Misplaced Pages

Monoidal functor

Article snapshot taken from Wikipedia with creative commons attribution-sharealike license. Give it a read and then ask your questions in the chat. We can research this topic together.
(Redirected from Symmetric monoidal functor) Concept in category theory

In category theory, monoidal functors are functors between monoidal categories which preserve the monoidal structure. More specifically, a monoidal functor between two monoidal categories consists of a functor between the categories, along with two coherence maps—a natural transformation and a morphism that preserve monoidal multiplication and unit, respectively. Mathematicians require these coherence maps to satisfy additional properties depending on how strictly they want to preserve the monoidal structure; each of these properties gives rise to a slightly different definition of monoidal functors

  • The coherence maps of lax monoidal functors satisfy no additional properties; they are not necessarily invertible.
  • The coherence maps of strong monoidal functors are invertible.
  • The coherence maps of strict monoidal functors are identity maps.

Although we distinguish between these different definitions here, authors may call any one of these simply monoidal functors.

Definition

Let ( C , , I C ) {\displaystyle ({\mathcal {C}},\otimes ,I_{\mathcal {C}})} and ( D , , I D ) {\displaystyle ({\mathcal {D}},\bullet ,I_{\mathcal {D}})} be monoidal categories. A lax monoidal functor from C {\displaystyle {\mathcal {C}}} to D {\displaystyle {\mathcal {D}}} (which may also just be called a monoidal functor) consists of a functor F : C D {\displaystyle F:{\mathcal {C}}\to {\mathcal {D}}} together with a natural transformation

ϕ A , B : F A F B F ( A B ) {\displaystyle \phi _{A,B}:FA\bullet FB\to F(A\otimes B)}

between functors C × C D {\displaystyle {\mathcal {C}}\times {\mathcal {C}}\to {\mathcal {D}}} and a morphism

ϕ : I D F I C {\displaystyle \phi :I_{\mathcal {D}}\to FI_{\mathcal {C}}} ,

called the coherence maps or structure morphisms, which are such that for every three objects A {\displaystyle A} , B {\displaystyle B} and C {\displaystyle C} of C {\displaystyle {\mathcal {C}}} the diagrams

,
   and   

commute in the category D {\displaystyle {\mathcal {D}}} . Above, the various natural transformations denoted using α , ρ , λ {\displaystyle \alpha ,\rho ,\lambda } are parts of the monoidal structure on C {\displaystyle {\mathcal {C}}} and D {\displaystyle {\mathcal {D}}} .

Variants

  • The dual of a monoidal functor is a comonoidal functor; it is a monoidal functor whose coherence maps are reversed. Comonoidal functors may also be called opmonoidal, colax monoidal, or oplax monoidal functors.
  • A strong monoidal functor is a monoidal functor whose coherence maps ϕ A , B , ϕ {\displaystyle \phi _{A,B},\phi } are invertible.
  • A strict monoidal functor is a monoidal functor whose coherence maps are identities.
  • A braided monoidal functor is a monoidal functor between braided monoidal categories (with braidings denoted γ {\displaystyle \gamma } ) such that the following diagram commutes for every pair of objects A, B in C {\displaystyle {\mathcal {C}}}  :

Examples

  • The underlying functor U : ( A b , Z , Z ) ( S e t , × , { } ) {\displaystyle U\colon (\mathbf {Ab} ,\otimes _{\mathbf {Z} },\mathbf {Z} )\rightarrow (\mathbf {Set} ,\times ,\{\ast \})} from the category of abelian groups to the category of sets. In this case, the map ϕ A , B : U ( A ) × U ( B ) U ( A B ) {\displaystyle \phi _{A,B}\colon U(A)\times U(B)\to U(A\otimes B)} sends (a, b) to a b {\displaystyle a\otimes b} ; the map ϕ : { } Z {\displaystyle \phi \colon \{*\}\to \mathbb {Z} } sends {\displaystyle \ast } to 1.
  • If R {\displaystyle R} is a (commutative) ring, then the free functor S e t , R m o d {\displaystyle {\mathsf {Set}},\to R{\mathsf {-mod}}} extends to a strongly monoidal functor ( S e t , , ) ( R m o d , , 0 ) {\displaystyle ({\mathsf {Set}},\sqcup ,\emptyset )\to (R{\mathsf {-mod}},\oplus ,0)} (and also ( S e t , × , { } ) ( R m o d , , R ) {\displaystyle ({\mathsf {Set}},\times ,\{\ast \})\to (R{\mathsf {-mod}},\otimes ,R)} if R {\displaystyle R} is commutative).
  • If R S {\displaystyle R\to S} is a homomorphism of commutative rings, then the restriction functor ( S m o d , S , S ) ( R m o d , R , R ) {\displaystyle (S{\mathsf {-mod}},\otimes _{S},S)\to (R{\mathsf {-mod}},\otimes _{R},R)} is monoidal and the induction functor ( R m o d , R , R ) ( S m o d , S , S ) {\displaystyle (R{\mathsf {-mod}},\otimes _{R},R)\to (S{\mathsf {-mod}},\otimes _{S},S)} is strongly monoidal.
  • An important example of a symmetric monoidal functor is the mathematical model of topological quantum field theory. Let B o r d n 1 , n {\displaystyle \mathbf {Bord} _{\langle n-1,n\rangle }} be the category of cobordisms of n-1,n-dimensional manifolds with tensor product given by disjoint union, and unit the empty manifold. A topological quantum field theory in dimension n is a symmetric monoidal functor F : ( B o r d n 1 , n , , ) ( k V e c t , k , k ) . {\displaystyle F\colon (\mathbf {Bord} _{\langle n-1,n\rangle },\sqcup ,\emptyset )\rightarrow (\mathbf {kVect} ,\otimes _{k},k).}
  • The homology functor is monoidal as ( C h ( R m o d ) , , R [ 0 ] ) ( g r R m o d , , R [ 0 ] ) {\displaystyle (Ch(R{\mathsf {-mod}}),\otimes ,R)\to (grR{\mathsf {-mod}},\otimes ,R)} via the map H ( C 1 ) H ( C 2 ) H ( C 1 C 2 ) , [ x 1 ] [ x 2 ] [ x 1 x 2 ] {\displaystyle H_{\ast }(C_{1})\otimes H_{\ast }(C_{2})\to H_{\ast }(C_{1}\otimes C_{2}),\otimes \mapsto } .

Alternate notions

If ( C , , I C ) {\displaystyle ({\mathcal {C}},\otimes ,I_{\mathcal {C}})} and ( D , , I D ) {\displaystyle ({\mathcal {D}},\bullet ,I_{\mathcal {D}})} are closed monoidal categories with internal hom-functors C , D {\displaystyle \Rightarrow _{\mathcal {C}},\Rightarrow _{\mathcal {D}}} (we drop the subscripts for readability), there is an alternative formulation

ψAB : F(AB) → FAFB

of φAB commonly used in functional programming. The relation between ψAB and φAB is illustrated in the following commutative diagrams:

Commutative diagram demonstrating how a monoidal coherence map gives rise to its applicative formulation
Commutative diagram demonstrating how a monoidal coherence map can be recovered from its applicative formulation

Properties

  • If ( M , μ , ϵ ) {\displaystyle (M,\mu ,\epsilon )} is a monoid object in C {\displaystyle C} , then ( F M , F μ ϕ M , M , F ϵ ϕ ) {\displaystyle (FM,F\mu \circ \phi _{M,M},F\epsilon \circ \phi )} is a monoid object in D {\displaystyle D} .

Monoidal functors and adjunctions

Suppose that a functor F : C D {\displaystyle F:{\mathcal {C}}\to {\mathcal {D}}} is left adjoint to a monoidal ( G , n ) : ( D , , I D ) ( C , , I C ) {\displaystyle (G,n):({\mathcal {D}},\bullet ,I_{\mathcal {D}})\to ({\mathcal {C}},\otimes ,I_{\mathcal {C}})} . Then F {\displaystyle F} has a comonoidal structure ( F , m ) {\displaystyle (F,m)} induced by ( G , n ) {\displaystyle (G,n)} , defined by

m A , B = ε F A F B F n F A , F B F ( η A η B ) : F ( A B ) F A F B {\displaystyle m_{A,B}=\varepsilon _{FA\bullet FB}\circ Fn_{FA,FB}\circ F(\eta _{A}\otimes \eta _{B}):F(A\otimes B)\to FA\bullet FB}

and

m = ε I D F n : F I C I D {\displaystyle m=\varepsilon _{I_{\mathcal {D}}}\circ Fn:FI_{\mathcal {C}}\to I_{\mathcal {D}}} .

If the induced structure on F {\displaystyle F} is strong, then the unit and counit of the adjunction are monoidal natural transformations, and the adjunction is said to be a monoidal adjunction; conversely, the left adjoint of a monoidal adjunction is always a strong monoidal functor.

Similarly, a right adjoint to a comonoidal functor is monoidal, and the right adjoint of a comonoidal adjunction is a strong monoidal functor.

See also

Inline citations

  1. Perrone (2024), pp. 360–364
  2. Perrone (2024), pp. 367–368

References

Functor types
Category: