Misplaced Pages

Wave equation analysis

Article snapshot taken from Wikipedia with creative commons attribution-sharealike license. Give it a read and then ask your questions in the chat. We can research this topic together.

Wave equation analysis is a numerical method of analysis for the behavior of driven foundation piles. It predicts the pile capacity versus blow count relationship (bearing graph) and pile driving stress. The model mathematically represents the pile driving hammer and all its accessories (ram, cap, and cap block), as well as the pile, as a series of lumped masses and springs in a one-dimensional analysis. The soil response for each pile segment is modeled as viscoelastic-plastic. The method was first developed in the 1950s by E.A. Smith of the Raymond Pile Driving Company.

Wave equation analysis of piles has seen many improvements since the 1950s such as including a thermodynamic diesel hammer model and residual stress. Commercial software packages (such as AllWave-PDP and GRLWEAP) are now available to perform the analysis.

One of the principal uses of this method is the performance of a driveability analysis to select the parameters for safe pile installation, including recommendations on cushion stiffness, hammer stroke and other driving system parameters that optimize blow counts and pile stresses during pile driving. For example, when a soft or hard layer causes excessive stresses or unacceptable blow counts.

References

  • Smith, E.A.L. (1960) Pile-Driving Analysis by the Wave Equation. Journal of the Engineering Mechanics Division, Proceedings of the American Society of Civil Engineers. Vol. 86, No. EM 4, August.

External links

Geotechnical engineering
Offshore geotechnical engineering
Investigation
and
instrumentation
Field (in situ)
Laboratory
testing
  • Soil classification
  • Atterberg limits
  • California bearing ratio
  • Direct shear test
  • Hydrometer
  • Proctor compaction test
  • R-value
  • Sieve analysis
  • Triaxial shear test
  • Oedometer test
  • Hydraulic conductivity tests
  • Water content tests
  • Soil
    Types
    Properties
    Structures
    (Interaction)
    Natural features
    Earthworks
    Foundations
    Mechanics
    Forces
    Phenomena/
    problems
    Numerical analysis
    software
    Related fields
    Categories: