {L}}(Y)=\log {\Biggl |}{\frac {Y}{Y_{0}}}{\Biggl |}.} Here Y {\displaystyle Y} need not be differentiable with respect to time; for example, Y {\displaystyle Y} can equal 1 plus the Cantor function.

Properties

  • Stochastic logarithm is an inverse operation to stochastic exponential: If Δ X 1 {\displaystyle \Delta X\neq -1} , then L ( E ( X ) ) = X X 0 {\displaystyle {\mathcal {L}}({\mathcal {E}}(X))=X-X_{0}} . Conversely, if Y 0 {\displaystyle Y\neq 0} and Y 0 {\displaystyle Y_{-}\neq 0} , then E ( L ( Y ) ) = Y / Y 0 {\displaystyle {\mathcal {E}}({\mathcal {L}}(Y))=Y/Y_{0}} .
  • Unlike the natural logarithm log ( Y t ) {\displaystyle \log(Y_{t})} , which depends only of the value of Y {\displaystyle Y} at time t {\displaystyle t} , the stochastic logarithm L ( Y ) t {\displaystyle {\mathcal {L}}(Y)_{t}} depends not only on Y t {\displaystyle Y_{t}} but on the whole history of Y {\displaystyle Y} in the time interval [ 0 , t ] {\displaystyle } . For this reason one must write L ( Y ) t {\displaystyle {\mathcal {L}}(Y)_{t}} and not L ( Y t ) {\displaystyle {\mathcal {L}}(Y_{t})} .
  • Stochastic logarithm of a local martingale that does not vanish together with its left limit is again a local martingale.
  • All the formulae and properties above apply also to stochastic logarithm of a complex-valued Y {\displaystyle Y} .
  • Stochastic logarithm can be defined also for processes Y {\displaystyle Y} that are absorbed in zero after jumping to zero. Such definition is meaningful up to the first time that Y {\displaystyle Y} reaches 0 {\displaystyle 0} continuously.

Useful identities

  • Converse of the Yor formula: If Y ( 1 ) , Y ( 2 ) {\displaystyle Y^{(1)},Y^{(2)}} do not vanish together with their left limits, then L ( Y ( 1 ) Y ( 2 ) ) = L ( Y ( 1 ) ) + L ( Y ( 2 ) ) + [ L ( Y ( 1 ) ) , L ( Y ( 2 ) ) ] . {\displaystyle {\mathcal {L}}{\bigl (}Y^{(1)}Y^{(2)}{\bigr )}={\mathcal {L}}{\bigl (}Y^{(1)}{\bigr )}+{\mathcal {L}}{\bigl (}Y^{(2)}{\bigr )}+{\bigl }.}
  • Stochastic logarithm of 1 / E ( X ) {\displaystyle 1/{\mathcal {E}}(X)} : If Δ X 1 {\displaystyle \Delta X\neq -1} , then L ( 1 E ( X ) ) t = X 0 X t [ X ] t c + s t ( Δ X s ) 2 1 + Δ X s . {\displaystyle {\mathcal {L}}{\biggl (}{\frac {1}{{\mathcal {E}}(X)}}{\biggr )}_{t}=X_{0}-X_{t}-_{t}^{c}+\sum _{s\leq t}{\frac {(\Delta X_{s})^{2}}{1+\Delta X_{s}}}.}

Applications

  • Girsanov's theorem can be paraphrased as follows: Let Q {\displaystyle Q} be a probability measure equivalent to another probability measure P {\displaystyle P} . Denote by Z {\displaystyle Z} the uniformly integrable martingale closed by Z = d Q / d P {\displaystyle Z_{\infty }=dQ/dP} . For a semimartingale U {\displaystyle U} the following are equivalent:
    1. Process U {\displaystyle U} is special under Q {\displaystyle Q} .
    2. Process U + [ U , L ( Z ) ] {\displaystyle U+} is special under P {\displaystyle P} .
  • + If either of these conditions holds, then the Q {\displaystyle Q} -drift of U {\displaystyle U} equals the P {\displaystyle P} -drift of U + [ U , L ( Z ) ] {\displaystyle U+} .

References

  1. ^ Jacod, Jean; Shiryaev, Albert Nikolaevich (2003). Limit theorems for stochastic processes (2nd ed.). Berlin: Springer. pp. 134–138. ISBN 3-540-43932-3. OCLC 50554399.
  2. ^ Larsson, Martin; Ruf, Johannes (2019). "Stochastic exponentials and logarithms on stochastic intervals — A survey". Journal of Mathematical Analysis and Applications. 476 (1): 2–12. arXiv:1702.03573. doi:10.1016/j.jmaa.2018.11.040. S2CID 119148331.

See also

Category: