Misplaced Pages

WASP-31b

Article snapshot taken from Wikipedia with creative commons attribution-sharealike license. Give it a read and then ask your questions in the chat. We can research this topic together.
Hot Jupiter orbiting the star WASP-31

WASP-31b
"Hot Jupiter" exoplanet WASP-31b (artist concept)
Discovery
Discovered byAnderson, D.R. et al.
Discovery siteWASP
Discovery date2010
Detection methodPrimary transit
Orbital characteristics
Semi-major axis0.04657±0.00034 AU
Eccentricity0
Orbital period (sidereal)3.40591 d
Inclination84.54±0.027
StarWASP-31
Physical characteristics
Mean radius1.537±0.06 RJ
Mass0.478±0.03 MJ

WASP-31b is a low-density (puffy) "hot Jupiter" extrasolar planet orbiting the metal-poor (63% of solar metallicity) dwarf star WASP-31. The exoplanet was discovered in 2010 by the WASP project. WASP-31b is in the constellation of Crater, and is about 1305 light-years (light travel distance) from Earth.

Characteristics

WASP-31b is a low-density (puffy) "hot Jupiter" exoplanet with a mass about 0.48 times that of Jupiter and a radius about 1.55 times that of Jupiter. The planetary atmosphere has indeed the largest scale height, equal to 1150km, among exoplanets with measurable atmospheres as at 2021.

The exoplanet orbits WASP-31, its host star, every 3.4 days.

Comparison of "hot Jupiter" exoplanets, including WASP-31b
(top row; 3rd from left) (artist concept)
From top left to lower right: WASP-12b, WASP-6b, WASP-31b, WASP-39b, HD 189733b, HAT-P-12b, WASP-17b, WASP-19b, HAT-P-1b and HD 209458b.

In 2012, it was found from the Rossiter–McLaughlin effect that WASP-31b is orbiting the parent star in a prograde direction, with the WASP-31 star rotational axis inclined to the planetary orbit by 2.8±3.1 degrees. The spectroscopic study in 2014 revealed that WASP-31b has a dense cloud deck overlaid by a hazy atmosphere. WASP-31b was also reported to have significant amounts of potassium in its upper atmosphere, but the detection of potassium was refuted in 2015. The potassium detection discrepancy was resolved in 2020 with the improved cloud deck model, with the best fit being a very small amount of water over clouds and no potassium at all.

Reanalysis of planetary spectroscopic data in 2020 has revealed the presence of chromium monohydride besides water.

See also

References

  1. ^ Anderson, D.R.; et al. (2011). "WASP-31b: a low-density planet transiting a metal-poor, late-F-type dwarf star" (PDF). Astronomy & Astrophysics. 531: A60. arXiv:1011.5882. Bibcode:2011A&A...531A..60A. doi:10.1051/0004-6361/201016208. S2CID 20154835.
  2. ^ Staff (2018). "Planet WASP-31 b". Extrasolar Planets Encyclopaedia. Retrieved 2 March 2018.
  3. DJM (2018). "Finding the constellation which contains given sky coordinates". djm.cc. Retrieved 2 March 2018.
  4. Kyle (2018). "Convert Parsecs to Light Years". KylesConverter.com. Retrieved 2 March 2018.
  5. Baxter, Claire; Désert, Jean-Michel; Tsai, Shang-Min; Todorov, Kamen O.; Bean, Jacob L.; Deming, Drake; Parmentier, Vivien; Fortney, Jonathan J.; Line, Michael; Thorngren, Daniel; Pierrehumbert, Raymond T.; Burrows, Adam; Showman, Adam P. (2021), "Evidence for disequilibrium chemistry from vertical mixing in hot Jupiter atmospheres", Astronomy & Astrophysics, 648: A127, arXiv:2103.07185, doi:10.1051/0004-6361/202039708, S2CID 232222174
  6. Brown, D. J. A.; Cameron, A. Collier; Anderson, D. R.; Enoch, B.; Hellier, C.; Maxted, P. F. L.; Miller, G. R. M.; Pollacco, D.; Queloz, D.; Simpson, E.; Smalley, B.; Triaud, A. H. M. J.; Boisse, I.; Bouchy, F.; Gillon, M.; Hébrard, G. (2012). "Rossiter-Mc Laughlin effect measurements for WASP-16, WASP-25 and WASP-31★". Monthly Notices of the Royal Astronomical Society. 423 (2): 1503–1520. arXiv:1203.4971. Bibcode:2012MNRAS.423.1503B. doi:10.1111/j.1365-2966.2012.20973.x. S2CID 53445367.
  7. "The atmosphere of hot-Jupiter exoplanet WASP-31b". 30 October 2014.
  8. Gibson, Neale P.; De Mooij, Ernst J W.; Evans, Thomas M.; Merritt, Stephanie; Nikolov, Nikolay; Sing, David K.; Watson, Chris (2019). "Revisiting the potassium feature of WASP-31b at high resolution". Monthly Notices of the Royal Astronomical Society. 482 (1): 606–615. arXiv:1810.03693. Bibcode:2019MNRAS.482..606G. doi:10.1093/mnras/sty2722.
  9. Chouqar, J.; Morales, M. L.; Daassou, A.; Jabiri, A.; Benkhaldoun, Z. (27 August 2018). "Modeling the Transmission Spectra of WASP-31b". Proceedings of the International Astronomical Union. 14 (S345): 383–385. doi:10.1017/S1743921319002953 – via Cambridge University Press.
  10. McGruder, Chima D.; López-Morales, Mercedes; Espinoza, Néstor; Rackham, Benjamin V.; Apai, Dániel; Jordán, Andrés; Osip, David J.; Alam, Munazza K.; Bixel, Alex; Fortney, Jonathan J.; Henry, Gregory W.; Kirk, James; Lewis, Nikole K.; Rodler, Florian; Weaver, Ian C. (2020), "ACCESS: Confirmation of No Potassium in the Atmosphere of WASP-31b", The Astronomical Journal, 160 (5): 230, arXiv:2009.08472, Bibcode:2020AJ....160..230M, doi:10.3847/1538-3881/abb806, S2CID 221802525
  11. Braam, Marrick; Van Der Tak, Floris F. S.; Chubb, Katy L.; Min, Michiel (2021), "Evidence for chromium hydride in the atmosphere of hot Jupiter WASP-31b", Astronomy & Astrophysics, 646: A17, arXiv:2011.10558, Bibcode:2021A&A...646A..17B, doi:10.1051/0004-6361/202039509, S2CID 227118876

External links

Media related to WASP-31b at Wikimedia Commons

Constellation of Crater
Stars
Bayer
Variable
HR
HD
Other
Exoplanets
Galaxies
NGC
Other
Galaxy clusters
Astronomical events
Category
Portals: Categories: