Misplaced Pages

Moon: Difference between revisions

Article snapshot taken from Wikipedia with creative commons attribution-sharealike license. Give it a read and then ask your questions in the chat. We can research this topic together.
Browse history interactively← Previous editContent deleted Content addedVisualWikitext
Revision as of 03:36, 9 December 2006 view source70.59.31.109 (talk)No edit summary← Previous edit Latest revision as of 20:04, 7 January 2025 view source Nsae Comp (talk | contribs)Extended confirmed users16,836 edits Surface conditionsTags: Mobile edit Mobile web edit Advanced mobile edit 
Line 1: Line 1:
{{Short description|Natural satellite orbiting Earth}}
{{dablink|This article is about Earth's moon. For moons in general, see ]. For other uses, see ].}}
{{About|Earth's natural satellite|moons in general|Natural satellite|other uses}}
{{Planet Infobox/Moon}}
{{Pp-move}}
The '''Moon''' is ]'s only ]. It has no formal ] name other than "the Moon", although it is occasionally called ''']''' ({{lang-la|]}}), or ''']''' ({{lang-gr|''moon''}}), to distinguish it from the generic term "moon" (referring to any of the various natural satellites of other planets). Its symbol is a ] (☽). The related adjective for the Moon is ''lunar'' (again from the Latin root), but this is not found in combination with the forms ''seleno-/-selene'' (again from the Greek) and ''-cynthion'' (from the ] ]).
{{Protection padlock|small=yes}}
{{Featured article}}
{{Use American English|date=March 2024}}
{{Use mdy dates|date=August 2024}}
{{CS1 config|mode=cs1}}
{{Infobox planet
| name = Moon
| apsis = gee
| symbol = ] or ]
| image = FullMoon2010.jpg
| image_alt = Full Moon in the darkness of the night sky. It is patterned with a mix of light-tone regions and darker, irregular blotches, and scattered with varied circles surrounded by out-thrown rays of bright ejecta: impact craters.
| caption = ], ] at top
| background = #ddd
| mpc_name = Earth I
| alt_names = {{hlist |] |{{nowrap|] (poetic)}}|{{nowrap|] (poetic)}}}}
| adjectives = {{hlist |] |{{nowrap|] (poetic)}}|{{nowrap|] (poetic)}}|{{nowrap|] (poetic)}}}}
| periapsis = {{gaps |362 |600}}&nbsp;km<br />({{gaps |356 |400}}–{{gaps |370 |400}}&nbsp;km)
| apoapsis = {{gaps |405 |400}}&nbsp;km<br />({{gaps |404 |000}}–{{gaps |406 |700}}&nbsp;km)
| semimajor = {{val |384399 |u=km}}{{nbsp |2}}({{val |1.28 |u=]}}, {{val |0.00257 |u=]}})<ref name="W06"/>
| eccentricity = {{val |0.0549}}<ref name="W06"/>
| period = {{longitem |{{val |27.321661 |ul=d}}<br />(27&thinsp;d 7&thinsp;h 43&thinsp;min 11.5&thinsp;s<ref name="W06"/>)}}
| synodic_period = {{longitem |{{val |29.530589 |u=d}}<br />(29&thinsp;d 12&thinsp;h 44&thinsp;min 2.9&thinsp;s)}}
| avg_speed = {{val |1.022 |ul=km/s}}
| inclination = 5.145° to the ]<ref name="Lang2011"/>{{efn|name=inclination|Between 18.29° and 28.58° to Earth's ]<ref name="W06"/><!--Wieczorek et al. 2006; 18.29° when the longitude of the Moon's ascending node is 180°, 28.58° when it is 0°-->}}
| asc_node = {{longitem |] by one revolution in 18.61&nbsp;years}}
| arg_peri = {{longitem |] by one<br /> revolution in 8.85&nbsp;years}}
| satellite_of = ]{{efn|name=near-Earth asteroids}}<ref name="Morais2002"/>
| flattening = {{val |0.0012}}<ref name="NSSDC"/>
| equatorial_radius = {{val |1738.1 |u=km}}{{nbsp |2}}<br />(0.2725 of Earth's)<ref name="NSSDC"/>
| polar_radius = {{val |1736.0 |u=km}}{{nbsp |2}}<br />(0.2731 of Earth's)<ref name="NSSDC"/>
| mean_radius = {{val |1737.4 |u=km}}{{nbsp |2}}<br />(0.2727 of Earth's)<ref name="W06"/><ref name="NSSDC"/><ref>{{cite journal |last1=Smith |first1=David E. |last2=Zuber |first2=Maria T. |last3=Neumann |first3=Gregory A. |last4=Lemoine |first4=Frank G. |title=Topography of the Moon from the Clementine lidar |journal=] |date=January 1, 1997 |volume=102 |issue=E1 |page=1601 |doi=10.1029/96JE02940 |bibcode=1997JGR...102.1591S |hdl=2060/19980018849 |s2cid=17475023 |hdl-access=free |issn = 0148-0227 }}</ref>
| circumference = {{val |10921 |u=km}}{{nbsp |2}}(]ial)
| surface_area = {{val |3.793 |e=7 |u=km2}}{{nbsp |2}}<br />(0.074 of Earth's)
| volume = {{val |2.1958 |e=10 |u=km3}}{{nbsp |2}}<br />(0.02 of Earth's)<ref name="NSSDC"/>
| mass = {{val |7.346 |e=22 |u=kg}}{{nbsp |2}}<br />({{val |0.0123}} of Earth's)<ref name="W06"/><ref name="NSSDC"/><ref>{{cite book |title=Top 10 of Everything |first=Paul |last=Terry |publisher=Octopus Publishing Group Ltd |year=2013 |isbn=978-0-600-62887-3 |page=226}}</ref>
| density = {{val |3.344 |ul=g/cm3}}<ref name="W06"/><ref name="NSSDC"/><br />{{val |0.606}} × Earth
| surface_grav = {{cvt|1.622|m/s2|ft/s2}}<ref name="NSSDC"/><br>{{cvt|1.622|m/s2|g0|disp=out|lk=out}}
| moment_of_inertia_factor = {{val |0.3929 |0.0009}}<ref name="Williams1996" />
| escape_velocity = {{convert|2.38|km/s|km/h mph|comma=gaps|abbr=on|disp=x|<br />(|)}}
| rotation = {{longitem |{{val |29.530589 |u=d}}<br />(29&thinsp;d 12&thinsp;h 44&thinsp;min 2.9&thinsp;s; ]) (])}}
| sidereal_day = {{val |27.321661 |u=d}}{{nbsp |2}}(spin-orbit locked)
<!-- Wieczorek et al. 2006 -->| rot_velocity = {{nowrap |4.627 m/s}}
| axial_tilt = {{ublist |1.5424° to ]<ref name="SolarViews" /><!--1.533° according to Conn 2007-->|6.687° to ]<ref name="Lang2011"/><!--6.4° according to Grego; <ref name="Grego2005">Grego, Peter, , Springer, 2005</ref> 6.6783° according to Conn.<ref name="Conn2007">Conn, David (2007); ''Lednorf's Dilemma'', AuthorHouse, Bloomington (IN)</ref>-->|24° to Earth's equator&thinsp;<ref>{{cite journal |last=Makemson |first=Maud W. |year=1971 |title=Determination of selenographic positions |journal=The Moon |volume=2 |issue=3 |pages=293–308 |doi=10.1007/BF00561882 |bibcode=1971Moon....2..293M |s2cid=119603394 }}</ref>}}
| epoch = ]
| right_asc_north_pole = {{plainlist |
* {{RA|17|47|26}}
* 266.86°<ref name="report">{{cite journal |doi=10.1007/s10569-010-9320-4 |title=Report of the IAU Working Group on Cartographic Coordinates and Rotational Elements: 2009 |url=http://astropedia.astrogeology.usgs.gov/alfresco/d/d/workspace/SpacesStore/28fd9e81-1964-44d6-a58b-fbbf61e64e15/WGCCRE2009reprint.pdf |journal=Celestial Mechanics and Dynamical Astronomy |volume=109 |issue=2 |pages=101–135 |year=2010 |last1=Archinal |first1=Brent A. |last2=A'Hearn |first2=Michael F. |last3=Bowell |first3=Edward G. |last4=Conrad |first4=Albert R. |last5=Consolmagno |first5=Guy J. |last6=Courtin |first6=Régis |last7=Fukushima |first7=Toshio |last8=Hestroffer |first8=Daniel |last9=Hilton |first9=James L. |last10=Krasinsky |first10=George A. |last11=Neumann |first11=Gregory A. |last12=Oberst |first12=Jürgen |last13=Seidelmann |first13=P. Kenneth |last14=Stooke |first14=Philip J. |last15=Tholen |first15=David J. |last16=Thomas |first16=Paul C. |last17=Williams |first17=Iwan P. |bibcode=2011CeMDA.109..101A |s2cid=189842666 |access-date=September 24, 2018 |archive-url=https://web.archive.org/web/20160304065344/http://astropedia.astrogeology.usgs.gov/alfresco/d/d/workspace/SpacesStore/28fd9e81-1964-44d6-a58b-fbbf61e64e15/WGCCRE2009reprint.pdf |archive-date=March 4, 2016 |url-status=dead }} also available {{cite web |title=via usgs.gov |url=http://astropedia.astrogeology.usgs.gov/download/Docs/WGCCRE/WGCCRE2009reprint.pdf |access-date=September 26, 2018 |archive-date=April 27, 2019 |archive-url=https://web.archive.org/web/20190427144731/https://astropedia.astrogeology.usgs.gov/download/Docs/WGCCRE/WGCCRE2009reprint.pdf |url-status=live }}</ref>
}}
| declination = 65.64°<ref name="report" />
| albedo = 0.136<ref name="Saari"/>
| temp_name1 = Equator
| min_temp_1 = 100&nbsp;]<ref name=Bugby_et_al_2010/>
| mean_temp_1 = 250&nbsp;K
| max_temp_1 = 390&nbsp;K<ref name=Bugby_et_al_2010>{{cite conference | title=Two-Phase Thermal Switching System for a Small, Extended Duration Lunar Surface Science Platform | first1=D. C. | last1=Bugby | first2=J. T. | last2=Farmer | first3=B. F. | last3=O’Connor | first4=M. J. | last4=Wirzburger | first5=E. D. Abel | last5=C. J. Stouffer | series=AIP Conference Proceedings | volume=1208 | pages=76–83 | date=January 2010 | doi=10.1063/1.3326291 | bibcode=2010AIPC.1208...76B | hdl=2060/20100009810 | hdl-access=free }}</ref>
| temp_name2 = 85°N&nbsp;
| min_temp_2 =
| mean_temp_2 = 150&nbsp;K
| max_temp_2 = 230&nbsp;K<ref name="Vasavada1999"/>
| surface_equivalent_dose_rate = {{convert |1.369 |mSv/d |μSv/h |disp=out}}<br />(during lunar daytime)<ref name="surface-radiation">{{Cite journal |vauthors=Zhang S, Wimmer-Schweingruber RF, Yu J, Wang C, Fu Q, Zou Y, Sun Y, Wang C, Hou D, Böttcher SI, Burmeister S |display-authors=6 |title=First measurements of the radiation dose on the lunar surface |journal=Science Advances |year=2020 |volume=6 |issue=39 |doi=10.1126/sciadv.aaz1334 |pmc=7518862 |pmid=32978156 |bibcode=2020SciA....6.1334Z |quote=We measured an average total absorbed dose rate in silicon of 13.2 ± 1 μGy/hour ... LND measured an average dose equivalent of 1369 μSv/day on the surface of the Moon}}</ref>
| surface_absorbed_dose_rate = 13.2 μGy/h<br />(during lunar ])<ref name="surface-radiation"/>
| magnitude = {{ublist |−2.5 to −12.9{{efn |name=maxval}} |−12.74{{nbsp |2}}(mean ])<ref name="NSSDC"/>}}
| abs_magnitude = 0.2<ref name="IMCCE">{{cite web | title=Encyclopedia - the brightest bodies | website=IMCCE | url=https://promenade.imcce.fr/en/pages1/101.html | access-date=June 1, 2023 | archive-date=March 21, 2023 | archive-url=https://web.archive.org/web/20230321023334/https://promenade.imcce.fr/en/pages1/101.html | url-status=live }}</ref>
| angular_size = 29.3 to 34.1 ]<ref name="NSSDC"/>{{efn |name=angular size}}
| atmosphere = trace
| atmosphere_ref = <ref name="L06"/>
| surface_pressure = {{ublist |10{{sup |−7}} ] (1 ]){{nbsp |2}}(day) |10{{sup |−10}} Pa (1 femtobar) {{nbsp |2}} <br />(night){{efn |name=pressure explanation}}}}
| atmosphere_composition = {{hlist |] |] |] |] |] |] |]}}
}}


The '''Moon''' is ]'s only ]. ]s at ] of {{cvt|384400|km|mi}}, about 30 times the diameter of Earth. ] between Earth and the Moon have ] the Moon's orbital period (]) with its rotation period (]) at 29.5 Earth days, causing the ] of the Moon to always face Earth. The Moon's gravitational pull—and, to a lesser extent, the ]'s—are the main drivers of Earth's ]s.
The average distance from the Earth to the Moon is 384,399&nbsp;]s (238,854&nbsp;mi), which is about 30 times the diameter of the Earth. At this distance, it takes sunlight reflected from the lunar surface approximately 1.3 seconds to reach Earth. The Moon's diameter is 3,474&nbsp;kilometres (2,159&nbsp;mi), which is about 3.7 times smaller than the Earth, making it the ]'s fifth largest moon, both by diameter and mass, ranking behind ], ], ], and ].


In ], the Moon is a ] or ]. Its mass is 1.2% that of the Earth, and its diameter is {{cvt|3474|km|mi}}, roughly one-quarter of Earth's (about as wide as the ]). Within the ], it is the ] satellite in relation to its ], the fifth largest and most massive moon overall, and larger and more massive than all known ]s.<ref name="Metzger2021"/> Its ] is about one sixth of Earth's, about half of that of ], and the second highest among all Solar System moons, after ]'s moon ]. The body of the Moon is ] and ], with no significant ], ], or ]. ] 4.51&nbsp;billion years ago, not long after ], out of the debris from ] between Earth and a hypothesized Mars-sized body called ].
The ]'s (]) ] was the first to reach the Moon with unmanned vehicles, or ]s: The first man-made object to escape Earth's gravity and pass near the Moon was ] in 1959. The first man-made object to impact the lunar surface was ], also in 1959. The first photographs of the normally occluded ] of the Moon were made by ] in the same year. The first spacecraft to perform a successful lunar soft landing was ] in 1966. The first unmanned vehicle to orbit the Moon was ] in 1966.


The ] is covered in ] and marked by ], ]s, ], ], ]s and, mostly on the near side of the Moon, by dark ] ("seas"), which are plains of ]. These maria were formed when molten lava flowed into ancient impact basins. The Moon is, except when passing through ] during a ], always illuminated by the Sun, but from Earth the visible illumination shifts during its orbit, producing the ]s.<ref>{{cite web |title=Is the 'full moon' merely a fallacy? |website=] |date=February 28, 2004 |url=https://www.nbcnews.com/id/wbna4402294 |access-date=May 30, 2023 |language=en |archive-date=June 1, 2023 |archive-url=https://web.archive.org/web/20230601085529/https://www.nbcnews.com/id/wbna4402294 |url-status=live }}</ref> The Moon is the ] in Earth's ]. This is mainly due to its large ], while the ] of the lunar surface is comparable to that of ]. The apparent size is nearly the same as that of the Sun, allowing it to cover the Sun completely during a total ]. From Earth about 59% of the lunar surface is visible over time due to cyclical shifts in perspective (]), making parts of the far side of the Moon visible.
The ]' ] achieved the first (and only) manned missions to the Moon: The first manned mission to orbit the Moon was ] in 1968, and the first people to land and walk on the Moon came aboard ] in 1969. The unsuccessful ] was abandoned in 1974. The Moon is the only celestial body other than the Earth upon which human beings have walked.


The Moon has been an important source of inspiration and knowledge for humans, having been crucial to ], mythology, ], art, ], ], and ]. The ] were sent to the Moon, starting in 1959 with the flyby of the ]'s ] and the ] of ]. In 1966, the first ] (by ]) and ] (by ]) followed. On July 20, 1969, humans for the first time stepped on an extraterrestrial body, landing on the Moon at ] with the lander '']'' of the ]' ] mission. Five more crews were sent between then and 1972, each with two men landing on the surface. The longest stay was 75 hours by the ] crew. Since then, ] has continued robotically, and crewed missions are being ] beginning in the late 2020s.
On December 4, 2006, NASA announced plans for a ] on the Moon in order to prepare for a voyage to ]. Construction of the base is scheduled to take approximately five years, with the first preliminary missions beginning by 2020. If successful, this would be the first permanent structure on the lunar surface, as well as the Moon's first "]".


== Names and etymology ==
==The two sides of the Moon are made of cheese==
{{See also|Moon#Cultural representation}}
{{main|Near side of the Moon|Far side of the Moon}}
The Moon is in ], meaning that it keeps nearly the same face turned toward Earth at all times. Small variations resulting from the finite eccentricity of the lunar orbit, termed optical ], allow up to about 59% of the lunar surface to be visible from Earth. The side of the Moon that faces Earth is called the ], and the opposite side is called the far side. The far side should not be confused with the dark side, as the unilluminated hemisphere only corresponds to the far side during full moon. Spacecraft are cut off from direct radio communication with Earth when behind the Moon since electromagnetic waves propogate in straight lines (see ]).


The usual ] proper name for Earth's natural satellite is simply ''Moon'', with a capital M.<ref>{{cite web |url=http://www.iau.org/public_press/themes/naming/#spelling |title=Naming Astronomical Objects: Spelling of Names |publisher=] |access-date=April 6, 2020 |url-status=dead |archive-url=https://web.archive.org/web/20081216024716/http://www.iau.org/public_press/themes/naming/#spelling |archive-date=December 16, 2008 }}</ref><ref name="PN-FAQ" /> The noun ''moon'' is derived from ] {{lang|ang|mōna}}, which (like all its ] cognates) stems from ] ''*mēnōn'',<ref>{{cite book | first=Vladimir | last=Orel | year=2003 | url=https://archive.org/details/Orel-AHandbookOfGermanicEtymology/mode/2up/search/moon | title=A Handbook of Germanic Etymology | publisher=Brill | access-date=March 5, 2020 | archive-date=June 17, 2020 | archive-url=https://web.archive.org/web/20200617033731/https://archive.org/details/Orel-AHandbookOfGermanicEtymology/mode/2up/search/moon | url-status=live }}</ref> which in turn comes from ] ''*mēnsis'' 'month'<ref>{{cite web | first=Fernando | last=López-Menchero | url=https://indo-european.info/dictionary-translator/word.inc.php/ine/m%c4%93nsis | title=Late Proto-Indo-European Etymological Lexicon | date=May 22, 2020 | access-date=July 30, 2022 | archive-date=May 22, 2020 | archive-url=https://web.archive.org/web/20200522153418/https://indo-european.info/dictionary-translator/word.inc.php/ine/m%c4%93nsis | url-status=live }}</ref> (from earlier ''*mēnōt'', genitive ''*mēneses'') which may be related to the verb 'measure' (of time).<ref name="barnhart1995" />
The far side of the Moon was first photographed by the ] probe ] in ]. One distinguishing feature of the far side is its almost complete lack of '']'' (singular: ''mare''), which are the dark ]s. Only about 2% of the surface of the far side is covered by maria, compared to about 31% on the near side. The most likely explanation for this difference is related to a higher concentration of heat producing elements on the near-side hemisphere, as has been demonstrated by geochemical maps obtained from the ] gamma-ray spectrometer.<ref name="S06">{{cite journal | last = Charles Shearer and 15 coauthors | title = Thermal and magmatic evolution of the Moon | journal = Reviews in Mineralogy and Geochemistry | volume = 60 | pages = 365-518 | date = 2006 }}</ref><ref name="W2000">{{cite journal | last = Mark Wieczorek and Roger Phillips | date =2000 | title= The Procellarum KREEP Terrane: Implications for mare volcanism and lunar evolution | journal = J. Geophys. Res. | volume = 105 | pages = 20,417-420,430}}</ref><ref name="J2000">{{cite journal | title = Major lunar crustal terranes | last = Bradley. Jolliff, Jeffrey Gillis, Larry Haskin, Randy Korotev, and Mark Wieczorek | journal = J. Geophys. Res. | date = 2000 | pages = 4197-4216}}</ref><ref>{{cite web | url = http://www.psrd.hawaii.edu/Aug00/newMoon.html | title = A New Moon for the Twenty-First Century | last = G. Jeffrey Taylor | date = August 31, 2000}}</ref>


Occasionally, the name '''Luna''' {{IPAc-en|'|l|uː|n|ə}} is used in scientific writing<ref>E.g.: {{cite book | first=James A. | last=Hall III | date=2016 | title=Moons of the Solar System | publisher=Springer International | isbn=978-3-319-20636-3 }}</ref> and especially in science fiction to distinguish the Earth's moon from others, while in poetry "Luna" has been used to denote personification of the Moon.<ref>{{OED|Luna}}</ref> '''Cynthia''' {{IPAc-en|ˈ|s|ɪ|n|θ|i|ə}} is another poetic name, though rare, for the Moon personified as a goddess,<ref>{{OED|Cynthia}}</ref> while ''']''' {{IPAc-en|s|ə|ˈ|l|iː|n|iː}} (literally 'Moon') is the Greek goddess of the Moon.
{| border="0" cellpadding="2"
|- align="center"
!valign="bottom"| 90° W
! Near side
!valign="bottom"|
|- align="center"
| ]
| ]
|- align="center"
| ]
| ]
|- align="center"
! 90° E
! Far side
|}


The English adjective pertaining to the Moon is ''lunar'', derived from the Latin word for the Moon, {{lang|la|lūna}}. ''Selenian'' {{IPAc-en|s|ə|l|iː|n|i|ə|n}}<ref>{{MW|selenian}}</ref> is an adjective used to describe the Moon as a world, rather than as a celestial object,<ref>{{OED|selenian}}</ref> but its use is rare. It is derived from {{lang|el|σελήνη}} {{tlit|el|selēnē}}, the Greek word for the Moon, and its cognate ''selenic'' was originally a rare synonym<ref>{{OED|selenic}}</ref> but now nearly always refers to the chemical element ].<ref>{{MW|selenic}}</ref> The element name ''selenium'' and the prefix ''seleno-'' (as in '']'', the study of the physical features of the Moon) come from this Greek word.<ref name="oed" /><ref>{{LSJ|selh/nh |σελήνη |ref}}.</ref>
==Orbit and relationship to Earth==
{{main|Orbit of the Moon}}
{{see also|Libration|Tidal acceleration}}
The Moon makes a complete orbit about the Earth with respect to the fixed stars (its ]) approximately once every 27.3 days. However, since the Earth is moving in its orbit about the Sun at the same time, it takes slightly longer for the Moon to show its same ] to Earth, which is about 29.5 days (its ]). Unlike most satellites of other planets, the Moon orbits near the ] and not the Earth's ].


], the Greek goddess of the wilderness and the hunt, came to also be identified as the goddess of the Moon (]) and was sometimes called ], after her birthplace on ].<ref name="Pannen2010">{{cite book |first=Imke | last=Pannen |title=When the Bad Bleeds: Mantic Elements in English Renaissance Revenge Tragedy |url=https://books.google.com/books?id=37CPbHwqPjwC&pg=PA96 |year=2010 |publisher=V&R unipress GmbH |isbn=978-3-89971-640-5 |pages=96– |url-status=live |archive-url=https://web.archive.org/web/20160904223627/https://books.google.com/books?id=37CPbHwqPjwC&pg=PA96 |archive-date=September 4, 2016}}</ref> Her Roman equivalent is ]. The names Luna, Cynthia, and Selene are reflected in technical terms for ]s such as ''apolune'', ''pericynthion'' and ''selenocentric''.
The Earth and Moon have many physical effects upon one another, including the ]s. Most of the tidal effects seen on the Earth are caused by the Moon's gravitational pull, with the ] making only a small contribution. Tidal effects result in an increase of the mean Earth-Moon distance, over long periods of time, of about 4 meters per century. As a result of the ], the increasing semimajor axis of the Moon is accompanied by a gradual slowing of the Earth's rotation.


The ] for the Moon is a crescent\decrescent, ]\], for example in ''M''<sub>☾</sub> 'lunar mass' (also ''M<sub>L</sub>'').
The Earth-Moon system is sometimes considered to be a ] rather than a planet-moon system. This is due to the exceptionally large size of the Moon relative to its host planet; the Moon is one-fourth the diameter of Earth and 1/81 the mass. However, this definition is citicized by some since the common center of mass of the system (the ]) is located beneath the surface of the Earth. The surface of the Moon is less than 1/10th that of the Earth, and only about one quarter the size of Earth's land area (about as large as ], ], and the ] combined).


==Natural history==
In 1997, the asteroid ] was found to have an unusual Earth-associated ], and has been dubbed by some to be a second moon of Earth. It is not considered a moon by astronomers, however, and its orbit is not stable in the long term.<ref>{{cite web|url =http://www.captaincosmos.clara.co.uk/cruithne.html| title =No, it's not our "second" moon!!!| accessdate =2006-10-10|language =English}}</ref> Three other ]s (NEAs), (54509) 2000 PH5, (85770) 1998 UP1 and ], which exist in orbits similar to Cruithne's, have since been discovered.
===Lunar geologic timescale===
]
{{Main|Lunar geologic timescale}}
{{Timeline Lunar Geological Timescale}}


The lunar geological periods are named after their characteristic features, from most ]s outside the dark ], to the mare and later craters, and finally the young, still bright and therefore readily visible craters with ]s like ] or ].
== Origin and geologic evolution==
{{main|Giant impact hypothesis|Geology of the Moon}}


===Formation===
Early speculation proposed that the Moon broke off from the Earth's crust because of ]s, leaving an ocean basin (presumed to be the Pacific Ocean) behind as a scar. This '''fission''' concept requires too great an initial spin of the Earth, and besides, the presumption of a Pacific origin is not compatible with the relatively young age of the oceanic crust at this locale. Others speculated that the Moon formed elsewhere and was captured into Earth's orbit. However, the conditions required for this '''capture''' mechanism to work (such as an extended atmosphere of the Earth for dissipating energy) are not too probable. The '''coformation''' hypothesis posits that the Earth and the Moon formed together at the same time from the primordial ]. In this theory, the Moon forms from material surrounding the proto-Earth, similar to the way in which the planets formed around the Sun. Some suggest that this hypothesis fails to adequately explain the depletion of metallic iron in the Moon. A major deficiency with all of these hypotheses is that they cannot easily account for the high angular momentum of the Earth-Moon system.
{{Main|Origin of the Moon |Giant-impact hypothesis|Circumplanetary disk}}
] lacks the near side's characteristic large dark areas of maria. The ] might have looked like this early in the Moon's history.<ref name="The Planetary Society 2022">{{cite web | title=The two-faced Moon | website=The Planetary Society | date=March 14, 2022 | url=https://www.planetary.org/articles/the-two-faced-moon | access-date=April 28, 2023 | archive-date=April 28, 2023 | archive-url=https://web.archive.org/web/20230428213253/https://www.planetary.org/articles/the-two-faced-moon | url-status=live }}</ref><ref name="explanet.info">{{cite web | website=explanet.info | url=https://explanet.info/Chapter04.htm | title=Exploring the Planets: Chapter 4. The Moon | access-date=April 28, 2023 | archive-date=April 28, 2023 | archive-url=https://web.archive.org/web/20230428213755/https://explanet.info/Chapter04.htm | url-status=live }}</ref>]]
] of lunar samples suggests the Moon formed around 50&nbsp;million years after the ].<ref>{{cite journal | title=Early Moon formation inferred from hafnium-tungsten systematics | last1=Thiemens | first1=Maxwell M. | last2=Sprung | first2=Peter | last3=Fonseca | first3=Raúl O. C. | last4=Leitzke | first4=Felipe P. | last5=Münker | first5=Carsten | journal=Nature Geoscience | volume=12 | issue=9 | pages=696–700 | date=July 2019 | doi=10.1038/s41561-019-0398-3 | pmid=39649009 | bibcode=2019NatGe..12..696T | s2cid=198997377 | pmc=7617097 }}</ref><ref name="Age">{{cite news |url=https://www.universetoday.com/143025/the-moon-is-older-than-scientists-thought/ |title=The Moon is older than scientists thought |website=Universe Today |access-date=August 3, 2019 |archive-date=August 3, 2019 |archive-url=https://web.archive.org/web/20190803125139/https://www.universetoday.com/143025/the-moon-is-older-than-scientists-thought/ |url-status=live }}</ref> Historically, several formation mechanisms have been proposed,<ref>{{cite journal |doi=10.1126/sciadv.1602365 |pmid=28097222 |pmc=5226643 |journal=Science Advances |date=2017 |volume=3 |issue=1 |title=Early formation of the Moon 4.51 billion years ago |last=Barboni |first=M. |author2=Boehnke, P. |author3=Keller, C.B. |author4=Kohl, I.E. |author5=Schoene, B. |author6=Young, E.D. |author7=McKeegan, K.D. |page=e1602365 |bibcode=2017SciA....3E2365B}}</ref> but none satisfactorily explains the features of the Earth–Moon system. A fission of the Moon from Earth's crust through ]<ref name="Binder" /> would require too great an initial rotation rate of Earth.<ref name="BotM" /> Gravitational capture of a pre-formed Moon<ref name="Mitler" /> depends on an unfeasibly extended ] to ] the energy of the passing Moon.<ref name="BotM" /> A co-formation of Earth and the Moon together in the ] ] does not explain the depletion of metals in the Moon.<ref name="BotM" /> None of these hypotheses can account for the high ] of the Earth–Moon system.<ref>{{cite journal |last=Stevenson |first=D.J. |title=Origin of the moon–The collision hypothesis |journal=] |date=1987 |volume=15 |issue=1 |pages=271–315 |bibcode=1987AREPS..15..271S |doi=10.1146/annurev.ea.15.050187.001415 |s2cid=53516498 }}</ref>


The prevailing theory is that the Earth–Moon system formed after a ] of a ]-sized body (named '']'') with the ]. The oblique impact blasted material into orbit about the Earth and the material accreted and formed the Moon<ref name="taylor1998" /><ref>{{cite web |url=http://news.nationalgeographic.com/2015/04/150416-asteroids-scars-moon-formation-space/ |title=Asteroids Bear Scars of Moon's Violent Formation |date=April 16, 2015 |url-status=dead |archive-url=https://web.archive.org/web/20161008160812/http://news.nationalgeographic.com/2015/04/150416-asteroids-scars-moon-formation-space/ |archive-date=October 8, 2016}}</ref> just beyond the Earth's ] of ~{{val|2.56|ul=Earth radius}}.<ref>{{cite journal | title=Scaling in global tidal dissipation of the Earth-Moon system | last=van Putten | first=Maurice H. P. M. | journal=New Astronomy | volume=54 | pages=115–121 | date=July 2017 | doi=10.1016/j.newast.2017.01.012 | arxiv=1609.07474 | bibcode=2017NewA...54..115V | s2cid=119285032 }}</ref>
Today, the '''giant impact hypothesis''' for forming the Earth-Moon system is widely accepted by the scientific community. In this theory, the impact of a Mars-sized body (which has been referred to as ] or ]) into the proto-Earth is postulated to have put enough material into circumterrestrial orbit to form the Moon. Given that planetary bodies are believed to have formed by the hierarchical accretion of smaller to larger sized bodies, it is now recognized that giant impact events such as this should be expected to have occurred for some planets. Computer simulations modeling this impact can account for the angular momentum of the Earth-Moon system, as well as the small size of the lunar core.<ref>{{cite journal | last = R. Canup and E. Asphaug | title = Origin of the Moon in a giant impact near the end of the Earth's formation | journal = Nature | volume = 412 | pages = 708-712 | date = 2001 }}</ref> Unresolved questions concerning this theory are (1) the relative sizes of the proto-Earth and impactor, and (2) whether the material that makes up the Moon was derived principally from the proto-Earth or impactor.


Giant impacts are thought to have been common in the early Solar System. Computer simulations of giant impacts have produced results that are consistent with the mass of the lunar core and the angular momentum of the Earth–Moon system. These simulations show that most of the Moon derived from the impactor, rather than the proto-Earth.<ref>{{cite journal |last=Canup |first=R. |author1-link=Robin Canup |author2=Asphaug, E. |title=Origin of the Moon in a giant impact near the end of Earth's formation |journal=] |volume=412 |pages=708–712 |date=2001 |doi=10.1038/35089010 |pmid=11507633 |issue=6848 |bibcode=2001Natur.412..708C|s2cid=4413525 }}</ref> However, models from 2007 and later suggest a larger fraction of the Moon derived from the proto-Earth.<ref>{{cite magazine |url=http://news.nationalgeographic.com/news/2007/12/071219-moon-collision.html |title=Earth-Asteroid Collision Formed Moon Later Than Thought |magazine=] |date=October 28, 2010 |access-date=May 7, 2012 |url-status=dead |archive-url=https://web.archive.org/web/20090418171528/http://news.nationalgeographic.com/news/2007/12/071219-moon-collision.html |archive-date=April 18, 2009}}</ref><ref>{{cite journal |title=2008 Pellas-Ryder Award for Mathieu Touboul |journal=Meteoritics and Planetary Science |volume=43 |issue=S7 |pages=A11–A12 |date=2008 |url=http://digitalcommons.arizona.edu/objectviewer?o=uadc://azu_maps/Volume43/NumberSupplement/Touboul.pdf |bibcode=2008M&PS...43...11K |last1=Kleine |first1=Thorsten |doi=10.1111/j.1945-5100.2008.tb00709.x |s2cid=128609987 |access-date=April 8, 2020 |archive-url=https://web.archive.org/web/20180727164701/http://digitalcommons.arizona.edu/objectviewer?o=uadc%3A%2F%2Fazu_maps%2FVolume43%2FNumberSupplement%2FTouboul.pdf |archive-date=July 27, 2018 |url-status=dead }}</ref><ref>{{cite journal |doi=10.1038/nature06428 |title=Late formation and prolonged differentiation of the Moon inferred from W isotopes in lunar metals |date=2007 |last1=Touboul |first1=M. |last2=Kleine |first2=T. |last3=Bourdon |first3=B. |last4=Palme |first4=H. |last5=Wieler |first5=R. |journal=] |volume=450 |issue=7173 |pages=1206–1209 |pmid=18097403 |bibcode=2007Natur.450.1206T|s2cid=4416259 }}</ref><ref>{{cite magazine |url=http://news.nationalgeographic.com/2015/04/150408-moon-form-giant-impact-earth |title=Flying Oceans of Magma Help Demystify the Moon's Creation |magazine=] |date=April 8, 2015 |url-status=dead |archive-url=https://web.archive.org/web/20150409220422/http://news.nationalgeographic.com/2015/04/150408-moon-form-giant-impact-earth/ |archive-date=April 9, 2015}}</ref> Other bodies of the inner Solar System such as Mars and ] have, according to meteorites from them, very different oxygen and tungsten ] compositions compared to Earth. However, Earth and the Moon have nearly identical isotopic compositions. The isotopic equalization of the Earth-Moon system might be explained by the post-impact mixing of the vaporized material that formed the two,<ref name="Pahlevan2007" /> although this is debated.<ref>{{cite magazine |last=Nield |first=Ted |title=Moonwalk (summary of meeting at Meteoritical Society's 72nd Annual Meeting, Nancy, France) |magazine=] |volume=19 |page=8 |date=2009 |url=http://www.geolsoc.org.uk/gsl/geoscientist/geonews/page6072.html |url-status=dead |archive-url=https://web.archive.org/web/20120927034348/http://www.geolsoc.org.uk/gsl/geoscientist/geonews/page6072.html |archive-date=September 27, 2012}}</ref>
The formation of the Moon is believed to have occurred at 4.527&nbsp;± 0.01 billion years, which would imply that it formed only 30 to 50 million years after the origin of the solar system.<ref>{{cite journal| url=http://www.sciencemag.org/cgi/content/abstract/310/5754/1671| journal=Science| month=9 December| year=2005| volume=310| issue=5754| pages=1671 - 1674| id={{DOI|10.1126/science.1118842}}| title=Hf-W Chronometry of Lunar Metals and the Age and Early Differentiation of the Moon| first=Thorsten| last=Kleine| coauthors=Herbert Palme, Klaus Mezger, Alex N. Halliday}}</ref> The subsequent geologic evolution of the Moon was dominated principally by impact cratering, but also by mare volcanism. The ] is divided in time based on a few prominent impact events, such as Nectaris, Imbrium, Eratosthenes, and Copernicus. While not all of these impacts have been definitively dated (and some ages are still being debated), they are useful for assigning relative ages based on stratigraphic grounds.


The impact would have released enough energy to liquefy both the ejecta and the Earth's crust, forming a magma ocean. The liquefied ejecta could have then re-accreted into the Earth–Moon system.<ref name="Warren1985" /><ref>{{cite journal |last=Tonks |first=W. Brian |author2=Melosh, H. Jay |date=1993 |title=Magma ocean formation due to giant impacts |journal=] |volume=98 |issue=E3 |pages=5319–5333 |bibcode=1993JGR....98.5319T |doi=10.1029/92JE02726}}</ref> The newly formed Moon would have had ]; its depth is estimated from about {{Convert|500|km|4=-2|abbr=in}} to {{Convert|1737|km|4=0|abbr=in}}.<ref name="Warren1985" />
Most of the Moon's ] erupted during the Imbrian period, around 3 to 3.5 billion years ago. Nevertheless, some dated samples are as old as 4.2 billion years old<ref>{{cite journal | last = James Papike, Grahm Ryder, and Charles Shearer | title = Lunar Samples | journal = Reviews in Mineralogy and Geochemistry | volume = 36 | pages = 5.1-5.234 | date = 1998 }}</ref>, and the youngest eruptions, based on the method of ], are believed to have occurred only 1.2 billion years ago.<ref>{{cite journal | last = H. Hiesinger, J. W. Head, U. Wolf, R. Jaumanm, and G. Neukum | title = Ages and stratigraphy of mare basalts in Oceanus Procellarum, Mare Numbium, Mare Cognitum, and Mare Insularum | journal = J. Geophys. Res. | volume = 108 | pages = doi:10.1029/2002JE001985 | date = 2003 }}</ref> Recently, it has been suggested that a roughly 3 km diameter region of the lunar surface was modified by a gas release event about a million years ago.<ref>{{cite web |url =http://www.psrd.hawaii.edu/Nov06/MoonGas.html |last = G. Jeffrey Taylor |title = Recent Gas Escape from the Moon |date=2006}}</ref><ref>{{cite journal | last = P. H. Schultz, M. I. Staid, and C. M. Pieters |date = 2006 | title= Lunar activity from recent gas release | journal= Nature |volume = 444 |pages = 184-186}}</ref>

While the giant-impact theory explains many lines of evidence, some questions are still unresolved, most of which involve the Moon's composition.<ref>{{cite journal |journal=] |author=Daniel Clery |title=Impact Theory Gets Whacked |volume=342 |pages=183–185 |date=October 11, 2013 |doi=10.1126/science.342.6155.183 |bibcode=2013Sci...342..183C |issue=6155 |pmid=24115419}}</ref> Models that have the Moon acquiring a significant amount of the proto-earth are more difficult to reconcile with geochemical data for the isotopes of zirconium, oxygen, silicon, and other elements.<ref>{{cite journal | title=Zirconium isotope constraints on the composition of Theia and current Moon-forming theories | first1=W. | last1=Akram | first2=M. | last2=Schönbächler | journal=Earth and Planetary Science Letters | volume=449 | date=September 1, 2016 | pages=302–310 | doi=10.1016/j.epsl.2016.05.022 | bibcode=2016E&PSL.449..302A | doi-access=free | hdl=20.500.11850/117905 | hdl-access=free }}</ref> A study published in 2022, using high-resolution simulations (up to {{val|e=8}} particles), found that giant impacts can immediately place a satellite with similar mass and iron content to the Moon into orbit far outside Earth's ]. Even satellites that initially pass within the Roche limit can reliably and predictably survive, by being partially stripped and then torqued onto wider, stable orbits.<ref>{{cite journal |last1=Kegerreis |first1=J.A. |last2=Ruiz-Bonilla |first2=S. |last3=Eke |first3=V.R. |last4=Massey |first4=R.J. |last5=Sandnes |first5=T.D. |last6=Teodoro |first6=L.F.A. |display-authors=1 |date=October 4, 2022 |title=Immediate Origin of the Moon as a Post-impact Satellite |journal=The Astrophysical Journal Letters |volume=937 |issue=L40 |pages=L40 |doi=10.3847/2041-8213/ac8d96 |arxiv=2210.01814 |bibcode=2022ApJ...937L..40K |s2cid=249267497 |doi-access=free }}</ref>

On November 1, 2023, scientists reported that, according to computer simulations, remnants of Theia could still be present inside the Earth.<ref name="NYT-20231101">{{cite news |last=Chang |first=Kenneth |title=A 'Big Whack' Formed the Moon and Left Traces Deep in Earth, a Study Suggests - Two enormous blobs deep inside Earth could be remnants of the birth of the moon. |url=https://www.nytimes.com/2023/11/01/science/moon-formation-theia.html |date=November 1, 2023 |work=] |url-status=live |archive-url=https://archive.today/20231101232849/https://www.nytimes.com/2023/11/01/science/moon-formation-theia.html |archive-date=November 1, 2023 |access-date=November 2, 2023 }}</ref><ref name="NAT-20231101">{{cite journal |author=Yuan, Qian |display-authors=et al.|title=Moon-forming impactor as a source of Earth's basal mantle anomalies |url=https://www.nature.com/articles/s41586-023-06589-1 |date=November 1, 2023 |journal=] |volume=623 |issue=7985 |pages=95–99 |doi=10.1038/s41586-023-06589-1 |pmid=37914947 |bibcode=2023Natur.623...95Y |s2cid=264869152 |url-status=live |archive-url=https://archive.today/20231102061800/https://www.nature.com/articles/s41586-023-06589-1 |archive-date=November 2, 2023 |access-date=November 2, 2023 }}</ref>

===Natural development===
] around 4 billion years ago. At that time the Moon orbited the Earth at half its current distance, making it appear 2.8 times larger than it does today.<ref name="Lunar and Planetary Institute" />]]

The newly formed Moon settled into a much closer Earth orbit than it has today. Each body therefore appeared much larger in the sky of the other, ]s were more frequent, and ]s were stronger.<ref name="Lunar and Planetary Institute">{{cite web | title=Earth-Moon Dynamics | website=Lunar and Planetary Institute | url=https://www.lpi.usra.edu/exploration/training/illustrations/earthMoon/ | access-date=September 2, 2022 | archive-date=September 7, 2015 | archive-url=https://web.archive.org/web/20150907215806/https://www.lpi.usra.edu/exploration/training/illustrations/earthMoon/ | url-status=live }}</ref>
Due to ], the Moon's orbit around Earth has become significantly larger, with a longer period.<ref>{{cite journal
| title=Early evolution of the Earth-Moon system with a fast-spinning Earth
| last1=Wisdom | first1=Jack | last2=Tian | first2=ZhenLiang
| journal=Icarus | volume=256 | pages=138–146 | date=August 2015
| doi=10.1016/j.icarus.2015.02.025 | bibcode=2015Icar..256..138W }}</ref>

Following formation, the Moon has cooled and most of ] has been stripped.<ref name="John 2017">{{cite magazine | last=John | first=Tara | title=NASA: The Moon Once Had an Atmosphere That Faded Away | magazine=Time | date=October 9, 2017 | url=https://time.com/4974580/nasa-moon-had-atmosphere-volcanoes/ | access-date=May 16, 2023 | archive-date=May 14, 2023 | archive-url=https://web.archive.org/web/20230514100131/https://time.com/4974580/nasa-moon-had-atmosphere-volcanoes/ | url-status=live }}</ref> The ] has since been shaped by large ]s and many small ones, forming a landscape featuring ] of all ages.

The Moon was ] until 1.2&nbsp;billion years ago, which laid down the prominent ]. Most of the ] erupted during the ], 3.3–3.7&nbsp;billion years ago, though some are as young as 1.2&nbsp;billion years<ref name="Hiesinger" /> and some as old as 4.2&nbsp;billion years.<ref name="Papike" /> There are differing explanations for the eruption of mare basalts, particularly their uneven occurrence which mainly appear on the near-side. Causes of the distribution of the ] on the ] are also not well understood. Topological measurements show the near side crust is thinner than the far side. One possible scenario then is that large impacts on the near side may have made it easier for lava to flow onto the surface.<ref name="ESA Science & Technology 2006">{{cite web | title=Lunar Far Side Highlands | website=ESA Science & Technology | date=July 14, 2006 | url=https://sci.esa.int/web/smart-1/-/39791-lunar-far-side-highlands | access-date=September 2, 2022 | archive-date=September 2, 2022 | archive-url=https://web.archive.org/web/20220902221440/https://sci.esa.int/web/smart-1/-/39791-lunar-far-side-highlands | url-status=live }}</ref>


==Physical characteristics== ==Physical characteristics==
The Moon is a very slightly scalene ] due to tidal stretching, with its long axis displaced 30° from facing the Earth, due to gravitational anomalies from impact basins. Its shape is more elongated than current tidal forces can account for. This 'fossil bulge' indicates that the Moon solidified when it orbited at half its current distance to the Earth,<!--at ≈32 Earth radii, currently at 60.3--> and that it is now too cold for its shape to restore ] at its current orbital distance.<ref>{{cite journal | last1=Garrick-Bethell | first1=Ian | last2=Perera | first2=Viranga | last3=Nimmo | first3=Francis | last4=Zuber | first4=Maria T. | year=2014 | title=The tidal-rotational shape of the Moon and evidence for polar wander | url = https://escholarship.org/content/qt0012r6g6/qt0012r6g6.pdf?t=npc7m2 | journal=Nature | volume=512 | issue=7513 | pages=181–184 | doi=10.1038/nature13639 | pmid=25079322 | bibcode=2014Natur.512..181G | s2cid=4452886 | access-date=April 12, 2020 | archive-date=August 4, 2020 | archive-url=https://web.archive.org/web/20200804071339/https://escholarship.org/content/qt0012r6g6/qt0012r6g6.pdf?t=npc7m2 | url-status=live }}</ref>
{{main|Geology of the Moon}}

===Size and mass===
{{Further|List of natural satellites}}
], several having ]s and one, Titan, having a considerable atmosphere.]]
The Moon is by size and mass the fifth largest natural satellite of the Solar System, categorizable as one of its ]s, making it a satellite planet under the ].<ref name="Metzger2021">{{Citation |last1=Metzger |first1=Philip |author-link1=Philip T. Metzger |last2=Grundy |first2=Will |last3=Sykes |first3=Mark |last4=Stern |first4=Alan |last5=Bell |first5=James |last6=Detelich |first6=Charlene |last7=Runyon |first7=Kirby
|last8=Summers |first8=Michael |date=2021 |title=Moons are planets: Scientific usefulness versus cultural teleology in the taxonomy of planetary science |journal=] |volume=374 |page=114768 |doi=10.1016/j.icarus.2021.114768|arxiv=2110.15285 |bibcode=2022Icar..37414768M |s2cid=240071005 }}</ref> It is smaller than ] and considerably larger than the largest ] of the Solar System, ]. While the ] ] of the ] is larger relative to Pluto,{{efn|name=Moon vs. Charon}}<ref>{{cite web |url=http://www.planetary.org/explore/topics/pluto/ |title=Space Topics: Pluto and Charon |publisher=] |access-date=April 6, 2010 |url-status=dead |archive-url=https://web.archive.org/web/20120218223842/http://www.planetary.org/explore/topics/pluto/ |archive-date=February 18, 2012}}</ref> the Moon is the largest natural satellite of the Solar System relative to their ] planets.{{efn |There is no strong correlation between the sizes of planets and the sizes of their satellites. Larger planets tend to have more satellites, both large and small, than smaller planets.}}

The Moon's diameter is about 3,500&nbsp;km, more than a quarter of Earth's, with the face of the Moon comparable to the width of either ],<ref name="Australia">{{cite web|url=https://theconversation.com/how-big-is-the-moon-let-me-compare-118840|date=July 18, 2019|access-date=November 15, 2020|title=How big is the Moon?|first=Jonti | last=Horner|archive-date=November 7, 2020|archive-url=https://web.archive.org/web/20201107223707/http://theconversation.com/how-big-is-the-moon-let-me-compare-118840|url-status=live}}</ref> ] or the ] (which excludes ], etc.).<ref name="Dyches 2021 d923">{{cite web | last=Dyches | first=Preston | title=Five Things to Know about the Moon – NASA Solar System Exploration | website=NASA Solar System Exploration | date=July 28, 2021 | url=https://solarsystem.nasa.gov/news/1946/five-things-to-know-about-the-moon/ | access-date=September 24, 2023 | archive-date=July 18, 2023 | archive-url=https://web.archive.org/web/20230718090707/https://solarsystem.nasa.gov/news/1946/five-things-to-know-about-the-moon/ | url-status=live }}</ref> The whole surface area of the Moon is about 38 million square kilometers, comparable to ] and ] combined,<ref name="y857">{{cite web | last=Parks | first=Jake | title=Everything you need to know about the Moon | website=Astronomy Magazine | date=2023-09-07 | url=https://www.astronomy.com/observing/everything-you-need-to-know-about-the-moon/ | access-date=2024-09-09}}</ref> the combined ] ] having an ] of 37.7 million square kilometers.<ref name="f708">{{cite web | title=Global Island Explorer | website=rmgsc.cr.usgs.gov | url=https://rmgsc.cr.usgs.gov/gie/gie.shtml | access-date=2024-09-09}}</ref>

The Moon's mass is 1/81 of Earth's,<ref name="worldbook" /> being the second densest among the planetary moons, and having the second highest ], after ], at {{val |0.1654 |u=]}} and an escape velocity of {{convert|2.38|km/s|km/h mph|comma=gaps|abbr=on|disp=x| <small>(|)</small>}}.


===Structure=== ===Structure===
] {{Main|Internal structure of the Moon|Geology of the Moon}}
].]]
The Moon is a ] body, being composed of a geochemically distinct ], ], and ]. This structure and the compositional variations observed from orbit and among the samples are believed to have resulted from the ] of a ] about 4.5 billion years ago.
The Moon is a ] body that was initially in ] but has since departed from this condition.<ref>{{cite journal | title=Interpretation of lunar potential fields | first=Stanley Keith | last=Runcorn | date=March 31, 1977 | journal=Philosophical Transactions of the Royal Society of London. Series A, Mathematical and Physical Sciences | doi=10.1098/rsta.1977.0094 | bibcode=1977RSPTA.285..507R | volume=285 | issue=1327 | pages=507–516 | s2cid=124703189 }}</ref> It has a ] distinct ], ], and ]. The Moon has a solid iron-rich inner core with a radius possibly as small as {{convert|240|km}} and a fluid outer core primarily made of liquid iron with a radius of roughly {{convert|300|km}}. Around the core is a partially molten boundary layer with a radius of about {{convert|500|km}}.<ref>{{cite web |last1=Brown |first1=D. |last2=Anderson |first2=J. |website=NASA |url=http://www.nasa.gov/topics/moonmars/features/lunar_core.html |title=NASA Research Team Reveals Moon Has Earth-Like Core |date=January 6, 2011 |url-status=live |archive-url=https://web.archive.org/web/20120111112210/http://www.nasa.gov/topics/moonmars/features/lunar_core.html |archive-date=January 11, 2012 }}</ref><ref name="Weber2011">{{cite journal |last1=Weber |first1=R.C. |last2=Lin |first2=P.-Y. |last3=Garnero |first3=E.J. |last4=Williams |first4=Q. |last5=Lognonne |first5=P. |title=Seismic Detection of the Lunar Core |journal=Science |volume=331 |issue=6015 |date=January 21, 2011 |pages=309–312 |url=http://www.earth.northwestern.edu/people/seth/351/lunarcore.2011.pdf |doi=10.1126/science.1199375 |pmid=21212323 |url-status=dead |archive-url=https://web.archive.org/web/20151015035756/http://www.earth.northwestern.edu/people/seth/351/lunarcore.2011.pdf |archive-date=October 15, 2015 |bibcode=2011Sci...331..309W|s2cid=206530647 |access-date= April 10, 2017}}</ref> This structure is thought to have developed through the ] of a global magma ocean shortly after the Moon's formation 4.5&nbsp;billion years ago.<ref>{{cite journal |doi=10.1038/ngeo417 |title=Timing of crystallization of the lunar magma ocean constrained by the oldest zircon |date=2009 |last1=Nemchin |first1=A. |last2=Timms |first2=N. |last3=Pidgeon |first3=R. |last4=Geisler |first4=T. |last5=Reddy |first5=S. |last6=Meyer |first6=C. |journal=] |volume=2 |issue=2 |pages=133–136 |bibcode=2009NatGe...2..133N |hdl=20.500.11937/44375|hdl-access=free }}</ref>


Crystallization of this magma ocean would have created a ] mantle from the ] and sinking of the minerals ], ], and ]; after about three-quarters of the magma ocean had crystallized, lower-density ] minerals could form and float into a crust atop.<ref name="S06" /> The final liquids to crystallize would have been initially sandwiched between the crust and mantle, with a high abundance of ] and heat-producing elements.<ref name="W06" /> Consistent with this perspective, geochemical mapping made from orbit suggests a crust of mostly ].<ref name="L06" /> The ] samples of the flood lavas that erupted onto the surface from partial melting in the mantle confirm the mafic mantle composition, which is more iron-rich than that of Earth.<ref name="W06" /> The crust is on average about {{convert|50|km}} thick.<ref name="W06" />
A large amount of energy would have been liberated during both the giant impact event that formed the Earth-Moon system and the reaccretion of material in Earth orbit. It is widely believed that this energy would have been sufficient to melt a large portion of the outer portion of the Moon, with depths of this ] estimated to be between about 500 km to the entire radius of the Moon.<ref name="S06"/> Fractional crystallization of this magma would have led to a mantle composed largely of the minerals ], ], and ], and after about three-quarters of crystallization was complete, the mineral ] would have precipated and floated to the surface because of its low density. Estimates for the average thickness of the crust are about 50 km, and both lunar samples and geochemical mapping from orbit are consistent with the crust being predominantly anorthositic in composition.<ref name="J2000"/><ref name="W06">{{cite journal | last = Mark Wieczorek and 15 coauthors | title = The constitution and structure of the lunar interior | journal = Reviews in Mineralogy and Geochemistry | volume = 60 | pages = 221-364 | date = 2006 }}</ref><ref name="L06">{{cite journal | last =P. Lucey and 12 coauthors |title = Understanding the lunar surface and space-Moon interactions | journal = Reviews in Mineralogy and Geochemistry | volume = 60 | pages = 83-219 | date = 2006}}</ref>. The final liquids to crystallize from the magma ocean would have been initially sandwiched between the crust and mantle, and would have contained a high abundance of incompatible and heat-producing elements. This geochemical component is referred to by the acronym ], for ] (K), ] (REE), and ] (P). KREEP appears to be concentrated within the ], which is a small geologic province that encompasses most of ] and ] on the near side of the Moon.


The Moon is the second-densest satellite in the Solar System, after ].<ref name="Schubert2004" /> However, the inner core of the Moon is small, with a radius of about {{convert|350|km}} or less,<ref name="W06" /> around 20% of the radius of the Moon. Its composition is not well understood but is probably metallic iron alloyed with a small amount of sulfur and nickel; analyzes of the Moon's time-variable rotation suggest that it is at least partly molten.<ref>{{cite journal |last1=Williams |first1=J.G. |last2=Turyshev |first2=S.G. |last3=Boggs |first3=D.H. |last4=Ratcliff |first4=J.T. |title=Lunar laser ranging science: Gravitational physics and lunar interior and geodesy |journal=] |date=2006 |volume=37 |issue=1 |pages=67–71 |bibcode=2006AdSpR..37...67W |doi=10.1016/j.asr.2005.05.013 |arxiv=gr-qc/0412049|s2cid=14801321 }}</ref> The pressure at the lunar core is estimated to be {{cvt|5|GPa|atm}}.<ref>{{cite journal | title=The Case Against an Early Lunar Dynamo Powered by Core Convection | last1=Evans | first1=Alexander J. | last2=Tikoo | first2=Sonia M. | first3=Andrews-Hanna | last3=Jeffrey C. | journal=Geophysical Research Letters | date=January 2018 | volume=45 | issue=1 | pages=98–107 | doi=10.1002/2017GL075441 | bibcode=2018GeoRL..45...98E | doi-access=free }}</ref>
In terms of elements, the lunar crust is composed primarily of ], ], ], ], ], and ]. Important minor and trace elements include ], ], ], potassium, and ]. A complete global mapping of the Moon for the abundance of the major and minor elements has not yet been performed. However, some spacecraft have done so for portions of the Moon, or for certain elements. In particular, a gamma-ray spectrometer onboard the spacecraft ] has determined near-global abundances of iron, calcium, aluminium, magnesium, titanium, potassium, thorium, uranium, and ]. The Clementine spacecraft has obtained near-global abundances for iron and titanium, but at a much higher spatial resolution.


=== Gravitational field ===
The Moon has a mean density of 3,346.4 kg/m³, making it the second densest moon in the Solar System after ]. Nevertheless, several lines of evidence (which include the Moon's mean density, ], rotation, and magnetic induction) imply that the lunar core is small, with a radius of about 350 km.<ref name="W06"/> The radius of the lunar core is only about 20% its surface radius, in contrast to most other terrestrial bodies that have a core radius close to 50% of their size. The composition of the lunar core is not well constrained, but most believe that it is composed of metallic iron with a small amount of ], though a dense titanium-rich silicate magma is also permissible.
] jumping on the Moon, illustrating that the ] of the Moon is approximately 1/6 of Earth's. The jumping height is limited by the EVA space suit's weight on the Moon of about {{cvt|13.6|kg|lbs}} and by the suit's pressurization resisting the bending of the suit, as needed for jumping.<ref name="Kluger 2018 z081">{{cite magazine | last=Kluger | first=Jeffrey | title=How Neil Armstrong's Moon Spacesuit Was Preserved for Centuries to Come | magazine=Time | date=October 12, 2018 | url=https://time.com/5422609/armstrong-spacesuit-smithsonian/ | access-date=November 29, 2023 | archive-date=December 3, 2023 | archive-url=https://web.archive.org/web/20231203061321/https://time.com/5422609/armstrong-spacesuit-smithsonian/ | url-status=live }}</ref><ref name="Nast 2013 v237">{{cite magazine | title=How Do You Pick Up Something on the Moon? | magazine=WIRED | date=December 9, 2013 | url=https://www.wired.com/2013/12/how-do-you-pick-up-something-on-the-moon/ | access-date=November 29, 2023 | archive-date=December 3, 2023 | archive-url=https://web.archive.org/web/20231203061321/https://www.wired.com/2013/12/how-do-you-pick-up-something-on-the-moon/ | url-status=live }}</ref>]]


On average the Moon's ] is {{val|1.62|ul=m/s2}}<ref name="NSSDC" /> ({{val|0.1654|u=]}}; {{val|5.318|ul=ft/s2}}), about half of the surface gravity of ] and about a sixth of Earth's.
===Landscape===
].]]
] impact crater.]]
When observed with Earth based telescopes, the Moon can be seen to have some 30,000 ]s having a ] of at least 1&nbsp;km, but close up observation from lunar orbit reveals a multitude of ever smaller craters. Most are hundreds of millions or billions of years old, and the lack of an atmosphere, weather and recent geological processes ensures that many of them have remained relatively well preserved in comparison to their terrestrial counterparts. In many places, it is indeed impossible to form a crater without obliterating portions of another. The largest crater on the Moon, which also has the distinction of being the largest known crater in the ], is the ]. This impact basin is located on the ], between the South Pole and equator and is some 2,240&nbsp;kilometres in diameter and 13&nbsp;kilometres in depth.<ref>{{cite web|url =http://www.psrd.hawaii.edu/July98/spa.html| title = The biggest hole in the Solar System|author =G. Jeffrey Taylor| year =1998}}</ref>


The ] is not uniform. The details of the gravitational field have been measured through tracking the ] of radio signals emitted by orbiting spacecraft. The main lunar gravity features are ], large positive gravitational anomalies associated with some of the giant impact basins, partly caused by the dense mare basaltic lava flows that fill those basins.<ref>{{cite journal |last=Muller |first=P. |author2=Sjogren, W. |title=Mascons: lunar mass concentrations |journal=] |volume=161 |pages=680–684 |date=1968 |doi=10.1126/science.161.3842.680 |pmid=17801458 |issue=3842 |bibcode=1968Sci...161..680M|s2cid=40110502 }}</ref><ref>{{cite journal |journal=] |author=Richard A. Kerr |title=The Mystery of Our Moon's Gravitational Bumps Solved? |volume=340 |issue=6129 |pages=138–139 |date=April 12, 2013 |doi=10.1126/science.340.6129.138-a |pmid=23580504}}</ref> The anomalies greatly influence the orbit of spacecraft about the Moon. There are some puzzles: lava flows by themselves cannot explain all of the gravitational signature, and some mascons exist that are not linked to mare volcanism.<ref>{{cite journal |last=Konopliv |first=A. |author2=Asmar, S. |author3=Carranza, E. |author4=Sjogren, W. |author5=Yuan, D. |title=Recent gravity models as a result of the Lunar Prospector mission |journal=] |volume=50 |issue=1 |pages=1–18 |date=2001 |doi=10.1006/icar.2000.6573 |bibcode=2001Icar..150....1K |url=http://techreports.jpl.nasa.gov/2000/00-1301.pdf |url-status=dead |archive-url=https://web.archive.org/web/20041113045200/http://techreports.jpl.nasa.gov/2000/00-1301.pdf |archive-date=November 13, 2004 |citeseerx=10.1.1.18.1930}}</ref>
The dark and relatively featureless lunar plains are called '']'', Latin for seas, since they were believed by ancient ]s to be filled by water. They are actually vast ancient ]ic lava flows, many of which filled the topographic depressions associated with large impact basins (] is a major exception in that it does not correspond to any known impact basin). The lighter-colored highlands are called ''terrae''. Maria are found almost exclusively on the lunar nearside, with the lunar far side having only a few scattered patches (see ] for a discussion of the distribution of mare basalts).


=== Magnetic field ===
Blanketed atop the Moon's crust is a highly comminuted and "impact gardened" surficial layer called ]. Since the regolith forms by impact processes, the regolith of older surfaces is generally thicker than for younger surfaces. In particular, it has been estimated that he regolith varies in thickness from about 3 to 5&nbsp;metres (10 to 16&nbsp;ft) in the maria to about 10 to 20&nbsp;metres (33 to 66&nbsp;ft) in the highlands.<ref>{{cite book| last = G. Heiken, D. Vaniman, and B. French (editors)|date= 1991 |title=Lunar Sourcebook, a user's guide to the Moon | publisher = Cambridge University Press, New York | pages= 736 pp}}</ref> Beneath the finely comminuted regolith layer is what is generally referred to as the "megaregolith." This layer is much thicker (on the order or tens of kilometers) and consists of highly fractured bedrock.
The Moon has ] of less than 0.2 ],<ref name="Mighani2020">{{cite journal|last1= Mighani|first1= S.|last2= Wang|first2= H.|last3= Shuster|first3= D.L.|last4= Borlina|first4= C.S.|last5= Nichols|first5= C.I.O.|last6= Weiss|first6= B.P.|title= The end of the lunar dynamo|journal= Science Advances|volume= 6|issue= 1|year= 2020|pages= eaax0883|doi= 10.1126/sciadv.aax0883|pmid= 31911941|pmc= 6938704|bibcode= 2020SciA....6..883M}}</ref> or less than one hundred thousandth ]. The Moon does not have a global ] magnetic field and only has crustal magnetization likely acquired early in its history when a dynamo was still operating.<ref name="GB2009" /><ref>{{cite web |url=http://lunar.arc.nasa.gov/results/magelres.htm |publisher=] (NASA) |title=Magnetometer / Electron Reflectometer Results |date=2001 |access-date=March 17, 2010 |url-status=dead |archive-url=https://web.archive.org/web/20100527121330/http://lunar.arc.nasa.gov/results/magelres.htm |archive-date=May 27, 2010}}</ref> Early in its history, 4 billion years ago, its magnetic field strength was likely close to that of Earth today.<ref name="Mighani2020" /> This early dynamo field apparently expired by about one billion years ago, after the lunar core had crystallized.<ref name="Mighani2020" /> Theoretically, some of the remnant magnetization may originate from transient magnetic fields generated during large impacts through the expansion of plasma clouds. These clouds are generated during large impacts in an ambient magnetic field. This is supported by the location of the largest crustal magnetizations situated near the ] of the giant impact basins.<ref>{{cite journal |last=Hood |first=L.L. |author2=Huang, Z. |title=Formation of magnetic anomalies antipodal to lunar impact basins: Two-dimensional model calculations |journal=] |volume=96 |issue=B6 |pages=9837–9846 |date=1991 |doi=10.1029/91JB00308 |bibcode=1991JGR....96.9837H}}</ref>


=== Atmosphere ===
Using images taken by the ], it appears that four mountainous regions on the rim of the 73 km-wide ] at the Moon's north pole remain illuminated for the entire lunar day. These unnamed ] are possible due to the Moon's extremely small axial tilt to the ecliptic plane. Since Clementine's images were taken during the northern lunar hemisphere's summer season, it remains unknown whether these mountains are shaded at any point during their local winter season. No similar regions of eternal light exist at the south pole, although the rim of ] is illuminated for 80% of the lunar day. Another consequence of the Moon's small axial tilt is that there are many regions that remain in permanent shadow at the bottoms of many polar craters.<ref name="M03">{{cite web | url = http://www.psrd.hawaii.edu/June03/lunarShadows.html |title =The Moon's Dark, Icy Poles| last = Linda Martel | date = June 4, 2003}}</ref>
{{Main|Atmosphere of the Moon}}
] and ] with the ]<ref name="The Planetary Society 2016">{{cite web | title=Lunar horizon glow from Surveyor 7 | website=The Planetary Society | date=May 6, 2016 | url=https://www.planetary.org/space-images/lunar-horizon-glow-surveyor-7 | access-date=August 8, 2022 | archive-date=August 8, 2022 | archive-url=https://web.archive.org/web/20220808062356/https://www.planetary.org/space-images/lunar-horizon-glow-surveyor-7 | url-status=live }}</ref> and lunar twilight rays, like Earth's ]. This ] sketch depicts the glow and rays<ref name="Science Mission Directorate 2013">{{cite web | title=NASA Mission To Study Mysterious Lunar Twilight Rays | website=Science Mission Directorate | date=September 3, 2013 | url=https://science.nasa.gov/science-news/science-at-nasa/2013/03sep_ladee | access-date=August 8, 2022 | archive-date=July 3, 2022 | archive-url=https://web.archive.org/web/20220703030019/https://science.nasa.gov/science-news/science-at-nasa/2013/03sep_ladee/ | url-status=live }}</ref> among the general ].<ref name="Colwell Robertson Horányi Wang 2009 pp. 2–9">{{cite journal | last1=Colwell | first1=Joshua E. | last2=Robertson | first2=Scott R. | last3=Horányi | first3=Mihály | last4=Wang | first4=Xu | last5=Poppe | first5=Andrew | last6=Wheeler | first6=Patrick | title=Lunar Dust Levitation | journal=Journal of Aerospace Engineering | volume=22 | issue=1 | date=January 1, 2009 | doi=10.1061/(ASCE)0893-1321(2009)22:1(2) | pages=2–9 | url=https://ascelibrary.org/doi/10.1061/%28ASCE%290893-1321%282009%2922%3A1%282%29 | access-date=August 8, 2022 | archive-date=August 8, 2022 | archive-url=https://web.archive.org/web/20220808202200/https://ascelibrary.org/doi/10.1061/(ASCE)0893-1321(2009)22:1(2) | url-status=live }}</ref><ref name="EarthSky Updates on your cosmos and world 2014">{{cite web | title=The zodiacal light, seen from the moon | website=EarthSky | author=Deborah Byrd | date=April 24, 2014 | url=https://earthsky.org/space/the-zodiacal-light-seen-from-the-moon/ | access-date=August 8, 2022 | archive-date=August 8, 2022 | archive-url=https://web.archive.org/web/20220808062351/https://earthsky.org/space/the-zodiacal-light-seen-from-the-moon/ | url-status=live }}</ref>]]


The Moon has an ] so tenuous as to be nearly ], with a total mass of less than {{Convert|10 |t}}.<ref>{{cite book |editor=Richard D. Johnson & Charles Holbrow |last=Globus |first=Ruth |title=Space Settlements: A Design Study |chapter=Chapter 5, Appendix J: Impact Upon Lunar Atmosphere |publisher=NASA |chapter-url=http://settlement.arc.nasa.gov/75SummerStudy/5appendJ.html |date=1977 |access-date=March 17, 2010 |url-status=dead |archive-url=https://web.archive.org/web/20100531205037/http://settlement.arc.nasa.gov/75SummerStudy/5appendJ.html |archive-date=May 31, 2010 }}</ref> The surface pressure of this small mass is around 3 × 10<sup>−15</sup>&nbsp;] (0.3&nbsp;]); it varies with the lunar day. Its sources include ] and ], a product of the bombardment of lunar soil by solar wind ions.<ref name="L06" /><ref>{{cite journal |last=Crotts |first=Arlin P.S. |title=Lunar Outgassing, Transient Phenomena and The Return to The Moon, I: Existing Data |date=2008 |url=http://www.astro.columbia.edu/~arlin/TLP/paper1.pdf |bibcode=2008ApJ...687..692C |volume=687 |issue=1 |pages=692–705 |journal=] |doi=10.1086/591634 |arxiv=0706.3949 |s2cid=16821394 |url-status=dead |archive-url=https://web.archive.org/web/20090220081142/http://www.astro.columbia.edu/~arlin/TLP/paper1.pdf |archive-date=February 20, 2009 |access-date=September 29, 2009 }}</ref> Elements that have been detected include ] and ], produced by sputtering (also found in the atmospheres of Mercury and ]); ] and ]<ref name="NASA-20150817">{{cite web |last=Steigerwald |first=William |title=NASA's LADEE Spacecraft Finds Neon in Lunar Atmosphere |url=http://www.nasa.gov/content/goddard/ladee-lunar-neon |date=August 17, 2015 |work=NASA |access-date=August 18, 2015 |archive-date=August 19, 2015 |archive-url=https://web.archive.org/web/20150819035151/http://www.nasa.gov/content/goddard/ladee-lunar-neon/ |url-status=live }}</ref> from the solar wind; and ], ], and ], outgassed after their creation by ] within the crust and mantle.<ref name="Stern1999" /><ref>{{cite journal |last=Lawson |first=S. |author2=Feldman, W. |author3=Lawrence, D. |author4=Moore, K. |author5=Elphic, R. |author6=Belian, R. |title=Recent outgassing from the lunar surface: the Lunar Prospector alpha particle spectrometer |journal=] |volume=110 |issue=E9 |page=1029 |date=2005 |doi=10.1029/2005JE002433 |doi-access=free |bibcode=2005JGRE..110.9009L }}</ref> The absence of such neutral species (atoms or molecules) as ], ], ], ] and ], which are present in the ], is not understood.<ref name="Stern1999" /> Water vapor has been detected by '']'' and found to vary with latitude, with a maximum at ~60–70&nbsp;degrees; it is possibly generated from the ] of water ice in the regolith.<ref name="Sridharan2010" /> These gases either return into the regolith because of the Moon's gravity or are lost to space, either through solar radiation pressure or, if they are ionized, by being swept away by the solar wind's magnetic field.<ref name="Stern1999" />
===Topography===
].]]
The topography of the Moon has been measured by the methods of laser altimetry and stereo image analysis, most recently during the ]. The most visible feature is the giant far side ], which possesses the lowest elevations of the Moon. The highest elevations are found just to the north-east of this basin, and it has been suggested that this area might represent thick ejecta deposits that were emplaced during an oblique South Pole-Aitken basin impact event. Other large impact basins, such as ], ], ], ], and ], also possess regionally low elevations and elevated rims.


Studies of Moon magma samples retrieved by the ] missions demonstrate that the Moon had once possessed a relatively thick atmosphere for a period of 70 million years between 3 and 4 billion years ago. This atmosphere, sourced from gases ejected from lunar volcanic eruptions, was twice the thickness of that of present-day ]. The ancient lunar atmosphere was eventually stripped away by solar winds and dissipated into space.<ref name="John 2017"/>
Another distinguishing feature of the Moon's shape is that the elevations are on average 1.9 km higher on the far side than the near side. If it is assumed that the crust is in ], and that the density of the crust is everywhere the same, then the higher elevations would be associated with a thicker crust. Using gravity, topography, and seismic data, the crust is thought to be on average about 50±15 km thick, with the far-side crust being on average thicker than the near side by about 15 km. <ref name="W06"/>.


A permanent ] cloud exists around the Moon, generated by small particles from comets. Estimates are 5 tons of comet particles strike the Moon's surface every 24 hours, resulting in the ejection of dust particles. The dust stays above the Moon approximately 10 minutes, taking 5 minutes to rise, and 5 minutes to fall. On average, 120 kilograms of dust are present above the Moon, rising up to 100 kilometers above the surface. Dust counts made by ]'s Lunar Dust EXperiment (LDEX) found particle counts peaked during the ], ], ], and ] ]s, when the Earth, and Moon pass through comet debris. The lunar dust cloud is asymmetric, being denser near the boundary between the Moon's dayside and nightside.<ref>{{cite web |title=Lopsided Cloud of Dust Discovered Around the Moon |url=http://news.nationalgeographic.com/2015/06/150617-moon-dust-cloud-comet-space |website=National Geographic News |access-date=June 20, 2015 |first1=Nadia |last1=Drake |author1-link=Nadia Drake |url-status=dead |archive-url=https://web.archive.org/web/20150619052915/http://news.nationalgeographic.com/2015/06/150617-moon-dust-cloud-comet-space/ |archive-date=June 19, 2015 |date=June 17, 2015}}</ref><ref>{{Cite journal |title=A permanent, asymmetric dust cloud around the Moon |journal=] |date=June 18, 2015 |pages=324–326 |volume=522 |issue=7556 |doi=10.1038/nature14479 |first1=M. |last1=Horányi |first2=J.R. |last2=Szalay |first3=S. |last3=Kempf |first4=J. |last4=Schmidt |first5=E. |last5=Grün |first6=R. |last6=Srama |first7=Z. |last7=Sternovsky |bibcode=2015Natur.522..324H |pmid=26085272|s2cid=4453018 }}</ref>
===Gravity field ===
{{see also|Mascon}}
]
The gravitational field of the Moon has been determined by the tracking of radio signals emitted by orbiting spacecraft. The principle used is based on that of the ], whereby the line-of-sight spacecraft acceleration can be measured by small shifts in frequency of the radio signal, as well as by measuring the distance to the spacecraft from the travel time of the signal between the spacecraft and a station on Earth. Since the gravitational field of the body affects the orbit of the spacecraft, it is possible to use these tracking data to invert for gravitational anomalies. However, because of the Moon's ] it is not possible to track spacecraft much over the limbs of the Moon. Nevertheless, it is possible to make inferences about the farside gravity field (though with a lower precision) as their existence does influence the spacecraft orbit.


===Surface conditions===
The major characteristic of the Moon's gravitational field is the presence of ]s, which are large positive gravitational anomalies associated with some of the giant impact basins. These anomalies greatly influence the orbit of spacecraft about the Moon, and an accurate gravitational model is necessary in the planning of both manned and unmanned missions. They were initially discoved by the analysis of ] tracking data,<ref>{{cite journal | author = Paul Muller and William Sjogren | title = Masons: lunar mass concentrations | journal = Science | volume = 161 |pages = 680-684 | year = 1968}}</ref>, since pre-Apollo navigational tests were experiencing landing position errors much larger than mission specifications.
] with ] stuck on his suit. Lunar dust is highly abrasive and can cause damage to human lungs, nervous, and cardiovascular systems.<ref>{{Cite web |last1=James |first1=John |last2=Kahn-Mayberry |first2=Noreen |date=Jan 2009 |title=Risk of Adverse Health Effects from Lunar Dust Exposure |url=https://humanresearchroadmap.nasa.gov/evidence/reports/lunar%20dust.pdf |access-date=December 8, 2022 |archive-date=December 4, 2021 |archive-url=https://web.archive.org/web/20211204004317/https://humanresearchroadmap.nasa.gov/evidence/reports/lunar%20dust.pdf |url-status=live }}</ref>]]
] from ]s, the Sun and the resulting ]<ref name="Science Mission Directorate 2005">{{cite web |date=September 8, 2005 |title=Radioactive Moon |url=https://science.nasa.gov/science-news/science-at-nasa/2005/08sep_radioactivemoon#:~:text=Not%20so.,lunar%20surface%20itself%20is%20radioactive! |url-status=live |archive-url=https://web.archive.org/web/20191102123953/https://science.nasa.gov/science-news/science-at-nasa/2005/08sep_radioactivemoon/#:~:text=Not%20so.,lunar%20surface%20itself%20is%20radioactive! |archive-date=November 2, 2019 |access-date=July 28, 2022 |website=Science Mission Directorate}}</ref> produce radiation levels on average of 1.369 ]s per day during lunar ],<ref name="surface-radiation"/> which is about 2.6 times more than on the ] with 0.53 millisieverts per day at about 400&nbsp;km above Earth in orbit, 5–10 times more than during a trans-Atlantic flight, 200 times more than on Earth's surface.<ref name="ScienceAlert 2020">{{cite web |date=September 26, 2020 |title=We Finally Know How Much Radiation There Is on The Moon, And It's Not Great News |url=https://www.sciencealert.com/scientists-predict-how-long-humans-can-survive-radiation-on-the-moon |url-status=live |archive-url=https://web.archive.org/web/20220728004319/https://www.sciencealert.com/scientists-predict-how-long-humans-can-survive-radiation-on-the-moon |archive-date=July 28, 2022 |access-date=July 28, 2022 |website=ScienceAlert}}</ref> For further comparison radiation on a ] is about 1.84 millisieverts per day and on Mars on average 0.64 millisieverts per day, with some locations on Mars possibly having levels as low as 0.342 millisieverts per day.<ref name="Paris Davies Tognetti Zahniser 2020">{{cite arXiv | last1=Paris | first1=Antonio | last2=Davies | first2=Evan | last3=Tognetti | first3=Laurence | last4=Zahniser | first4=Carly | title=Prospective Lava Tubes at Hellas Planitia | date=April 27, 2020 | class=astro-ph.EP | eprint=2004.13156v1 }}</ref><ref name="Wall 2013">{{cite web |last=Wall |first=Mike |date=December 9, 2013 |title=Radiation on Mars 'Manageable' for Manned Mission, Curiosity Rover Reveals |url=https://www.space.com/23875-mars-radiation-life-manned-mission.html |access-date=August 7, 2022 |website=Space.com |archive-date=December 15, 2020 |archive-url=https://web.archive.org/web/20201215082045/https://www.space.com/23875-mars-radiation-life-manned-mission.html |url-status=live }}</ref>
Solar radiation charges the highly abrasive ], making it levitate and therefore add to the easy spread of the lung and gear damaging sticky lunar dust.<ref name="e657">{{cite web | title=The toxic side of the Moon | website=ESA | url=https://www.esa.int/Science_Exploration/Human_and_Robotic_Exploration/The_toxic_side_of_the_Moon | access-date=2025-01-07}}</ref>


The Moon's ] with respect to the ] is only 1.5427°,<ref name="SolarViews" /><ref>{{Cite journal |last1=Rambaux |first1=N. |last2=Williams |first2=J. G. |date=2011 |title=The Moon's physical librations and determination of their free modes |url=https://doi.org/10.1007/s10569-010-9314-2 |url-status=live |journal=Celestial Mechanics and Dynamical Astronomy |volume=109 |issue=1 |pages=85–100 |bibcode=2011CeMDA.109...85R |doi=10.1007/s10569-010-9314-2 |archive-url=https://web.archive.org/web/20220730084921/https://link.springer.com/article/10.1007/s10569-010-9314-2 |archive-date=July 30, 2022 |access-date=July 30, 2022 |s2cid=45209988}}</ref> much less than the 23.44° of Earth. Because of this small tilt, the Moon's solar illumination varies much less with ] than on Earth and it allows for the existence of some ] at the ], at the rim of the crater ].
The origin of mascons are in part due to the presence of dense mare basaltic lava flows that fill some of the impact basins. However, lava flows by themselves can not explain the entirety of the gravitional signature, and uplift of the crust-mantle interface is required as well. Based on ] gravitational models, it has been suggested that some mascons exist that do not show evidence for mare basaltic volcanism.<ref>{{cite journal | author = A. Konopliv, S. Asmar, E. Carranza, W. Sjogren, and D. Yuan | title = Recent gravity models as a result of the Lunar Prospector mission | journal = Icarus | volume = 50 | pages = 1-18 | year = 2001}}</ref> It should be noted that the huge expanse of mare basaltic volcanism associated with ] does not possess a positive gravitational anomaly.


The surface is exposed to drastic temperature differences ranging from {{val|120|u=°C}} to {{val|−171|u=°C}} depending on the ].
===Magnetic field===
Because of the lack of atmosphere, temperatures of different areas vary particularly upon whether they are in sunlight or shadow,<ref>{{cite web |last=Rocheleau |first=Jake |date=May 21, 2012 |title=Temperature on the Moon – Surface Temperature of the Moon |url=http://planetfacts.org/temperature-on-the-moon/ |url-status=live |archive-url=https://web.archive.org/web/20150527194737/http://planetfacts.org/temperature-on-the-moon/ |archive-date=May 27, 2015 |website=PlanetFacts.org}}</ref> making topographical details play a decisive role on local ]s.<ref name="bbc" />
]
Parts of many craters, particularly the bottoms of many polar craters,<ref name="M03" /> are permanently shadowed, these "]" have extremely low temperatures. The ''Lunar Reconnaissance Orbiter'' measured the lowest summer temperatures in craters at the southern pole at {{Convert|35 |K |4=0 |abbr=on}}<ref>{{cite web |date=September 17, 2009 |title=Diviner News |url=http://www.diviner.ucla.edu/blog/?p=123 |url-status=dead |archive-url=https://web.archive.org/web/20100307031354/http://www.diviner.ucla.edu/blog/?p=123 |archive-date=March 7, 2010 |access-date=March 17, 2010 |publisher=]}}</ref> and just {{Convert |26 |K |4=0 |abbr=on}} close to the winter solstice in the north polar crater ]. This is the coldest temperature in the Solar System ever measured by a spacecraft, colder even than the surface of ].<ref name="bbc" />


Blanketed on top of the Moon's crust is a highly ] (broken into ever smaller particles) and ] mostly gray surface layer called ], formed by impact processes. The finer regolith, the ] of ] glass, has a texture resembling snow and a scent resembling spent ].<ref>{{cite web |date=January 30, 2006 |title=The Smell of Moondust |url=https://science.nasa.gov/headlines/y2006/30jan_smellofmoondust.htm |url-status=dead |archive-url=https://web.archive.org/web/20100308112332/http://science.nasa.gov/headlines/y2006/30jan_smellofmoondust.htm |archive-date=March 8, 2010 |access-date=March 15, 2010 |publisher=NASA}}</ref> The regolith of older surfaces is generally thicker than for younger surfaces: it varies in thickness from {{Convert|10 |- |15 |m |abbr=on}} in the highlands and {{Convert |4 |- |5 |m |abbr=on}} in the maria.<ref>{{cite book |last=Heiken |first=G. |url=https://archive.org/details/lunarsourcebooku0000unse/page/286 |title=Lunar Sourcebook, a user's guide to the Moon |date=1991 |publisher=] |isbn=978-0-521-33444-0 |editor1-last=Vaniman |editor1-first=D. |location=New York |page= |access-date=December 17, 2019 |editor2-last=French |editor2-first=B. |archive-url=https://web.archive.org/web/20200617181609/https://archive.org/details/lunarsourcebooku0000unse/page/736 |archive-date=June 17, 2020 |url-status=live}}</ref> Beneath the finely comminuted regolith layer is the ''megaregolith'', a layer of highly fractured bedrock many kilometers thick.<ref>{{cite journal |last=Rasmussen |first=K.L. |author2=Warren, P.H. |date=1985 |title=Megaregolith thickness, heat flow, and the bulk composition of the Moon |journal=] |volume=313 |issue=5998 |pages=121–124 |bibcode=1985Natur.313..121R |doi=10.1038/313121a0 |s2cid=4245137}}</ref>
The Moon has only a very weak external magnetic field in comparison to the Earth. Other major differences are that the Moon does not currently have a dipolar magnetic field (as would be generated by a ] in its core), and the magnetizations that are present are almost entirely crustal in orgin. One hypothesis holds that the crustal magnetizations were acquired early in lunar history when a ] was still operating. The small size of the lunar core, however, is a potential obstacle to this theory. Alternatively, it is possible that on an airless body such as the Moon, transient magnetic fields could be generated during large impact events. In support of this, it has been noted that the largest crustal magnetizations appear to be located near the ] of the giant impact basins. It has been proposed that such a phenomenon could result from the free expansion of an impact generated plasma cloud around the Moon in the presence of an ambient magnetic field.<ref>{{cite journal |last = Hood, L. L., and Z. Huang | title = Formation of magnetic anomalies antipodal to lunar impact basins: Two-dimensional model calculations | journal = J. Geophys. Res.| volume = 96 | pages = 9837-9846 | date=1991}}</ref>


These extreme conditions are considered to make it unlikely for spacecraft to harbor bacterial spores at the Moon for longer than just one lunar orbit.<ref>{{cite journal |last1=Schuerger |first1=Andrew C. |last2=Moores |first2=John E. |last3=Smith |first3=David J. |last4=Reitz |first4=Günther |date=June 2019 |title=A Lunar Microbial Survival Model for Predicting the Forward Contamination of the Moon |journal=Astrobiology |volume=19 |issue=6 |pages=730–756 |bibcode=2019AsBio..19..730S |doi=10.1089/ast.2018.1952 |pmid=30810338 |s2cid=73491587|doi-access=free }}</ref>
===Presence of water===
Over time, comets and ]s continuously bombard the Moon, some of which contain a significant component of water. Energy from sunlight usually splits much of this water into its constituent elements hydrogen and oxygen, both of which generally escape to space. Attesting to the dryness of lunar rocks, it is noted that the samples collected by Apollo astronauts near the equator contained only traces of water. However, because of the very slight axial tilt of the Moon's spin axis to the ecliptic plane (only 1.5°), some deep craters near the poles never receive any light from the Sun, and are permanently shadowed (see ]). Thus, any water molecules that eventually ended up in these craters could be stable for long periods of time.


===Surface features===
Clementine has mapped craters at the lunar south pole<ref>{{cite web| url=http://www.lpi.usra.edu/research/clemen/2polar.gif| title=Lunar Polar Composites| format=GIF| accessdate=2006-03-20}}</ref> which are shadowed in this way, and computer simulations suggest that up to 14,000 km² might be in permanent shadow.<ref name="M03"/> Results from the ] bistatic radar experiment are consistent with small, frozen pockets of water close to the surface, and data from the ] neutron spectrometer indicate that anomalously high concentrations of hydrogen are present in the upper meter of the regolith near the polar regions . Estimates for the total quantity of water ice are close to one cubic kilometer. Recently, radar observations with the ] planetary radar showed that some of the near polar Clementine radar returns might instead be associated with rocks ejected from young craters. If true, this would indicate that the neutron results are primarily from hydrogen in forms other than ice, such as trapped hydrogen molecules or organics. Nevertheless, the interprettation of these data are non unique (ice or surface roughness could give rise to the observed signature), and it appears that these results do not exclude the possibility of water ice in permanently shadowed craters.<ref>{{cite web| last=Paul Spudis | title = Ice on the Moon | url = http://www.thespacereview.com/article/740/1 | date = 2006}}</ref>
{{Main|Selenography|Lunar terrane|List of lunar features|List of quadrangles on the Moon}}
] astronaut ] next to the large Moon boulder nicknamed "]"]]
The ] has been measured with ] and ].<ref>{{cite journal |title=Topography of the South Polar Region from Clementine Stereo Imaging | last1=Spudis | first1=Paul D. | last2=Cook | first2=A. | last3=Robinson | first3=M. | last4=Bussey | first4=B. | last5=Fessler | first5=B. |bibcode=1998nvmi.conf...69S |journal=Workshop on New Views of the Moon: Integrated Remotely Sensed, Geophysical, and Sample Datasets |page=69 |date=January 1998}}</ref> Its most extensive ] is the giant far-side ], some {{Convert|2240 |km |abbr=on}} in diameter, the largest crater on the Moon and the second-largest confirmed impact ].<ref name="Spudis1994" /><ref>{{cite journal |doi=10.1029/97GL01718 |first1=C. M. |last1=Pieters |first2=S. |last2=Tompkins |first3=J. W. |last3=Head |first4=P. C. |last4=Hess |title=Mineralogy of the Mafic Anomaly in the South Pole-Aitken Basin: Implications for excavation of the lunar mantle |journal=] |volume=24 |issue=15 |pages=1903–1906 |date=1997 |bibcode=1997GeoRL..24.1903P |hdl=2060/19980018038|s2cid=128767066 |hdl-access=free }}</ref> At {{Convert |13 |km |abbr=on}} deep, its floor is the lowest point on the surface of the Moon.<ref name="Spudis1994" /><ref>{{cite journal |url=http://www.psrd.hawaii.edu/July98/spa.html |title=The Biggest Hole in the Solar System |page=20 |last=Taylor |first=G. J. |date=July 17, 1998 |journal=Planetary Science Research Discoveries |access-date=April 12, 2007 |url-status=live |archive-url=https://web.archive.org/web/20070820042129/http://www.psrd.hawaii.edu/July98/spa.html |archive-date=August 20, 2007 |bibcode=1998psrd.reptE..20T}}</ref> The highest elevations of the Moon's surface are located directly to the northeast, which might have been thickened by the oblique formation impact of the South Pole–Aitken basin.<ref>{{cite journal |last=Schultz |first=P.H. |date=March 1997 |page=1259 |volume=28 |title=Forming the south-pole Aitken basin – The extreme games |journal=Conference Paper, 28th Annual Lunar and Planetary Science Conference |bibcode=1997LPI....28.1259S}}</ref> Other large impact basins such as ], ], ], ], and ] possess regionally low elevations and elevated rims.<ref name="Spudis1994" /> The far side of the lunar surface is on average about {{Convert |1.9 |km |abbr=on}} higher than that of the near side.<ref name="W06" />


The discovery of ] cliffs suggest that the Moon has shrunk by about 90 metres (300&nbsp;ft) within the past billion years.<ref>{{cite web |publisher=NASA |title=NASA's LRO Reveals 'Incredible Shrinking Moon' |date=August 19, 2010 |url=http://www.nasa.gov/mission_pages/LRO/news/shrinking-moon.html |url-status=live |archive-url=https://web.archive.org/web/20100821124252/http://www.nasa.gov/mission_pages/LRO/news/shrinking-moon.html |archive-date=August 21, 2010}}</ref> Similar shrinkage features exist on ]. Mare Frigoris, a basin near the north pole long assumed to be geologically dead, has cracked and shifted. Since the Moon does not have tectonic plates, its tectonic activity is slow, and cracks develop as it loses heat.<ref>{{Cite journal |last1=Watters |first1=Thomas R. |last2=Weber |first2=Renee C. |last3=Collins |first3=Geoffrey C. |last4=Howley |first4=Ian J. |last5=Schmerr |first5=Nicholas C. |last6=Johnson |first6=Catherine L. |date=June 2019 |title=Shallow seismic activity and young thrust faults on the Moon |journal=Nature Geoscience|publication-date=May 13, 2019 |volume=12 |issue=6 |pages=411–417 |doi=10.1038/s41561-019-0362-2 |bibcode=2019NatGe..12..411W |s2cid=182137223 |issn=1752-0894 }}</ref>
Water ice can be mined and then split into hydrogen and oxygen by solar panel-equipped electric power stations or a nuclear generator. The presence of usable quantities of water on the Moon is an important factor in rendering ] cost-effective, since transporting water (or hydrogen and oxygen) from Earth would be prohibitively expensive.


Scientists have confirmed the presence of a cave on the Moon near the ], not far from the 1969 ] landing site. The cave, identified as an entry point to a collapsed lava tube, is roughly 45 meters wide and up to 80 m long. This discovery marks the first confirmed entry point to a lunar cave. The analysis was based on photos taken in 2010 by NASA's ]. The cave's stable temperature of around {{val|17|u=°C}} could provide a hospitable environment for future astronauts, protecting them from extreme temperatures, solar radiation, and micrometeorites. However, challenges include accessibility and risks of avalanches and cave-ins. This discovery offers potential for future lunar bases or emergency shelters.<ref>{{Cite web |date=July 18, 2024 |title=Cave on the Moon: What this discovery means for space exploration |url=https://indianexpress.com/article/explained/everyday-explainers/cave-on-the-moon-explained-9459805/ |access-date=July 19, 2024 |website=The Indian Express |language=en}}</ref>
===Atmosphere===
The Moon has a relatively insignificant and tenuous atmosphere. One source of this atmosphere is ] &mdash; the release of gases such as ] that originate by radioactive decay processes within the crust and mantle. Another important source is generated through the process of ], which involves the bombardment of micrometeorites, solar wind ions, electrons, and sunlight.<ref name="L06"/> Gasses that are released by sputtering can either reimplant into the regolith as a cause of the Moon's gravity, or can be lost to space either by solar radiation pressure or by being swept away by the solar wind magnetic field if they are ionized. The elements ] (Na) and ] (K) have been detected using earth-based spectroscopic methods, whereas the element radon has been inferred from data obtained from the ] ] spectrometer.<ref>{{cite journal|last = S. Lawson, W. Feldman, D. Lawrence, K. Moore, R. Elphic, and R. Belian | title=Recent outgassing from the lunar surface: the Lunar Prospector alpha particle spectrometer | journal=J. Geophys. Res. | volume = 110 | pages=doi:10.1029/2005JE002433 | date =2005}}</ref>


==== Volcanic features ====
==Eclipses==
{{Main |Volcanism on the Moon}}
{{main|Eclipse|Solar eclipse|lunar eclipse}}
] (blue) and some ] (brown) features of the near side of the Moon]]
{{see also|Occultation}}
The main features visible from Earth by the naked eye are dark and relatively featureless lunar plains called '']'' (singular ''mare''; ] for "seas", as they were once believed to be filled with water)<ref>{{cite book |author=Wlasuk, Peter |title=Observing the Moon |url=https://books.google.com/books?id=TWtLIOlPwS4C |date=2000 |publisher=] |isbn=978-1-85233-193-1 |page=19}}</ref> are vast solidified pools of ancient ]ic lava. Although similar to terrestrial basalts, lunar basalts have more iron and no minerals altered by water.<ref>{{cite web |url=http://www.psrd.hawaii.edu/April04/lunarAnorthosites.html |title=The Oldest Moon Rocks |last=Norman |first=M. |work=Planetary Science Research Discoveries |publisher=Hawai'i Institute of Geophysics and Planetology |date=April 21, 2004 |access-date=April 12, 2007 |url-status=live |archive-url=https://web.archive.org/web/20070418152325/http://www.psrd.hawaii.edu/April04/lunarAnorthosites.html |archive-date=April 18, 2007}}</ref> The majority of these lava deposits erupted or flowed into the depressions associated with ], though the Moon's largest expanse of basalt flooding, ], does not correspond to an obvious impact basin. Different episodes of lava flow in maria can often be recognized by variations in surface albedo and distinct flow margins.<ref>{{cite journal
] ] solar eclipse]]
| last1=Friedman | first1 = R.C.
Eclipses happen only if Sun, Earth, and Moon are all in a straight line. ]s can only occur near a ], whereas ]s can only occur near a ]. The angular diameters of the Moon and the Sun as seen from Earth overlap in their variation, so that both ] and ] solar eclipses are possible. In a total eclipse, the Moon completely covers the disc of the Sun and the solar ] becomes visible to the ].
| last2=Blewett | first2 = D. T.
| last3=Taylor | first3 = G.J.
| last4=Lucey | first4 = P. G.
| year = 1996
| title = FeO and TiO2 Variations in Mare Imbrium
| journal = Lunar and Planetary Science
| volume = 27
| pages = 383
| bibcode = 1996LPI....27..383F
| url = https://adsabs.harvard.edu/full/1996LPI....27..383F
}}</ref>


As the maria formed, cooling and contraction of the basaltic lava created ]s in some areas. These low, sinuous ridges can extend for hundreds of kilometers and often outline buried structures within the mare. Another result of maria formation is the creation of concentric depressions along the edges, known as ]. These features occur as the mare basalts sink inward under their own weight, causing the edges to fracture and separate.
Since the distance between the Moon and the Earth is very slightly increasing over time, the angular diameter of the Moon is decreasing. This means that hundreds of millions of years ago the Moon could always completely cover the Sun on solar eclipses so that no annular eclipses were possible. Likewise, about 600 million years from now (assuming that the angular diameter of the Sun will not change), the Moon will no longer cover the Sun completely and total eclipses will not occur.


In addition to the visible maria, the Moon has mare deposits covered by ejecta from impacts. Called cryptomares, these hidden mares are likely older than the exposed ones.<ref>{{cite journal
A phenomenon related to eclipse is ]. The Moon is continuously blocking our view of the sky by a 1/2 degree wide circular area. When a bright star or planet ''passes behind'' the Moon it is ''occulted'' or hidden from view. A solar eclipse is an occultation of the Sun. Because the Moon is close to Earth, occultations of individual stars are not visible everywhere, nor at the same time. Because of the precession of the lunar orbit, each year different stars are occulted.
| last1=Izquierdo | first1 = Kristel
| last2=Sori | first2 = M. M.
| last3=Checketts | first3 = B.
| last4=Hampton | first4 = I.
| last5=Johnson | first5 = B.C.
| last6=Soderblom | first6 = J.M.
| year = 2024
| title = Global Distribution and Volume of Cryptomare and Visible Mare on the Moon From Gravity and Dark Halo Craters
| journal = Journal of Geophysical Research: Planets
| volume = 129
| issue = 2
| doi = 10.1029/2023JE007867
| bibcode = 2024JGRE..12907867I
| doi-access = free
}}</ref> Conversely, mare lava has obscured many impact melt sheets and pools. Impact melts are formed when intense shock pressures from collisions vaporize and melt zones around the impact site. Where still exposed, impact melt can be distinguished from mare lava by its distribution, albedo, and texture.<ref>{{cite journal
| last1=Spudis | first1 = Paul
| year = 2016
| title = Mapping Melts on the Moon
| journal = Smithsonian Air and Space Magazine
| url = https://www.smithsonianmag.com/air-space-magazine/mapping-melted-moon-180958645/
}}</ref>


], found in and around maria, are likely extinct ] or collapsed ]. They typically originate from volcanic ], meandering and sometimes branching as they progress. The largest examples, such as ] and ], are significantly longer, wider, and deeper than terrestrial lava channels, sometimes featuring bends and sharp turns that again, are uncommon on Earth.
==Observation of the Moon==
{{see also|Lunar phase|Earthshine|Observing the Moon}}
]. The brightest crescent is in direct sunlight; the upper portion is lit by light reflected from Earth.]]
] around Moon]]
During the brightest full moons, the Moon can have an ] of about &minus;12.6. For comparison, the Sun has an apparent magnitude of &minus;26.8. When the Moon is in a quarter phase, its brightness is not one half of a full moon, but instead is only about 1/10. This is because the lunar surface is not a perfect ] and because shadows projected onto the surface also diminish the amount of reflected light.


Mare volcanism has altered impact craters in various ways, including filling them to varying degrees, and raising and fracturing their floors from uplift of mare material beneath their interiors. Examples of such craters include ] and ]. Some craters, such as ], are of wholly volcanic origin, forming as ]s or ]. Such craters are relatively rare and tend to be smaller (typically a few kilometers wide), shallower, and more irregularly shaped than impact craters. They also lack the upturned rims characteristic of impact craters.
The Moon appears larger when close to the horizon. This is a purely psychological effect (see ]). The angular diameter of the Moon from Earth is about one half of one degree, and is actually about 1.5% smaller when the Moon is near the horizon than when it is high in the sky (because it is farther away by up to 1 Earth radius).


Several ]s containing ]es and volcanic ] are found within the near side maria.<ref>{{cite journal |last1=Wilson | first1=Lionel | last2=Head | first2=James W. |title=Lunar Gruithuisen and Mairan domes: Rheology and mode of emplacement |journal=] |date=2003 |volume=108 |url=http://www.agu.org/pubs/crossref/2003/2002JE001909.shtml |access-date=April 12, 2007 |issue=E2 |doi=10.1029/2002JE001909 |page=5012 |bibcode=2003JGRE..108.5012W |citeseerx=10.1.1.654.9619 | s2cid=14917901 |url-status=live |archive-url=https://web.archive.org/web/20070312071105/http://www.agu.org/pubs/crossref/2003/2002JE001909.shtml |archive-date=March 12, 2007}}</ref> There are also some regions of ], ] and ] made of particularly high viscosity lava.
Another quirk of the visual system causes us to see the Moon as almost pure white, when in fact it reflects only about 7% of the light falling on it (about as dark as a lump of coal). It has a very low ]. ] in the ] recalibrates the relations between colors of an object and its surroundings; however, there is nothing next to the Moon to reflect the light falling on the Moon, therefore it is perceived as the brightest object visible. We have no standard to compare it to. An example of this is that, if you used a narrow beam of light to illuminate a lump of coal in a dark room, it would look white. If you then broadened the beam of the light source to illuminate the surroundings, it would revert to black.


Almost all maria are on the near side of the Moon, and cover 31% of the surface of the near side<ref name="worldbook" /> compared with 2% of the far side.<ref>{{cite journal |last1=Gillis |first1=J. J. |last2=Spudis |first2=P. D. |title=The Composition and Geologic Setting of Lunar Far Side Maria |journal=] |date=1996 |volume=27 |page=413 |bibcode=1996LPI....27..413G}}</ref> This is likely due to a ] under the crust on the near side, which would have caused the underlying mantle to heat up, partially melt, rise to the surface and erupt.<ref name="S06" /><ref>{{cite journal |title=Global Elemental Maps of the Moon: The Lunar Prospector Gamma-Ray Spectrometer | last1=Lawrence | first1=D. J. | last2=Feldman | first2=W. C. | last3=Barraclough | first3=B. L. | last4=Binder | first4=A. B. | last5=Elphic | first5=R. C. | last6=Maurice | first6=S. | last7=Thomsen | first7=D. R. |journal=] |volume=281 |issue=5382 |pages=1484–1489 |doi=10.1126/science.281.5382.1484 |date=August 11, 1998 |pmid=9727970 |bibcode=1998Sci...281.1484L |doi-access=free }}</ref><ref>{{cite journal |url=http://www.psrd.hawaii.edu/Aug00/newMoon.html |title=A New Moon for the Twenty-First Century |page=41 |last=Taylor |first=G. J. |journal=Planetary Science Research Discoveries |date=August 31, 2000 |access-date=April 12, 2007 |url-status=live |archive-url=https://web.archive.org/web/20120301074958/http://www.psrd.hawaii.edu/Aug00/newMoon.html |archive-date=March 1, 2012 |bibcode=2000psrd.reptE..41T}}</ref> Most of the Moon's ] erupted during the ], 3.3–3.7&nbsp;billion years ago, though some being as young as 1.2&nbsp;billion years<ref name="Hiesinger" /> and as old as 4.2&nbsp;billion years.<ref name="Papike" />
The highest ] of the Moon on a day varies and has nearly the same limits as the Sun. It also depends on season and lunar phase with the full moon being highest in winter. The orientation of the Moon's crescent also depends on the latitude of the observing site. Close to the equator an observer can see a ''boat'' Moon.<ref>{{cite web| url=http://curious.astro.cornell.edu/question.php?number=393| publisher=Curious About Astronomy| title=Is the Moon seen as a crescent (and not a "boat") all over the world?| accessdate=2006-03-20| month=October| year=2002| first=Kristine| last=Spekkens}}</ref>


] lava flows of ] forming ]s]]
Like the Sun, the Moon can also give rise to the atmospheric effects including a 22 degree ] ring and the smaller ] seen more often through thin clouds. For more information on how the Moon appears in Earth's sky, see ].


In 2006, a study of ], a tiny depression in ], found jagged, relatively dust-free features that, because of the lack of erosion by infalling debris, appeared to be only 2 million years old.<ref name=Berardelli>{{cite journal |url=https://www.science.org/content/article/long-live-moon |title=Long Live the Moon! |journal=] |date=November 9, 2006 |author=Phil Berardelli |url-status=live |archive-url=https://web.archive.org/web/20141018153016/http://news.sciencemag.org/2006/11/long-live-moon |archive-date=October 18, 2014 |access-date=October 14, 2014 }}</ref> ]s and releases of gas indicate continued lunar activity.<ref name="Berardelli"/> Evidence of recent lunar volcanism has been identified at 70 ]es, some less than 50 million years old. This raises the possibility of a much warmer lunar mantle than previously believed, at least on the near side where the deep crust is substantially warmer because of the greater concentration of radioactive elements.<ref>{{cite web |url=http://news.discovery.com/space/imps-reveal-volcanoes-erupted-recently-on-the-moon-141014.htm |title=Volcanoes Erupted 'Recently' on the Moon |publisher=] |date=October 14, 2014 |author=Jason Major |url-status=live |archive-url=https://web.archive.org/web/20141016190653/http://news.discovery.com/space/imps-reveal-volcanoes-erupted-recently-on-the-moon-141014.htm |archive-date=October 16, 2014}}</ref><ref>{{cite web |url=http://www.nasa.gov/press/2014/october/nasa-mission-finds-widespread-evidence-of-young-lunar-volcanism/#.VDxNw0t3uxo |title=NASA Mission Finds Widespread Evidence of Young Lunar Volcanism |publisher=NASA |date=October 12, 2014 |url-status=live |archive-url=https://web.archive.org/web/20150103095208/http://www.nasa.gov/press/2014/october/nasa-mission-finds-widespread-evidence-of-young-lunar-volcanism/#.VDxNw0t3uxo |archive-date=January 3, 2015}}</ref><ref>{{cite journal |url=https://www.science.org/content/article/recent-volcanic-eruptions-moon |title=Recent volcanic eruptions on the moon |journal=] |date=October 12, 2014 |author=Eric Hand |url-status=live |archive-url=https://web.archive.org/web/20141014092239/http://news.sciencemag.org/space/2014/10/recent-volcanic-eruptions-moon |archive-date=October 14, 2014}}</ref><ref>{{cite journal |title=Evidence for basaltic volcanism on the Moon within the past 100 million years |journal=] |last1=Braden |first1=S.E. |last2=Stopar |first2=J.D. |last3=Robinson |first3=M.S. |last4=Lawrence |first4=S.J. |last5=van der Bogert |first5=C.H. |last6=Hiesinger |first6=H. |volume=7 |issue=11 |pages=787–791 |bibcode=2014NatGe...7..787B |doi=10.1038/ngeo2252 |year=2014}}</ref> Evidence has been found for 2–10 million years old basaltic volcanism within the crater Lowell,<ref>{{cite journal |last1=Srivastava |first1=N. |last2=Gupta |first2=R.P. |year=2013 |title=Young viscous flows in the Lowell crater of Orientale basin, Moon: Impact melts or volcanic eruptions? |journal=] |volume=87 |pages=37–45 |doi=10.1016/j.pss.2013.09.001 |bibcode=2013P&SS...87...37S}}</ref><ref>{{cite journal |last1=Gupta |first1=R.P. |last2=Srivastava |first2=N. |last3=Tiwari |first3=R.K. |year=2014 |title=Evidences of relatively new volcanic flows on the Moon |journal=] |volume=107 |issue=3 |pages=454–460 | jstor=24103498}}</ref> inside the Orientale basin. Some combination of an initially hotter mantle and local enrichment of heat-producing elements in the mantle could be responsible for prolonged activities on the far side in the Orientale basin.<ref>{{cite journal |last1=Whitten |first1=Jennifer | last2=Head | first2=James W. | last3=Staid | first3=Matthew | last4=Pieters | first4=Carle M. | last5=Mustard | first5=John | last6=Clark | first6=Roger | last7=Nettles | first7=Jeff | last8=Klima | first8=Rachel L. | last9=Taylor | first9=Larry |year=2011 |title=Lunar mare deposits associated with the Orientale impact basin: New insights into mineralogy, history, mode of emplacement, and relation to Orientale Basin evolution from Moon Mineralogy Mapper (M3) data from Chandrayaan-1 |journal=] |volume=116 |page=E00G09 |doi=10.1029/2010JE003736 |bibcode=2011JGRE..116.0G09W |s2cid=7234547 |doi-access=free }}</ref><ref>{{cite journal |last1=Cho |first1=Y. |display-authors=etal |year=2012 |title=Young mare volcanism in the Orientale region contemporary with the Procellarum KREEP Terrane (PKT) volcanism peak period 2 b.y. ago |journal=] |volume=39 |issue=11 |page=L11203 |bibcode=2012GeoRL..3911203C |doi=10.1029/2012GL051838|s2cid=134074700 }}</ref>
== Exploration of the Moon ==
{{main|Exploration of the Moon|Project Apollo|Apollo Moon Landing hoax accusations}}
{{see also|Robotic exploration of the Moon|Future lunar missions}}


The lighter-colored regions of the Moon are called ''terrae'', or more commonly ''highlands'', because they are higher than most maria. They have been radiometrically dated to having formed 4.4&nbsp;billion years ago and may represent ] ] of the lunar magma ocean.<ref name="Hiesinger" /><ref name="Papike" /> In contrast to Earth, no major lunar mountains are believed to have formed as a result of tectonic events.<ref>{{cite web |last=Munsell |first=K. |publisher=NASA |work=Solar System Exploration |title=Majestic Mountains |url=http://sse.jpl.nasa.gov/educ/themes/display.cfm?Item=mountains |date=December 4, 2006 |access-date=April 12, 2007 |url-status=dead |archive-url=https://web.archive.org/web/20080917055643/http://sse.jpl.nasa.gov/educ/themes/display.cfm?Item=mountains |archive-date=September 17, 2008}}</ref>
]'' astronaut ] standing next to boulder at Taurus-Littrow during third EVA (extravehicular activity). '']&nbsp;photo.'']]
]
The first leap in lunar observation was caused by the invention of the telescope. ] made especially good use of this new instrument and observed mountains and craters on the Moon's surface.


The concentration of maria on the near side likely reflects the substantially thicker crust of the highlands of the Far Side, which may have formed in a slow-velocity impact of a second moon of Earth a few tens of millions of years after the Moon's formation.<ref>{{cite journal |author=Richard Lovett |url=http://www.nature.com/news/2011/110803/full/news.2011.456.html#B1 |title=Early Earth may have had two moons : Nature News |journal=Nature |access-date=November 1, 2012 |url-status=live |archive-url=https://web.archive.org/web/20121103145236/http://www.nature.com/news/2011/110803/full/news.2011.456.html#B1 |archive-date=November 3, 2012 |doi=10.1038/news.2011.456 |year=2011|doi-access=free }}</ref><ref>{{cite web |url=http://theconversation.edu.au/was-our-two-faced-moon-in-a-small-collision-2659 |title=Was our two-faced moon in a small collision? |publisher=Theconversation.edu.au |access-date=November 1, 2012 |url-status=dead |archive-url=https://web.archive.org/web/20130130004522/http://theconversation.edu.au/was-our-two-faced-moon-in-a-small-collision-2659 |archive-date=January 30, 2013 }}</ref> Alternatively, it may be a consequence of asymmetrical ] when the Moon was much closer to the Earth.<ref>{{cite journal | title=Near/far side asymmetry in the tidally heated Moon | last1=Quillen | first1=Alice C. | last2=Martini | first2=Larkin | last3=Nakajima | first3=Miki | journal=Icarus | volume=329 | pages=182–196 | date=September 2019 | doi=10.1016/j.icarus.2019.04.010 | pmid=32934397 | pmc=7489467 | arxiv=1810.10676 | bibcode=2019Icar..329..182Q }}</ref>
The Cold War-inspired ] between the ] and the ] led to an acceleration of interest in the Moon. Unmanned probes, both flyby and impact/lander missions, were sent almost as soon as launcher capabilities would allow. What was the next big step depends on the political viewpoint: In the US (and the West in general) the landing of the first humans on the Moon in 1969 is seen as the culmination of the space race. ] became the first person to walk on the Moon as the commander of the American mission '']'' by first setting foot on the Moon at 02:56 UTC on July 21, 1969. The last person (as of 2006) to stand on the Moon was ], who as part of the mission '']'' walked on the Moon in December 1972. The ] Moon landing and return was enabled by several technologies where the US surpassed the Russians; for example, the US achieved considerable advances in ] chemistry and ] technology in the early 1960s. On the other hand, many scientifically important steps, such as the first photographs of the until then unseen far side of the Moon in 1959, were first achieved by the Soviet Union. Moon samples have been brought back to Earth by three Luna missions ('']'', '']'', and '']'') and the ''Apollo'' missions ''11'' through ''17'' (excepting '']'', which aborted its planned lunar landing).
] ] raises the ] on the surface of the Moon.]]


====Impact craters====
Scientific instrument packages were installed on the lunar surface during all of the ''Apollo'' missions. Long-lived ] stations (Apollo lunar surface experiment package) were installed at the Apollo 12, 14, 15, 16, and 17 landing sites, whereas a temporary station referred to as EASEP (Early Apollo Scientific Experiments Package) was installed during the Apollo 11 mission. The ALSEP stations contained, among others, heat flow probes, seismometers, magnetometers, and corner-cube retroreflectors. Transmission of data to Earth was terminated on September 30 1977 because of budgetary considerations. Since the ] (LLR) corner-cube arrays are passive instruments, they are still being used to today. Ranging to the LLR stations is routinely performed from earth-based stations with an accuracy of a few centimeters, and data from this experiment are being used to place constraints on the size of the lunar core.<ref>{{cite journal | last = J. Dickey, P. Bender, J. Faller, X. Newhall, R. Ricklefs, J. Ries, P. Shelus, C. Veillet, A. Whipple, J. Wiant, J. Williams, and C. Yoder | date=1994 | title= Lunar laser ranging: a continuing legacy of the Apollo program | journal= Science | volume=265 |pages=482-490}}</ref>.
{{Further |List of craters on the Moon}}
] on the ]]]
A major geologic process that has affected the Moon's surface is ]ing,<ref>{{cite book |last=Melosh |first=H. J. |title=Impact cratering: A geologic process |date=1989 |publisher=] |isbn=978-0-19-504284-9}}</ref> with craters formed when asteroids and comets collide with the lunar surface. There are estimated to be roughly 300,000 craters wider than {{Convert |1 |km |4=1 |abbr=on}} on the Moon's near side.<ref>{{cite web |title=Moon Facts |url=http://planck.esa.int/science-e/www/object/index.cfm?fobjectid=31412 |work=SMART-1 |publisher=] |date=2010 |access-date=May 12, 2010 |archive-date=March 17, 2012 |archive-url=https://web.archive.org/web/20120317004513/http://planck.esa.int/science-e/www/object/index.cfm?fobjectid=31412 |url-status=dead }}</ref> Lunar craters exhibit a variety of forms, depending on their size. In order of increasing diameter, the basic types are simple craters with smooth bowl shaped interiors and upturned rims, ]s with flat floors, terraced walls and central peaks, ] basins, and ]s with two or more concentric rings of peaks.<ref></ref> The vast majority of impact craters are circular, but some, like ] and ], have more polygonal outlines, possibly guided by underlying faults and joints. Others, such as the ] pair, ], and ], are elongated. Such elongation can result from highly oblique impacts, ] impacts, fragmentation of impactors before surface strike, or closely spaced ] impacts.<ref>{{cite journal
| last1=Herrick | first1 = R.R.
| last2=Forsberg-Taylor | first2 = N. K.
| year = 2003
| title = The shape and appearance of craters formed by oblique impact on the Moon and Venus
| journal = Meteoritics & Planetary Science
| volume = 38
| issue = 11
| pages = 1551–1578
| doi = 10.1111/j.1945-5100.2003.tb00001.x
| bibcode = 2003M&PS...38.1551H
| url = https://onlinelibrary.wiley.com/doi/pdfdirect/10.1111/j.1945-5100.2003.tb00001.x
}}</ref>


The ] is based on the most prominent impact events, such as multi-ring formations like ], ], and ] that are between hundreds and thousands of kilometers in diameter and associated with a broad apron of ejecta deposits that form a regional ].<ref name="geologic" /> The lack of an atmosphere, weather, and recent geological processes mean that many of these craters are well-preserved. Although only a few ] have been definitively dated, they are useful for assigning relative ages. Because impact craters accumulate at a nearly constant rate, counting the number of craters per unit area can be used to estimate the age of the surface.<ref name="geologic" />
From the mid-1960s to the mid-1970s, there were a total of 65 Moon landings (both manned and robotic, with 10 in 1971 alone), but after ] in 1976 they stopped. The Soviet Union started focusing on ] and ]s and the US on ] and beyond. In 1990 ] orbited the Moon with the '']'' spacecraft, becoming the third country to place a spacecraft into lunar orbit. The spacecraft released a smaller probe, '']'', in lunar orbit, but the transmitter failed rendering the mission scientifically useless.
However care needs to be exercised with the ] technique due to the potential presence of ]s. Ejecta from impacts can create secondary craters that often appear in clusters or chains but can also occur as isolated formations at a considerable distance from the impact. These can resemble primary craters, and may even dominate small crater populations, so their unidentified presence can distort age estimates.<ref>{{cite journal
| last1=Xiao | first1 = Z.
| last2=Strom | first2 = R.G.
| year = 2012
| title = Problems determining relative and absolute ages using the small crater population
| journal = Icarus
| volume = 220
| issue = 1
| pages = 254–267
| doi = 10.1016/j.icarus.2012.05.012
| bibcode = 2012Icar..220..254X
| url = https://www.uni-muenster.de/imperia/md/content/planetology/lectures/ss2015/143897-hottopics/xiao_and_strom_2012.pdf
}}</ref>


The radiometric ages of impact-melted rocks collected during the ] cluster between 3.8 and 4.1&nbsp;billion years old: this has been used to propose a ] period of increased impacts.<ref>{{cite journal |last1=Hartmann |first1=William K. |last2=Quantin |first2=Cathy |last3=Mangold |first3=Nicolas |date=2007 |volume=186 |issue=1 |pages=11–23 |journal=] |title=Possible long-term decline in impact rates: 2. Lunar impact-melt data regarding impact history |doi=10.1016/j.icarus.2006.09.009 |bibcode=2007Icar..186...11H}}</ref>
In 1994, the US finally returned to the Moon, robotically at least, sending the Joint Defense Department/NASA spacecraft ]. This mission obtained the first near global topographic map of the Moon, as well as the first global ] images of the lunar surface. This was followed by the '']'' mission in 1998. The ] ] on ''Lunar Prospector'' indicated the presence of excess hydrogen at the lunar poles, which is likely due to the presence of water ice in the upper few meters of the regolith within permanently shadowed craters. The European spacecraft '']'' was launched ] ] and was in lunar orbit from ] ] to ] ].


High-resolution images from the Lunar Reconnaissance Orbiter in the 2010s show a contemporary crater-production rate significantly higher than was previously estimated. A secondary cratering process caused by ] is thought to churn the top two centimeters of regolith on a timescale of 81,000 years.<ref>{{cite web |url=https://www.newscientist.com/article/2108929-the-moon-has-hundreds-more-craters-than-we-thought/ |title=The moon has hundreds more craters than we thought |first=Rebecca |last=Boyle |url-status=live |archive-url=https://web.archive.org/web/20161013143743/https://www.newscientist.com/article/2108929-the-moon-has-hundreds-more-craters-than-we-thought/ |archive-date=October 13, 2016}}</ref><ref>{{cite journal |title=Quantifying crater production and regolith overturn on the Moon with temporal imaging |first1=Emerson J. |last1=Speyerer |first2=Reinhold Z. |last2=Povilaitis |first3=Mark S. |last3=Robinson |first4=Peter C. |last4=Thomas |first5=Robert V. |last5=Wagner |date=October 13, 2016 |journal=] |volume=538 |issue=7624 |pages=215–218 |doi=10.1038/nature19829 |pmid=27734864 |bibcode=2016Natur.538..215S|s2cid=4443574 }}</ref> This rate is 100 times faster than the rate computed from models based solely on direct micrometeorite impacts.<ref>{{cite web | title=Earth's Moon Hit by Surprising Number of Meteoroids | date=October 13, 2016 | publisher=NASA | url=https://www.nasa.gov/press-release/goddard/2016/lro-lunar-cratering | access-date=May 21, 2021 | archive-date=July 2, 2022 | archive-url=https://web.archive.org/web/20220702225136/https://www.nasa.gov/press-release/goddard/2016/lro-lunar-cratering/ | url-status=live }}</ref>
On ] ], US President George W. Bush called for a plan to return manned missions to the Moon by 2020 (see ]).<ref>{{cite press release|url =http://www.nasa.gov/missions/solarsystem/bush_vision.html| title = President Bush Offers New Vision For NASA| date =Dec. 14, 2004|publisher =NASA}}</ref> NASA is now planning for the construction of a permanent outposts at one of the lunar poles.<ref>{{cite press release |title=
NASA Unveils Global Exploration Strategy and Lunar Architecture |publisher= NASA |date=Dec. 4, 2006 |url=http://www.nasa.gov/home/hqnews/2006/dec/HQ_06361_ESMD_Lunar_Architecture.html |format= |language= |accessdate=Dec. 4, 2006}}</ref> The ] has expressed ambitious plans for exploring the Moon and has started the ] for lunar exploration. ] has two planned lunar missions, '']'' and '']''. India is to launch an unmanned mission '']'' in February 2008. The US will launch the ] in 2008. ] also announced to resume its previously frozen project ], consisting of an unmanned lander and orbiter, which is slated to land in ]. <ref>{{cite web | url = http://www.aviationnow.com/avnow/news/channel_awst_story.jsp?id=news/aw060506p2.xml | title = Russia Plans Ambitious Robotic Lunar Mission | last = Craig Covault | date = June 4, 2006}}</ref>


====Lunar swirls====
==Human understanding of the Moon==
{{Main|Lunar swirls}}
] (1647).]]
]]]
{{see also|Moon in art and literature|Lunar effect}}
Lunar swirls are enigmatic features found across the Moon's surface. They are characterized by a high albedo, appear optically immature (i.e. the optical characteristics of a relatively young ]), and often have a sinuous shape. Their shape is often accentuated by low ] regions that wind between the bright swirls. They are located in places with enhanced surface ]s and many are located at the ] of major impacts. Well known swirls include the ] feature and ]. They are hypothesized to be areas that have been partially shielded from the ], resulting in slower ].<ref>{{cite journal | title=Reflectance spectra of seven lunar swirls examined by statistical methods: A space weathering study | last1=Chrbolková | first1=Kateřina | last2=Kohout | first2=Tomáš | last3=Ďurech | first3=Josef | journal=Icarus | volume=333 | pages=516–527 | date=November 2019 | doi=10.1016/j.icarus.2019.05.024 | bibcode=2019Icar..333..516C | doi-access=free }}</ref>


=== Presence of water ===
The Moon has been the subject of many works of art and literature and the inspiration for countless others. It is a motif in the visual arts, the performing arts, poetry, prose and music. A 5,000 year old rock carving at ], ] may represent the Moon, which would be the earliest depiction discovered.<ref name=spacetoday>{{cite web|url=http://www.spacetoday.org/SolSys/Earth/OldStarCharts.html |title = Carved and Drawn Prehistoric Maps of the Cosmos
{{Main|2 = Lunar water}}
| publisher=Space Today Online |accessdate=2006-10-08}}</ref> In many prehistoric and ancient cultures, the Moon was thought to be a ] or other ] phenomenon, and ] of the Moon continue to be propagated today. For further details, see ].
Liquid water cannot persist on the lunar surface. When exposed to solar radiation, water quickly decomposes through a process known as ] and is lost to space. However, since the 1960s, scientists have hypothesized that water ice may be deposited by impacting ] or possibly produced by the reaction of oxygen-rich lunar rocks, and hydrogen from ], leaving traces of water which could possibly persist in cold, permanently shadowed craters at either pole on the Moon.<ref name="Margot1999" /><ref>
{{cite journal |first=William R. |last=Ward |title=Past Orientation of the Lunar Spin Axis |journal=] |date=August 1, 1975 |volume=189 |issue=4200 |pages=377–379 |doi=10.1126/science.189.4200.377 |pmid=17840827 |bibcode=1975Sci...189..377W|s2cid=21185695 }}</ref> Computer simulations suggest that up to {{Convert |14000 |km2 |abbr=on}} of the surface may be in permanent shadow.<ref name="M03" /> The presence of usable quantities of water on the Moon is an important factor in rendering ] as a cost-effective plan; the alternative of transporting water from Earth would be prohibitively expensive.<ref name="seedhouse2009" />


In years since, signatures of water have been found to exist on the lunar surface.<ref name="moonwater_18032010" /> In 1994, the ] located on the '']'' spacecraft, indicated the existence of small, frozen pockets of water close to the surface. However, later radar observations by ], suggest these findings may rather be rocks ejected from young impact craters.<ref>{{cite web |last=Spudis |first=P. |title=Ice on the Moon |url=http://www.thespacereview.com/article/740/1 |publisher=] |date=November 6, 2006 |access-date=April 12, 2007 |url-status=dead |archive-url=https://web.archive.org/web/20070222083000/http://www.thespacereview.com/article/740/1 |archive-date=February 22, 2007 }}</ref> In 1998, the ] on the ''Lunar Prospector'' spacecraft showed that high concentrations of hydrogen are present in the first meter of depth in the regolith near the polar regions.<ref name="Feldman1998" /> Volcanic lava beads, brought back to Earth aboard Apollo 15, showed small amounts of water in their interior.<ref name="Saal2008" />
]
Among the first in the Western world to offer a scientific explanation for the Moon was the ] ] ], who reasoned that the Sun and Moon were both giant ] rocks, and that the latter reflected the light of the former. His atheistic view of the heavens was one cause for his imprisonment and eventual exile. By the ], before the invention of the ], more and more people began to recognize the Moon as a ], though they believed that it was "perfectly smooth". In 1609, ] drew one of the first telescopic drawings of the Moon in his book '']'' and noted that it was not smooth but had mountains and ]s. Later in the 17th century, ] and ] drew a map of the Moon and gave many craters the names they still have today.


]'s '']'' discovered, for the first time, water-rich minerals (shown in blue around a small crater from which they were ejected).|300x300px]]
]" (1902) by ].]]
On maps, the dark parts of the Moon's surface were called ''maria'' (singular ''mare'') or seas, and the light parts were called ''terrae'' or continents.
The possibility that the Moon could contain vegetation and be inhabited by selenites was seriously considered by some major astronomers even into the first decades of the 19th century. The contrast between the brighter highlands and darker maria create the patterns seen by different cultures as the ], the rabbit and the buffalo, amongst others.


The 2008 '']'' spacecraft has since confirmed the existence of surface water ice, using the on-board ]. The spectrometer observed absorption lines common to ], in reflected sunlight, providing evidence of large quantities of water ice, on the lunar surface. The spacecraft showed that concentrations may possibly be as high as 1,000&nbsp;].<ref name="Pieters2009" /> Using the mapper's reflectance spectra, indirect lighting of areas in shadow confirmed water ice within 20° latitude of both poles in 2018.<ref>{{cite journal |title=Direct evidence of surface exposed water ice in the lunar polar regions |first1=Shuai |last1=Li |first2=Paul G. |last2=Lucey |first3=Ralph E. |last3=Milliken |first4=Paul O. |last4=Hayne |first5=Elizabeth |last5=Fisher |first6=Jean-Pierre |last6=Williams |first7=Dana M. |last7=Hurley |first8=Richard C. |last8=Elphic |journal=Proceedings of the National Academy of Sciences |volume=115 |issue=36 |pages=8907–8912 |date=August 2018 |doi=10.1073/pnas.1802345115 |pmid=30126996 |pmc=6130389|bibcode=2018PNAS..115.8907L |doi-access=free }}</ref> In 2009, '']'' sent a {{Convert|2300 |kg |abbr=on}} impactor into a ] polar crater, and detected at least {{Convert |100 |kg |abbr=on}} of water in a plume of ejected material.<ref name="Planetary" /><ref name="Colaprete" /> Another examination of the LCROSS data showed the amount of detected water to be closer to {{Convert |155 |± |12 |kg |abbr=on}}.<!--, or 5.6% (±2.9%) by mass.--This seems too technical for this overview--><ref name="Colaprete2010" />
In 1835, the ] fooled some people into thinking that there were exotic animals living on the Moon.<ref>{{cite web|url =http://www.museumofhoaxes.com/moonhoax.html| title = The Great Moon Hoax |author =Alex Boese | language =English|date=2002}}</ref> Almost at the same time however (during 1834&ndash;1836), ] and ] were publishing their four-volume ''Mappa Selenographica'' and the book ''Der Mond'' in 1837, which firmly established the conclusion that the Moon has no bodies of water nor any appreciable atmosphere.


In May 2011, 615–1410 ppm water in ] in lunar sample 74220 was reported,<ref name="hauri" /> the famous high-titanium "orange glass soil" of volcanic origin collected during the ] mission in 1972. The inclusions were formed during explosive eruptions on the Moon approximately 3.7 billion years ago. This concentration is comparable with that of magma in Earth's ]. Although of considerable selenological interest, this insight does not mean that water is easily available since the sample originated many kilometers below the surface, and the inclusions are so difficult to access that it took 39 years to find them with a state-of-the-art ion microprobe instrument.
There remained some controversy over whether features on the Moon could undergo changes. Some observers claimed that some small craters had appeared or disappeared, or that other forms of transient phenomena had occurred. Today, many of these claims are thought to be illusory, resulting from observing under different lighting conditions, poor ], or the inadequacy of earlier drawings. It is however known that the phenomenon of ] occasionally occurs, and these might be responsible for a minor percentage of the reported ].


Analysis of the findings of the Moon Mineralogy Mapper (M3) revealed in August 2018 for the first time "definitive evidence" for water-ice on the lunar surface.<ref name=":1">{{Cite news |url=https://www.bbc.co.uk/news/science-environment-45251370 |title=Water ice 'detected on Moon's surface' |last=Rincon |first=Paul |date=August 21, 2018 |work=BBC News |access-date=August 21, 2018 |archive-date=August 21, 2018 |archive-url=https://web.archive.org/web/20180821151638/https://www.bbc.co.uk/news/science-environment-45251370 |url-status=live }}</ref><ref>{{Cite news |url=https://www.scientificamerican.com/article/beyond-the-shadow-of-a-doubt-water-ice-exists-on-the-moon/ |title=Beyond the Shadow of a Doubt, Water Ice Exists on the Moon |last=David |first=Leonard |work=Scientific American |access-date=August 21, 2018 |archive-date=August 21, 2018 |archive-url=https://web.archive.org/web/20180821125629/https://www.scientificamerican.com/article/beyond-the-shadow-of-a-doubt-water-ice-exists-on-the-moon/ |url-status=live }}</ref> The data revealed the distinct reflective signatures of water-ice, as opposed to dust and other reflective substances.<ref name=":2">{{Cite news |url=https://www.space.com/41554-water-ice-moon-surface-confirmed.html |title=Water Ice Confirmed on the Surface of the Moon for the 1st Time! |work=Space.com |access-date=August 21, 2018 |archive-date=August 21, 2018 |archive-url=https://web.archive.org/web/20180821134450/https://www.space.com/41554-water-ice-moon-surface-confirmed.html |url-status=live }}</ref> The ice deposits were found on the North and South poles, although it is more abundant in the South, where water is trapped in permanently shadowed craters and crevices, allowing it to persist as ice on the surface since they are shielded from the sun.<ref name=":1"/><ref name=":2"/>
The ] of the Moon remained completely unknown until the ] probe was launched in 1959, and was extensively mapped by the ] in the 1960s.


In October 2020, astronomers reported detecting ] on the sunlit surface of the Moon by several independent spacecraft, including the ] (SOFIA).<ref name="NA-20201026">{{cite journal |author=Honniball, C.I. |display-authors=et al. |title=Molecular water detected on the sunlit Moon by SOFIA |url=https://www.nature.com/articles/s41550-020-01222-x |date=October 26, 2020 |journal=] |volume=5 |issue=2 |pages=121–127 |doi=10.1038/s41550-020-01222-x |bibcode=2021NatAs...5..121H |s2cid=228954129 |access-date=October 26, 2020 |archive-date=October 27, 2020 |archive-url=https://web.archive.org/web/20201027143615/https://www.nature.com/articles/s41550-020-01222-x |url-status=live }}</ref><ref name="NA-20201026poh">{{cite journal |author=Hayne, P.O. |display-authors=et al. |title=Micro cold traps on the Moon |url=https://www.nature.com/articles/s41550-020-1198-9 |date=October 26, 2020 |journal=] |volume=5 |issue=2 |pages=169–175 |doi=10.1038/s41550-020-1198-9 |arxiv=2005.05369 |bibcode=2021NatAs...5..169H |s2cid=218595642 |access-date=October 26, 2020 |archive-date=October 27, 2020 |archive-url=https://web.archive.org/web/20201027143618/https://www.nature.com/articles/s41550-020-1198-9 |url-status=live }}</ref><ref name="WP-20201026">{{cite news |last1=Guarino |first1=Ben |last2=Achenbach |first2=Joel |title=Pair of studies confirm there is water on the moon – New research confirms what scientists had theorized for years — the moon is wet. |url=https://www.washingtonpost.com/science/2020/10/26/water-on-the-moon/ |date=October 26, 2020 |newspaper=] |access-date=October 26, 2020 |archive-date=October 26, 2020 |archive-url=https://web.archive.org/web/20201026184808/https://www.washingtonpost.com/science/2020/10/26/water-on-the-moon/ |url-status=live }}</ref><ref name="NYT-20201026">{{cite news |last=Chang |first=Kenneth |title=There's Water and Ice on the Moon, and in More Places Than NASA Once Thought – Future astronauts seeking water on the moon may not need to go into the most treacherous craters in its polar regions to find it. |url=https://www.nytimes.com/2020/10/26/science/moon-ice-water.html |date=October 26, 2020 |work=] |access-date=October 26, 2020 |archive-date=October 26, 2020 |archive-url=https://web.archive.org/web/20201026170716/https://www.nytimes.com/2020/10/26/science/moon-ice-water.html |url-status=live }}</ref>
== Legal status ==

{{see also|Space law}}
==Earth–Moon system==
Though several flags of the Soviet Union<ref>Whilst no Soviet flags have been hand-placed, Soviet coats of arms were scattered by ] in 1959, and similar devices by later landing missions</ref> and the United States have been symbolically planted on the Moon, the Russian and U.S. governments make no claims to any part of the Moon's surface. Russia and the U.S. are party to the ], which places the Moon under the same jurisdiction as ] (]). This treaty also restricts use of the Moon to peaceful purposes, explicitly banning ] (including ]) and military installations of any kind. A second treaty, the ], was proposed to restrict the exploitation of the Moon's resources by any single nation, but it has not been signed by any of the ]. Several individuals have made claims to the Moon in whole or in part, though none of these claims are generally considered credible (see ]).
{{anchor|Orbit and relationship to Earth|Relationship to Earth}}
{{See also|Satellite system (astronomy)|Claimed moons of Earth|Double planet}}

===Orbit===
{{Main|Orbit of the Moon|Lunar theory|Lunar orbit|Cislunar space}}
] as the Moon passes on its orbit in between the observing ] and Earth]]

The Earth and the Moon form the Earth-Moon ] with a shared center of mass, or ]. This barycenter is {{Convert|1700 |km |abbr=on}} (about a quarter of Earth's radius) beneath the Earth's surface.

The Moon's orbit is slightly elliptical, with an ] of 0.055.<ref name="W06"/>
The ] of the geocentric lunar orbit, called the ], is approximately 400,000&nbsp;km (250,000 miles or 1.28 light-seconds), comparable to going ] 9.5 times.<ref name="The Aerospace Corporation 2023 j509">{{cite web | author=The Aerospace Corporation | title=It's International Moon Day! Let's talk about Cislunar Space. | website=Medium | date=July 20, 2023 | url=https://medium.com/the-aerospace-corporation/its-international-moon-day-let-s-talk-about-cislunar-space-9d108f1a1b0b | access-date=November 7, 2023 | archive-date=November 8, 2023 | archive-url=https://web.archive.org/web/20231108000242/https://medium.com/the-aerospace-corporation/its-international-moon-day-let-s-talk-about-cislunar-space-9d108f1a1b0b | url-status=live }}</ref>

The Moon makes a complete orbit around Earth with respect to the fixed stars, its ], about once every 27.3&nbsp;days.{{efn |name=orbpd}} However, because the Earth-Moon system moves at the same time in its orbit around the Sun, it takes slightly longer, 29.5&nbsp;days, {{efn |name=synpd}}<ref name="worldbook"/> to return at the same ], completing a full cycle, as seen from Earth. This ] or synodic month is commonly known as the ] and is equal to the length of the ] on the Moon.<ref name="Day">{{cite news|url=https://www.universetoday.com/20524/how-long-is-a-day-on-the-moon-1/|date=July 10, 2017|author=Matt Williams|title=How Long is a Day on the Moon?|newspaper=Universe Today |access-date=December 5, 2020|archive-date=November 29, 2020|archive-url=https://web.archive.org/web/20201129020253/https://www.universetoday.com/20524/how-long-is-a-day-on-the-moon-1/|url-status=live}}</ref>

Due to ], the Moon has a 1:1 ]. This ]–] ratio makes the Moon's orbital periods around Earth equal to its corresponding ]s. This is the reason for only one side of the Moon, its so-called ], being visible from Earth. That said, while the movement of the Moon is in resonance, it still is not without nuances such as ], resulting in slightly changing perspectives, making over time and location on Earth about 59% of the Moon's surface visible from Earth.<ref name="Liberation">{{cite web |last=Stern |first=David |date=March 30, 2014 |title=Libration of the Moon |url=https://www-istp.gsfc.nasa.gov/stargaze/Smoon4.htm |url-status=live |archive-url=https://web.archive.org/web/20200522153419/https://www-istp.gsfc.nasa.gov/stargaze/Smoon4.htm |archive-date=May 22, 2020 |access-date=February 11, 2020 |website=NASA}}</ref>

Unlike most satellites of other planets, the Moon's orbital plane is closer to the ] than to the planet's ]. The Moon's orbit is subtly ] by the Sun and Earth in many small, complex and interacting ways. For example, the plane of the Moon's orbit ] once every 18.61{{nbsp}}years,<ref>{{cite journal |author1=Haigh, I. D.|author2=Eliot, M.|author3=Pattiaratchi, C. |year=2011 |title=Global influences of the 18.61 year nodal cycle and 8.85 year cycle of lunar perigee on high tidal levels |journal=J. Geophys. Res. |volume=116 |issue=C6 |pages=C06025 |doi=10.1029/2010JC006645 |bibcode=2011JGRC..116.6025H |url=https://api.research-repository.uwa.edu.au/files/3380567/A0059.pdf |access-date=September 24, 2019 |archive-date=December 12, 2019 |archive-url=https://web.archive.org/web/20191212170314/https://api.research-repository.uwa.edu.au/files/3380567/A0059.pdf |url-status=live |doi-access=free }}</ref> which affects other aspects of lunar motion. These follow-on effects are mathematically described by ].<ref name="Beletskii2" />

]

===Tidal effects===
{{Main |Tidal force |Tidal acceleration |Tide |Theory of tides}}
]
The gravitational attraction that Earth and the Moon (as well as the Sun) exert on each other manifests in a slightly greater attraction on the sides closest to each other, resulting in ]. ] are the most widely experienced result of this, but tidal forces also considerably affect other mechanics of Earth, as well as the Moon and their system.

The lunar solid crust experiences tides of around {{Convert |10 |cm |4=0 |abbr=on}} amplitude over 27&nbsp;days, with three components: a fixed one due to Earth, because they are in ], a variable tide due to orbital eccentricity and inclination, and a small varying component from the Sun.<ref name="touma1994" /> The Earth-induced variable component arises from changing distance and ], a result of the Moon's orbital eccentricity and inclination (if the Moon's orbit were perfectly circular and un-inclined, there would only be solar tides).<ref name="touma1994" /> According to recent research, scientists suggest that the Moon's influence on the Earth may contribute to maintaining ].<ref>{{cite web |author=Iain Todd |date=March 31, 2018 |title=Is the Moon maintaining Earth's magnetism? |url=https://www.skyatnightmagazine.com/news/is-the-moon-maintaining-earths-magnetism/ |url-status=live |archive-url=https://web.archive.org/web/20200922194637/https://www.skyatnightmagazine.com/news/is-the-moon-maintaining-earths-magnetism/ |archive-date=September 22, 2020 |access-date=November 16, 2020 |website=] Magazine}}</ref>

The cumulative effects of stress built up by these tidal forces produces ]. Moonquakes are much less common and weaker than are earthquakes, although moonquakes can last for up to an hour&nbsp;– significantly longer than terrestrial quakes&nbsp;– because of scattering of the seismic vibrations in the dry fragmented upper crust. The existence of moonquakes was an unexpected discovery from ]s placed on the Moon by ] ]s from 1969 through 1972.<ref>{{cite journal |last1=Latham |first1=Gary |date=1972 |last2=Ewing |first2=Maurice |last3=Dorman |first3=James |last4=Lammlein |first4=David |last5=Press |first5=Frank |last6=Toksőz |first6=Naft |last7=Sutton |first7=George |last8=Duennebier |first8=Fred |last9=Nakamura |first9=Yosio |title=Moonquakes and lunar tectonism |journal=] |volume=4 |issue=3–4 |pages=373–382 |doi=10.1007/BF00562004 |bibcode=1972Moon....4..373L|s2cid=120692155 }}</ref>

The most commonly known effect of tidal forces is elevated sea levels called ocean tides.<ref name="Lambeck1977" /> While the Moon exerts most of the tidal forces, the Sun also exerts tidal forces and therefore contributes to the tides as much as 40% of the Moon's tidal force; producing in interplay the ].<ref name="Lambeck1977" />

The tides are two bulges in the Earth's oceans, one on the side facing the Moon and the other on the side opposite. As the Earth rotates on its axis, one of the ocean bulges (high tide) is held in place "under" the Moon, while another such tide is opposite. The tide under the Moon is explained by the Moon's gravity being stronger on the water close to it. The tide on the opposite side can be explained either by the centrifugal force as the Earth orbits the ] or by the water's inertia as the Moon's gravity is stronger on the solid Earth close to it and it is pull away from the farther water.<ref>{{cite web |last1=Feynman |first1=Richard |title=Feynman's Lectures on Physics - The Law of Gravitation |url=https://www.youtube.com/watch?v=-UFr1X0prbo&t=1503s |website=YouTube |date=October 24, 2020 |access-date=5 December 2024}}</ref>

Thus, there are two high tides, and two low tides in about 24 hours.<ref name="Lambeck1977" /> Since the Moon is orbiting the Earth in the same direction of the Earth's rotation, the high tides occur about every 12 hours and 25 minutes; the 25 minutes is due to the Moon's time to orbit the Earth.

If the Earth were a water world (one with no continents) it would produce a tide of only one meter, and that tide would be very predictable, but the ocean tides are greatly modified by other effects:
* the frictional coupling of water to Earth's rotation through the ocean floors
* the ] of water's movement
* ocean basins that grow shallower near land
* the sloshing of water between different ocean basins<ref>{{cite journal |last=Le Provost |first=C. |author2=Bennett, A.F. |author3=Cartwright, D.E. |date=1995 |title=Ocean Tides for and from TOPEX/POSEIDON |pages=639–642 |journal=] |pmid=17745840 |volume=267 |issue=5198 |bibcode=1995Sci...267..639L |doi=10.1126/science.267.5198.639|s2cid=13584636 }}</ref>
As a result, the timing of the tides at most points on the Earth is a product of observations that are explained, incidentally, by theory.

====System evolution====
Delays in the tidal peaks of both ocean and solid-body tides cause ] in opposition to the Earth's rotation. This "drains" ] and rotational ] from Earth's rotation, slowing the Earth's rotation.<ref name="Lambeck1977" /><ref name="touma1994" /> That angular momentum, lost from the Earth, is transferred to the Moon in a process known as ], which lifts the Moon into a higher orbit while lowering orbital speed around the Earth.

Thus the distance between Earth and Moon is increasing, and the Earth's rotation is slowing in reaction.<ref name="touma1994" /> Measurements from laser reflectors left during the Apollo missions (]) have found that the Moon's distance increases by {{Convert |38 |mm |abbr=on}} per year (roughly the rate at which human fingernails grow).<ref>{{cite journal|last=Chapront|first=J.|author2=Chapront-Touzé, M.|author3=Francou, G.|date=2002|title=A new determination of lunar orbital parameters, precession constant and tidal acceleration from LLR measurements|journal=]|volume=387|issue=2|pages=700–709|bibcode=2002A&A...387..700C|doi=10.1051/0004-6361:20020420|doi-access=free|s2cid=55131241}}</ref><ref>{{cite news |url=https://www.bbc.co.uk/news/science-environment-12311119 |title=Why the Moon is getting further away from Earth |newspaper=BBC News |date=February 1, 2011 |access-date=September 18, 2015 |url-status=live |archive-url=https://web.archive.org/web/20150925185706/http://www.bbc.co.uk/news/science-environment-12311119 |archive-date=September 25, 2015}}</ref><ref>{{Cite journal|last1=Williams|first1=James G.|last2=Boggs|first2=Dale H.|date=2016|title=Secular tidal changes in lunar orbit and Earth rotation|url=https://doi.org/10.1007/s10569-016-9702-3|journal=Celestial Mechanics and Dynamical Astronomy|language=en|volume=126|issue=1|pages=89–129|doi=10.1007/s10569-016-9702-3|bibcode=2016CeMDA.126...89W|s2cid=124256137|issn=1572-9478|access-date=July 30, 2022|archive-date=July 30, 2022|archive-url=https://web.archive.org/web/20220730084922/https://link.springer.com/article/10.1007/s10569-016-9702-3|url-status=live}}</ref>
]s show that Earth's Day lengthens by about 17&nbsp;]s every year,<ref>{{cite web |last=Ray |first=R. |date=May 15, 2001 |url=http://bowie.gsfc.nasa.gov/ggfc/tides/intro.html |title=Ocean Tides and the Earth's Rotation |publisher=IERS Special Bureau for Tides |access-date=March 17, 2010 |url-status=dead |archive-url=https://web.archive.org/web/20100327084125/http://bowie.gsfc.nasa.gov/ggfc/tides/intro.html |archive-date=March 27, 2010 }}</ref><ref>{{Cite journal|last1=Stephenson|first1=F. R.|last2=Morrison|first2=L. V.|last3=Hohenkerk|first3=C. Y.|date=2016|title=Measurement of the Earth's rotation: 720 BC to AD 2015|journal=Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences|volume=472|issue=2196|pages=20160404|doi=10.1098/rspa.2016.0404|pmc=5247521|pmid=28119545|bibcode=2016RSPSA.47260404S}}</ref><ref>{{Cite journal|last1=Morrison|first1=L. V.|last2=Stephenson|first2=F. R.|last3=Hohenkerk|first3=C. Y.|last4=Zawilski|first4=M.|date=2021|title=Addendum 2020 to 'Measurement of the Earth's rotation: 720 BC to AD 2015'|journal=Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences|volume=477|issue=2246|pages=20200776|doi=10.1098/rspa.2020.0776|bibcode=2021RSPSA.47700776M|s2cid=231938488|doi-access=free}}</ref> slowly increasing the rate at which ] is adjusted by ]s.

This tidal drag makes the rotation of the Earth, and the orbital period of the Moon very slowly match. This matching first results in ] the lighter body of the orbital system, as is already the case with the Moon. Theoretically, in 50 billion years,<ref name="Universe Today 2016">{{cite web | title=When Will Earth Lock to the Moon? | website=Universe Today | date=April 12, 2016 | url=https://www.universetoday.com/128350/will-earth-lock-moon/ | access-date=January 5, 2022 | archive-date=May 28, 2022 | archive-url=https://web.archive.org/web/20220528015905/https://www.universetoday.com/128350/will-earth-lock-moon/ | url-status=live }}</ref> the Earth's rotation will have slowed to the point of matching the Moon's orbital period, causing the Earth to always present the same side to the Moon. However, the Sun will become a ], most likely engulfing the Earth-Moon system long before then.<ref>{{cite book | last1=Murray | first1=C.D. | last2=Dermott | first2=Stanley F. |title=Solar System Dynamics |date=1999 |publisher=] |isbn=978-0-521-57295-8 |page=184}}</ref><ref>{{cite book |last=Dickinson |first=Terence |author-link=Terence Dickinson |title=From the Big Bang to Planet X |date=1993 |publisher=] |location=Camden East, Ontario |isbn=978-0-921820-71-0 |pages=79–81}}</ref>

If the Earth-Moon system isn't engulfed by the enlarged Sun, the drag from the solar atmosphere can cause the orbit of the Moon to decay. Once the orbit of the Moon closes to a distance of {{convert|18470|km|mi|abbr=on}}, it will cross Earth's ], meaning that tidal interaction with Earth would break apart the Moon, turning it into a ]. Most of the orbiting rings will begin to decay, and the debris will impact Earth. Hence, even if the Sun does not swallow up Earth, the planet may be left moonless.<ref name=space070122>{{citation | first=David | last=Powell | date=January 22, 2007 | title=Earth's Moon Destined to Disintegrate | work=Space.com | publisher=Tech Media Network | url=http://www.space.com/scienceastronomy/070122_temporary_moon.html | access-date=June 1, 2010 | archive-date=September 6, 2008 | archive-url=https://archive.today/20080906222127/http://www.space.com/scienceastronomy/070122_temporary_moon.html | url-status=live }}</ref>

==Position and appearance==
{{anchor|Observation|Appearance from Earth}}
{{See also|Lunar observation}}
], the slight variation in the Moon's ] and viewing angle over a single lunar month as viewed from somewhere on the Earth's northern hemisphere.]]
The Moon's highest ] at ] varies by its ], or more correctly its orbital position, and time of the year, or more correctly the position of the Earth's axis. The full moon is highest in the sky during winter and lowest during summer (for each hemisphere respectively), with its altitude changing towards dark moon to the opposite.

At the ] and ]s the Moon is 24 hours above the horizon for two weeks every ] (about 27.3 days), comparable to the ] of the ]. ] in the ] use ] when the Sun is ] for months on end.<ref>{{cite web |date=January 16, 2016 |title=Moonlight helps plankton escape predators during Arctic winters |url=https://www.newscientist.com/article/dn28738-moonlight-helps-plankton-escape-predators-during-arctic-winters/ |url-status=live |archive-url=https://web.archive.org/web/20160130112225/https://www.newscientist.com/article/mg22930562-500-moonlight-helps-plankton-escape-predators-during-arctic-winters/ |archive-date=January 30, 2016 |work=]}}</ref>

The apparent orientation of the Moon depends on its position in the sky and the hemisphere of the Earth from which it is being viewed. In the ] it appears upside down compared to the view from the ].<ref>{{cite web |last=Howells |first=Kate |date=September 25, 2020 |title=Can the Moon be upside down? |url=https://www.planetary.org/articles/can-the-moon-be-upside-down |url-status=live |archive-url=https://web.archive.org/web/20220102132012/https://www.planetary.org/articles/can-the-moon-be-upside-down |archive-date=January 2, 2022 |access-date=January 2, 2022 |publisher=The Planetary Society}}</ref> Sometimes the "horns" of a crescent moon appear to be pointing more upwards than sideways. This phenomenon is called a ] and occurs more frequently in the ].<ref>{{cite web |last=Spekkens |first=K. |author1-link=Kristine Spekkens |date=October 18, 2002 |title=Is the Moon seen as a crescent (and not a "boat") all over the world? |url=http://curious.astro.cornell.edu/our-solar-system/46-our-solar-system/the-moon/observing-the-moon/124-is-the-moon-seen-as-a-crescent-and-not-a-boat-all-over-the-world-is-the-same-phase-of-the-moon-visible-from-the-northern-and-southern-hemispheres-advanced |url-status=live |archive-url=https://web.archive.org/web/20151016011356/http://curious.astro.cornell.edu/our-solar-system/46-our-solar-system/the-moon/observing-the-moon/124-is-the-moon-seen-as-a-crescent-and-not-a-boat-all-over-the-world-is-the-same-phase-of-the-moon-visible-from-the-northern-and-southern-hemispheres-advanced |archive-date=October 16, 2015 |access-date=September 28, 2015 |publisher=Curious About Astronomy}}</ref>

The ] varies from around {{convert|356,400|km|mi|abbr=on}} (]) to {{convert|406,700|km|mi|abbr=on}} (apogee), making the Moon's distance and apparent size fluctuate up to 14%.<ref name="size1"/><ref name="size2"/> On average the Moon's ] is about 0.52°, roughly the same apparent size as the Sun (see {{section link||Eclipses}}). In addition, a purely psychological effect, known as the ], makes the Moon appear larger when close to the horizon.<ref>{{cite book |last=Hershenson |first=Maurice |title=The Moon illusion |date=1989 |publisher=] |isbn=978-0-8058-0121-7 |page=5}}</ref>

===Rotation===
]
The ] of the Moon as it orbits the Earth results in it always keeping nearly the same face turned towards the planet. The side of the Moon that faces Earth is called the ], and the opposite the ]. The far side is often inaccurately called the "dark side", but it is in fact illuminated as often as the near side: once every 29.5 Earth days. During ] to ], the near side is dark.<ref>{{cite web |title=Dark Side of the Moon |author=Phil Plait |publisher=]: Misconceptions |url=http://www.badastronomy.com/bad/misc/dark_side.html |access-date=February 15, 2010 |url-status=live |archive-url=https://web.archive.org/web/20100412192834/http://www.badastronomy.com/bad/misc/dark_side.html |archive-date=April 12, 2010|author-link=Phil Plait }}</ref>

The Moon originally rotated at a faster rate, but early in its history its rotation slowed and became ] in this orientation as a result of ]al effects associated with ] deformations caused by Earth.<ref>{{cite journal |last=Alexander |first=M.E. |title=The Weak Friction Approximation and Tidal Evolution in Close Binary Systems |journal=] |date=1973 |volume=23 |issue=2 |pages=459–508 |bibcode=1973Ap&SS..23..459A |doi=10.1007/BF00645172|s2cid=122918899 }}</ref> With time, the energy of rotation of the Moon on its axis was dissipated as heat, until there was no rotation of the Moon relative to Earth. In 2016, planetary scientists using data collected on the 1998-99 NASA '']'' mission, found two hydrogen-rich areas (most likely former water ice) on opposite sides of the Moon. It is speculated that these patches were the poles of the Moon billions of years ago before it was tidally locked to Earth.<ref>{{cite news |title=Moon used to spin 'on different axis' |url=https://www.bbc.com/news/science-environment-35883576 |access-date=March 23, 2016 |url-status=live |archive-url=https://web.archive.org/web/20160323203442/http://www.bbc.com/news/science-environment-35883576 |archive-date=March 23, 2016 |work=BBC News |date=March 23, 2016}}</ref>

===Illumination and phases===
{{See also|Lunar phase|Moonlight|Halo (optical phenomenon)}}
] that result, as viewed from the ]. The ] is not to scale.]]

Half of the Moon's surface is always illuminated by the Sun (except during a ]). Earth also reflects light onto the Moon, observable at times as ] when it is reflected back to Earth from areas of the ] that are not illuminated by the Sun.

Since the Moon's axial tilt with respect to the ecliptic is 1.5427°, in every ] (346.62 days) the Sun moves from being 1.5427° north of the lunar equator to being 1.5427° south of it and then back, just as on Earth the Sun moves from the ] to the ] and back once every ]. The poles of the Moon are therefore in the dark for half a draconic year (or with only part of the Sun visible) and then lit for half a draconic year. The amount of sunlight falling on horizontal areas near the poles depends on the ] of the Sun. But these "seasons" have little effect in more equatorial areas.

With the different positions of the Moon, different areas of it are illuminated by the Sun. This illumination of different lunar areas, as viewed from Earth, produces the different ]s during the ]. The phase is equal to the area of the visible lunar sphere that is illuminated by the Sun. This area or ''degree of illumination'' is given by <math>(1-\cos e)/2=\sin^2(e/2)</math>, where <math>e</math> is the ] (i.e., the angle between Moon, the observer on Earth, and the Sun).

Brightness and apparent size of the Moon changes also due to its elliptic ]. At ] (closest), since the Moon is up to 14% closer to Earth than at ] (most distant), it subtends a ] which is up to 30% larger. Consequently, given the same phase, the Moon's brightness also varies by up to 30% between apogee and perigee.<ref>{{cite web |url=http://www.space.com/34515-supermoon-guide.html |title=Supermoon November 2016 |date=November 13, 2016 |access-date=November 14, 2016 |publisher=Space.com |url-status=live |archive-url=https://web.archive.org/web/20161114220725/http://www.space.com/34515-supermoon-guide.html |archive-date=November 14, 2016}}</ref> A full (or new) moon at such a position is called a ].<ref name="size1">{{cite web |title=Super Full Moon |date=March 16, 2011 |author=Tony Phillips |publisher=NASA |access-date=March 19, 2011 |url=https://science.nasa.gov/science-news/science-at-nasa/2011/16mar_supermoon/ |url-status=dead |archive-url=https://web.archive.org/web/20120507035348/https://science.nasa.gov/science-news/science-at-nasa/2011/16mar_supermoon/ |archive-date=May 7, 2012 }}</ref><ref name="size2">{{cite news |title=Full moon tonight is as close as it gets |date=March 18, 2011 |author=Richard K. De Atley |newspaper=] |access-date=March 19, 2011 |url=http://www.pe.com/localnews/stories/PE_News_Local_D_moon19.23a6364.html |url-status=dead |archive-url=https://web.archive.org/web/20110322161600/http://www.pe.com/localnews/stories/PE_News_Local_D_moon19.23a6364.html |archive-date=March 22, 2011}}</ref><ref>{{cite news |url=https://www.theguardian.com/science/2011/mar/19/super-moon-closest-point-years |title='Super moon' to reach closest point for almost 20 years |newspaper=The Guardian |date=March 19, 2011 |access-date=March 19, 2011 |url-status=live |archive-url=https://web.archive.org/web/20131225175506/http://www.theguardian.com/science/2011/mar/19/super-moon-closest-point-years |archive-date=December 25, 2013}}</ref>

====Observational phenomena====
There has been historical controversy over whether observed features on the Moon's surface change over time. Today, many of these claims are thought to be illusory, resulting from observation under different lighting conditions, poor ], or inadequate drawings. However, ] does occasionally occur and could be responsible for a minor percentage of the reported ]. Recently, it has been suggested that a roughly {{convert|3|km|abbr=on}} diameter region of the lunar surface was modified by a gas release event about a million years ago.<ref>{{cite journal |last=Taylor |first=G. J. |date=November 8, 2006 |title=Recent Gas Escape from the Moon |url=http://www.psrd.hawaii.edu/Nov06/MoonGas.html |url-status=dead |journal=Planetary Science Research Discoveries |page=110 |bibcode=2006psrd.reptE.110T |archive-url=https://web.archive.org/web/20070304055515/http://www.psrd.hawaii.edu/Nov06/MoonGas.html |archive-date=March 4, 2007 |access-date=April 4, 2007}}</ref><ref>{{cite journal |last1=Schultz |first1=P. H. |last2=Staid |first2=M. I. |last3=Pieters |first3=C. M. |date=2006 |title=Lunar activity from recent gas release |journal=] |volume=444 |issue=7116 |pages=184–186 |bibcode=2006Natur.444..184S |doi=10.1038/nature05303 |pmid=17093445 |s2cid=7679109}}</ref>

===Albedo and color===
]
The Moon has an exceptionally low ], giving it a ] that is slightly brighter than that of worn ]. Despite this, it is the ] after the ].<ref name="worldbook" />{{efn|name=brightness}} This is due partly to the brightness enhancement of the ]; the Moon at quarter phase is only one-tenth as bright, rather than half as bright, as at ].<ref name="Moon" /> Additionally, ] in the ] recalibrates the relations between the colors of an object and its surroundings, and because the surrounding sky is comparatively dark, the sunlit Moon is perceived as a bright object. The edges of the full moon seem as bright as the center, without ], because of the ] of ], which ] light more towards the Sun than in other directions. The Moon's color depends on the light the Moon reflects, which in turn depends on the Moon's surface and its features, having for example large darker regions. In general, the lunar surface reflects a brown-tinged gray light.<ref name="Science Mission Directorate 2020">{{cite web |date=November 11, 2020 |title=Colors of the Moon |url=https://science.nasa.gov/colors-moon |url-status=live |archive-url=https://web.archive.org/web/20220409212600/https://science.nasa.gov/colors-moon |archive-date=April 9, 2022 |access-date=April 9, 2022 |website=Science Mission Directorate}}</ref>

At times, the Moon can appear red or blue.
It may appear red during a ], because of the red spectrum of the Sun's light being ] onto the Moon by Earth's atmosphere. Because of this red color, lunar eclipses are also sometimes called ]. The Moon can also seem red when it appears at low angles and through a thick atmosphere.

The Moon may appear blue depending on the presence of certain particles in the air,<ref name="Science Mission Directorate 2020" /> such as volcanic particles,<ref>{{cite web |last=Gibbs |first=Philip |date=May 1997 |title=Why is the sky blue? |url=http://math.ucr.edu/home/baez/physics/General/BlueSky/blue_sky.html |url-status=live |archive-url=https://web.archive.org/web/20151102085211/http://math.ucr.edu/home/baez/physics/General/BlueSky/blue_sky.html |archive-date=November 2, 2015 |access-date=November 4, 2015 |website=math.ucr.edu |quote=... may cause the moon to have a blue tinge since the red light has been scattered out.}}</ref> in which case it can be called a ].

Because the words "red moon" and "blue moon" can also be used to refer to specific ]s of the year, they do not always refer to the presence of red or blue ].

=== Eclipses ===
{{Main |Solar eclipse |Lunar eclipse |Solar eclipses on the Moon|Eclipse cycle}}
{{multiple image
| total_width = 330
| image1 = Solar_eclipse_1999_4_NR.jpg
| image2 = Full Eclipse of the Moon as seen in from Irvine, CA, USA (52075715442) (cropped).jpg
| caption1 = A ] causes the Sun to be covered, revealing the white ].
| caption2 = The Moon, tinted reddish, during a ]
}}

Eclipses only occur when the Sun, Earth, and Moon are all in a straight line (termed "]"). ]s occur at ], when the Moon is between the Sun and Earth. In contrast, ]s occur at full moon, when Earth is between the Sun and Moon. The apparent size of the Moon is roughly the same as that of the Sun, with both being viewed at close to one-half a degree wide. The Sun is much larger than the Moon, but it is the vastly greater distance that gives it the same apparent size as the much closer and much smaller Moon from the perspective of Earth. The variations in apparent size, due to the non-circular orbits, are nearly the same as well, though occurring in different cycles. This makes possible both ] (with the Moon appearing larger than the Sun) and ] (with the Moon appearing smaller than the Sun) solar eclipses.<ref>{{cite web |first=F. |last=Espenak |date=2000 |url=http://www.mreclipse.com/Special/SEprimer.html |title=Solar Eclipses for Beginners |publisher=MrEclip |access-date=March 17, 2010 |archive-date=May 24, 2015 |archive-url=https://web.archive.org/web/20150524172606/http://www.mreclipse.com/Special/SEprimer.html |url-status=dead }}</ref> In a total eclipse, the Moon completely covers the disc of the Sun and the ] becomes visible to the ].

Because the distance between the Moon and Earth is very slowly increasing over time,<ref name="Lambeck1977" /> the angular diameter of the Moon is decreasing. As it evolves toward becoming a ], the size of the Sun, and its apparent diameter in the sky, are slowly increasing.{{efn|name=size changes}} The combination of these two changes means that hundreds of millions of years ago, the Moon would always completely cover the Sun on solar eclipses, and no annular eclipses were possible. Likewise, hundreds of millions of years in the future, the Moon will no longer cover the Sun completely, and total solar eclipses will not occur.<ref name=fourmilab>{{cite web |last=Walker |first=John |url=http://www.fourmilab.ch/images/peri_apo/ |title=Moon near Perigee, Earth near Aphelion |publisher=] |date=July 10, 2004 |access-date=December 25, 2013 |url-status=live |archive-url=https://web.archive.org/web/20131208153430/http://www.fourmilab.ch/images/peri_apo/ |archive-date=December 8, 2013}}</ref>

As the Moon's orbit around Earth is inclined by about 5.145° (5° 9') to the ], eclipses do not occur at every full and new moon. For an eclipse to occur, the Moon must be near the intersection of the two orbital planes.<ref name="eclipse" /> The periodicity and recurrence of eclipses of the Sun by the Moon, and of the Moon by Earth, is described by the ], which has a period of approximately 18&nbsp;years.<ref>{{cite web |url=http://sunearth.gsfc.nasa.gov/eclipse/SEsaros/SEsaros.html |last=Espenak |first=F. |title=Saros Cycle |publisher=NASA |access-date=March 17, 2010 |url-status=dead |archive-url=https://web.archive.org/web/20071030225501/http://sunearth.gsfc.nasa.gov/eclipse/SEsaros/SEsaros.html |archive-date=October 30, 2007 }}</ref>

Because the Moon continuously blocks the view of a half-degree-wide circular area of the sky, {{efn |name=area}}<ref>{{cite magazine |title=The Square Degree as a Unit of Celestial Area |author=Guthrie, D.V. |date=1947 |magazine=] |volume=55 |pages=200–203 |bibcode=1947PA.....55..200G}}</ref> the related phenomenon of ] occurs when a bright star or planet passes behind the Moon and is occulted: hidden from view. In this way, a solar eclipse is an occultation of the Sun. Because the Moon is comparatively close to Earth, occultations of individual stars are not visible everywhere on the planet, nor at the same time. Because of the ] of the lunar orbit, each year different stars are occulted.<ref>{{cite web |url=http://occsec.wellington.net.nz/total/totoccs.htm |title=Total Lunar Occultations |publisher=] |access-date=March 17, 2010 |url-status=dead |archive-url=https://web.archive.org/web/20100223022627/http://occsec.wellington.net.nz/total/totoccs.htm |archive-date=February 23, 2010}}</ref>

==History of exploration and human presence==
{{anchor |Exploration}}

{{Main|Exploration of the Moon|List of spacecraft that orbited the Moon|List of missions to the Moon|List of lunar probes}}

===Pre-telescopic observation (before 1609)===
It is believed by some that the oldest ]s from up to 40,000 ] of bulls and geometric shapes,<ref name="e093">{{cite web | last=Boyle | first=Rebecca | title=Ancient humans used the moon as a calendar in the sky | website=Science News | date=July 9, 2019 | url=https://www.sciencenews.org/article/moon-time-calendar-ancient-human-art | access-date=May 26, 2024 | archive-date=November 4, 2021 | archive-url=https://web.archive.org/web/20211104145754/https://www.sciencenews.org/article/moon-time-calendar-ancient-human-art | url-status=live }}</ref> or 20–30,000 year old ]s were used to observe the phases of the Moon, keeping time using the waxing and waning of ].<ref name=Burton2011/>
One of the earliest-discovered possible depictions of the Moon is a 3,000 BCE rock carving ''Orthostat 47'' at ], Ireland.<ref name="Knowth">{{cite web |url=https://www.knowth.com/lunar-maps.htm |title=Lunar maps |access-date=September 18, 2019 |archive-date=June 1, 2019 |archive-url=https://web.archive.org/web/20190601184833/https://www.knowth.com/lunar-maps.htm |url-status=live }}</ref><ref name="spacetoday">{{cite web |url=http://www.spacetoday.org/SolSys/Earth/OldStarCharts.html |title=Carved and Drawn Prehistoric Maps of the Cosmos |publisher=Space Today |date=2006 |access-date=April 12, 2007 |url-status=dead |archive-url=https://web.archive.org/web/20120305162253/http://www.spacetoday.org/SolSys/Earth/OldStarCharts.html |archive-date=March 5, 2012 }}</ref> ] like ] ] are found since the 3rd millennium BCE.<ref name=BlackGreen1992/> Though the oldest found and identified astronomical depiction of the Moon is the ] from {{circa|1800–1600 BCE}}.<ref name="g361">{{cite web | title=Nebra Sky Disc | website=State Museum of Prehistory | url=https://www.landesmuseum-vorgeschichte.de/en/nebra-sky-disc | access-date=27 September 2024}}</ref><ref name="k874">{{cite web | last=Simonova | first=Michaela | title=Under the Moonlight: Depictions of the Moon in Art | website=TheCollector | date=January 2, 2022 | url=https://www.thecollector.com/depictions-of-the-moon-in-art/ | access-date=May 26, 2024}}</ref>

] ({{circa|1800–1600 BCE}}), found near a possibly ], most likely depicting the Sun or full Moon, the Moon as a crescent, the ] and the summer and winter solstices as strips of gold on the side of the disc,<ref name="Meller 2021">{{cite book|url=https://www.academia.edu/80363367|title=Time is power. Who makes time?: 13th Archaeological Conference of Central Germany|chapter=The Nebra Sky Disc – astronomy and time determination as a source of power|last=Meller|first=Harald|date=2021|publisher=Landesmuseum für Vorgeschichte Halle (Saale).|isbn=978-3-948618-22-3}}</ref><ref>{{cite AV media |url=https://www.youtube.com/watch?v=0dlijsmVJ9c&t=760s |title=Concepts of cosmos in the world of Stonehenge |website=British Museum |date=2022}}</ref> with the top representing the ]<ref name=":03">{{Cite book |last1=Bohan |first1=Elise |url=https://www.worldcat.org/oclc/940282526 |title=Big History |last2=Dinwiddie |first2=Robert |last3=Challoner |first3=Jack |last4=Stuart |first4=Colin |last5=Harvey |first5=Derek |last6=Wragg-Sykes |first6=Rebecca |last7=Chrisp |first7=Peter |last8=Hubbard |first8=Ben |last9=Parker |first9=Phillip |collaboration=Writers |date=February 2016 |publisher=] |others=Foreword by ] |isbn=978-1-4654-5443-0 |edition=1st American |location=] |page=20 |oclc=940282526}}</ref> and ].]]

The ] philosopher ] ({{died-in|428 BC}}) reasoned that the Sun and Moon were both giant spherical rocks, and that the latter reflected the light of the former.<ref>{{cite web |last=O'Connor |first=J.J. |author2=Robertson, E.F. |date=February 1999 |url=http://www-history.mcs.st-andrews.ac.uk/Biographies/Anaxagoras.html |title=Anaxagoras of Clazomenae |publisher=] |access-date=April 12, 2007 |url-status=live |archive-url=https://web.archive.org/web/20120112072236/http://www-history.mcs.st-andrews.ac.uk/Biographies/Anaxagoras.html |archive-date=January 12, 2012}}</ref><ref name=Needham1986/>{{rp|page=227}} Elsewhere in the {{nowrap|5th century BC}} to {{nowrap|4th century BC}}, ] had recorded the 18-year ] of ]s,<ref>{{cite journal |doi=10.2307/1006543 |title=Saros Cycle Dates and Related Babylonian Astronomical Texts |first1=A. |last1=Aaboe |first2=J.P. |last2=Britton |first3=J.A. |last3=Henderson |first4=Otto |last4=Neugebauer |author-link4=Otto Neugebauer |first5=A.J. |last5=Sachs |journal=] |volume=81 |issue=6 |pages=1–75 |date=1991 |quote=One comprises what we have called "Saros Cycle Texts", which give the months of eclipse possibilities arranged in consistent cycles of 223&nbsp;months (or 18&nbsp;years). |jstor=1006543}}</ref> <!--The texts discussed in that article are more recent than 490 BC and, as mentioned in the paper, the observations can have occurred no earlier than that. The earliest reference for the Metonic cycle in Neugubauer's (1957) ''The Exact Sciences in Antiquity'' is 380 BC (p. 140).--> and ] had described the Moon's monthly elongation.<ref name="Sarma-Ast-Ind" /> The ] ] {{nowrap|(] 4th century BC)}} gave instructions for predicting solar and lunar eclipses.<ref name=Needham1986/>{{rp|page=411}}

In ]'s (384–322&nbsp;BC) ], the Moon marked the boundary between the spheres of the mutable elements (earth, water, air and fire), and the imperishable stars of ], an ] that would dominate for centuries.<ref>{{cite book |last=Lewis |first=C.S. |author-link=C. S. Lewis |title=The Discarded Image |url=https://archive.org/details/discardedimagein0000lewi |url-access=registration |date=1964 |publisher=] |location=Cambridge |isbn=978-0-521-47735-2 |page= |access-date=November 11, 2019 |archive-date=June 17, 2020 |archive-url=https://web.archive.org/web/20200617181455/https://archive.org/details/discardedimagein0000lewi |url-status=live }}</ref> ] (287–212 BC) designed a planetarium that could calculate the motions of the Moon and other objects in the Solar System.<ref>{{cite news |url=https://www.nytimes.com/2008/07/31/science/31computer.html?hp |work=The New York Times |title=Discovering How Greeks Computed in 100 B.C. |date=July 31, 2008 |access-date=March 9, 2014 |url-status=live |archive-url=https://web.archive.org/web/20131204053238/http://www.nytimes.com/2008/07/31/science/31computer.html?hp |archive-date=December 4, 2013}}</ref> In the {{nowrap |2nd century BC}}, ] correctly thought that ]s were due to the attraction of the Moon, and that their height depends on the Moon's position relative to the ].<ref>{{cite journal |first=Bartel Leendert |last=van der Waerden |author-link=Bartel Leendert van der Waerden |date=1987 |title=The Heliocentric System in Greek, Persian and Hindu Astronomy |journal=] |volume=500 |issue=1 |pages=1–569 |pmid=3296915 |bibcode=1987NYASA.500....1A |doi=10.1111/j.1749-6632.1987.tb37193.x|s2cid=84491987 }}</ref> In the same century, ] computed the size and distance of the Moon from Earth, obtaining a value of about twenty times the ] for the distance.

The Chinese of the ] believed the Moon to be energy equated to '']'' and their 'radiating influence' theory recognized that the light of the Moon was merely a reflection of the Sun; ] (78–37&nbsp;BC) noted the sphericity of the Moon.<ref name=Needham1986/>{{rp|pages=413–414}} ] (90–168&nbsp;AD) greatly improved on the numbers of Aristarchus, calculating a mean distance of 59&nbsp;times Earth's radius and a diameter of 0.292&nbsp;Earth diameters, close to the correct values of about 60 and 0.273 respectively.<ref>{{cite book |last=Evans |first=James |title=The History and Practice of Ancient Astronomy |date=1998 |publisher=] |location=Oxford & New York |isbn=978-0-19-509539-5 |pages=71, 386}}</ref> In the 2nd century AD, ] wrote the novel '']'', in which the heroes travel to the Moon and meet its inhabitants. In 510&nbsp;AD, the Indian astronomer ] mentioned in his '']'' that reflected sunlight is the cause of the shining of the Moon.<ref name=Hayashi08Aryabhata>Hayashi (2008), "Aryabhata I", ''Encyclopædia Britannica''.</ref><ref>''Gola'', 5; p. 64 in , translated by ] (University of Chicago Press, 1930; reprinted by Kessinger Publishing, 2006). "Half of the spheres of the Earth, the planets, and the asterisms is darkened by their shadows, and half, being turned toward the Sun, is light (being small or large) according to their size."</ref> The astronomer and physicist ] (965–1039) found that ] was not reflected from the Moon like a mirror, but that light was emitted from every part of the Moon's sunlit surface in all directions.<ref>{{cite book |location=Detroit |date=2008 |publisher=] |title=Dictionary of Scientific Biography |chapter=Ibn Al-Haytham, Abū ʿAlī Al-Ḥasan Ibn Al-Ḥasan |author=A.I. Sabra |pages=189–210, at 195}}</ref> ] (1031–1095) of the ] created an allegory equating the waxing and waning of the Moon to a round ball of reflective silver that, when doused with white powder and viewed from the side, would appear to be a crescent.<ref name=Needham1986/>{{rp|pages=415–416}} During the ], before the invention of the telescope, the Moon was increasingly recognized as a sphere, though many believed that it was "perfectly smooth".<ref>{{cite web |last=Van Helden |first=A. |date=1995 |url=http://galileo.rice.edu/sci/observations/moon.html |title=The Moon |publisher=Galileo Project |access-date=April 12, 2007 |url-status=dead |archive-url=https://web.archive.org/web/20040623085326/http://galileo.rice.edu/sci/observations/Moon.html |archive-date=June 23, 2004}}</ref>

=== Telescopic exploration (1609–1959) ===
]'s sketches of the Moon from the ground-breaking '']'' (1610), publishing among other findings the first descriptions of the Moon's topography]]

In 1609, ] used an early telescope to make drawings of the Moon for his book {{lang|la |]}}, and deduced that it was not smooth but had mountains and craters. ] had made but not published such drawings a few months earlier.

Telescopic mapping of the Moon followed: later in the 17th century, the efforts of ] and ] led to the system of naming of lunar features in use today. The more exact 1834–1836 {{lang|la |Mappa Selenographica}} of ] and ], and their associated 1837 book {{lang|de |Der Mond}}, the first ] accurate study of lunar features, included the heights of more than a thousand mountains, and introduced the study of the Moon at accuracies possible in earthly geography.<ref>{{cite journal |last=Consolmagno |first=Guy J. |date=1996 |title=Astronomy, Science Fiction and Popular Culture: 1277 to 2001 (And beyond) |journal=] |volume=29 |issue=2 |pages=127–132 |jstor=1576348 |doi=10.2307/1576348|s2cid=41861791 }}</ref> Lunar craters, first noted by Galileo, were thought to be ] until the 1870s proposal of ] that they were formed by collisions.<ref name="worldbook" /> This view gained support in 1892 from the experimentation of geologist ], and from comparative studies from 1920 to the 1940s,<ref name="Hall1977" /> leading to the development of ], which by the 1950s was becoming a new and growing branch of ].<ref name="worldbook" />

===First missions to the Moon (1959–1976)===
{{See also|Space Race|Moon landing}}

After ] the first ]s were developed and by the end of the 1950s they reached capabilities that allowed the ] and the ] to launch ] into space. The ] fueled a closely followed development of launch systems by the two states, resulting in the so-called ] and its later phase the Moon Race, accelerating efforts and interest in ].

], taken by ], October 7, 1959. Clearly visible is ] (top right) and a mare triplet of ], ] and ] (left center).]]

After the first spaceflight of ] in 1957 during ] the spacecraft of the Soviet Union's ] were the first to accomplish a number of goals. Following three unnamed failed missions in 1958,<ref>{{cite web |url=http://www.russianspaceweb.com/spacecraft_planetary_lunar.html |first=Anatoly |last=Zak |date=2009 |title=Russia's unmanned missions toward the Moon |access-date=April 20, 2010 |url-status=live |archive-url=https://web.archive.org/web/20100414115710/http://www.russianspaceweb.com/spacecraft_planetary_lunar.html |archive-date=April 14, 2010}}</ref> the first human-made object '']'' escaped Earth's gravity and passed near the Moon in 1959. Later that year the first human-made object '']'' reached the Moon's surface by ]. By the end of the year '']'' reached as the first human-made object the normally occluded ], taking the first photographs of it.
The first spacecraft to perform a successful lunar ] was '']'' and the first vehicle to orbit the Moon was '']'', both in 1966.<ref name="worldbook" />

]'', the first color ] taken by a human from the Moon, during ] (1968) the first time a crewed spacecraft left Earth orbit and reached another ]|alt=The small blue-white semicircle of Earth, almost glowing with color in the blackness of space, rising over the limb of the desolate, cratered surface of the Moon.]]

Following President ]'s 1961 commitment to a crewed Moon landing before the end of the decade, the United States, under NASA leadership, launched a series of uncrewed probes to develop an understanding of the lunar surface in preparation for human missions: the ]'s ], the ] and the ]. The crewed ] was developed in parallel; after a series of uncrewed and crewed tests of the Apollo spacecraft in Earth orbit, and spurred on by a potential ], in 1968 ] made the first human mission to lunar orbit (the first Earthlings, two tortoises, had circled the Moon three months earlier on the Soviet Union's ], followed by turtles on ]).

The first time a person landed on the Moon and any extraterrestrial body was when ], the commander of the American mission ], set foot on the Moon at 02:56&nbsp;UTC on July 21, 1969.<ref>{{cite web |url=https://history.nasa.gov/ap11ann/ap11events.html |title=Record of Lunar Events, 24 July 1969 |work=Apollo 11 30th anniversary |publisher=NASA |access-date=April 13, 2010 |url-status=live |archive-url=https://web.archive.org/web/20100408213454/http://history.nasa.gov/ap11ann/ap11events.html |archive-date=April 8, 2010}}</ref> Considered the culmination of the ],<ref name="CNN" /> an estimated 500&nbsp;million people worldwide watched the transmission by the ], the largest television audience for a live broadcast at that time.<ref>{{cite web |title=Manned Space Chronology: Apollo_11 |url=http://www.spaceline.org/flightchron/apollo11.html |publisher=Spaceline.org |access-date=February 6, 2008 |url-status=dead |archive-url=https://web.archive.org/web/20080214213826/http://www.spaceline.org/flightchron/apollo11.html |archive-date=February 14, 2008 }}</ref><ref>{{cite web |title=Apollo Anniversary: Moon Landing "Inspired World" |url=http://news.nationalgeographic.com/news/2004/07/0714_040714_moonlanding.html |work=National Geographic |access-date=February 6, 2008 |url-status=dead |archive-url=https://web.archive.org/web/20080209140059/http://news.nationalgeographic.com/news/2004/07/0714_040714_moonlanding.html |archive-date=February 9, 2008}}</ref> While at the same time another mission, the robotic sample return mission ] by the Soviet Union had been in orbit around the Moon, becoming together with Apollo 11 the first ever case of two extraterrestrial missions being conducted at the same time.

The Apollo missions 11 to 17 (except ], which aborted its planned lunar landing) removed {{convert|837.87 |lb |kg |order=flip}} of lunar rock and soil in 2,196 ].<ref>{{cite book |last=Orloff |first=Richard W. |title=NASA History Division, Office of Policy and Plans - Apollo by the Numbers: A Statistical Reference |url=https://history.nasa.gov/SP-4029/SP-4029.htm |chapter=Extravehicular Activity |chapter-url=https://history.nasa.gov/SP-4029/Apollo_18-30_Extravehicular_Activity.htm |access-date=August 1, 2013 |series=The NASA History Series |orig-year=First published 2000 |date=September 2004 |publisher=NASA |location=Washington, DC |isbn=978-0-16-050631-4 |lccn=00061677 |id=NASA SP-2000-4029 |ref=Orloff |url-status=live |archive-url=https://web.archive.org/web/20130606114042/http://history.nasa.gov/SP-4029/SP-4029.htm |archive-date=June 6, 2013}}</ref>
Scientific instrument packages were installed on the lunar surface during all the Apollo landings. Long-lived ], including heat flow probes, ]s, and ]s, were installed at the ], ], ], ], and ] landing sites. Direct transmission of data to Earth concluded in late 1977 because of budgetary considerations,<ref>{{cite press release |title=NASA news release 77-47 page 242 |date=September 1, 1977 |url=http://www.nasa.gov/centers/johnson/pdf/83129main_1977.pdf |access-date=March 16, 2010 |url-status=live |archive-url=https://web.archive.org/web/20110604114817/http://www.nasa.gov/centers/johnson/pdf/83129main_1977.pdf |archive-date=June 4, 2011}}</ref><ref>{{cite news |url=http://www.ast.cam.ac.uk/~ipswich/Miscellaneous/Archived_spaceflight_news.htm |access-date=August 29, 2007 |title=NASA Turns A Deaf Ear To The Moon |date=1977 |publisher=OASI Newsletters Archive |last=Appleton |first=James |author2=Radley, Charles |author3=Deans, John |author4=Harvey, Simon |author5=Burt, Paul |author6=Haxell, Michael |author7=Adams, Roy |author8=Spooner N. |author9=Brieske, Wayne |archive-url=https://web.archive.org/web/20071210143103/http://www.ast.cam.ac.uk/~ipswich/Miscellaneous/Archived_spaceflight_news.htm |archive-date=December 10, 2007 |url-status=dead}}</ref> but as the stations' ] corner-cube retroreflector arrays are passive instruments, they are still being used.<ref>{{cite journal |last1=Dickey |first1=J. |date=1994 |title=Lunar laser ranging: a continuing legacy of the Apollo program |journal=] |volume=265 |pages=482–490 |doi=10.1126/science.265.5171.482 |pmid=17781305 |issue=5171 |bibcode=1994Sci...265..482D |last2=Bender |first2=P. L. |last3=Faller |first3=J. E. |last4=Newhall |first4=X. X. |last5=Ricklefs |first5=R. L. |last6=Ries |first6=J. G. |last7=Shelus |first7=P. J. |last8=Veillet |first8=C. |last9=Whipple |first9=A. L. |s2cid=10157934 }}</ref>
] in 1972 remains the last crewed mission to the Moon. ] in 1973 was the last dedicated U.S. probe to the Moon until the 1990s.

The Soviet Union continued sending robotic missions to the Moon until 1976, deploying in 1970 with ] the first remote controlled ] ] on an extraterrestrial surface, and collecting and returning 0.3&nbsp;kg of rock and soil samples with three ''Luna'' ]s ('']'' in 1970, '']'' in 1972, and '']'' in 1976).<ref>{{cite web |url=http://curator.jsc.nasa.gov/lunar/index.cfm |title=Rocks and Soils from the Moon |publisher=NASA |access-date=April 6, 2010 |url-status=live |archive-url=https://web.archive.org/web/20100527085532/http://curator.jsc.nasa.gov/lunar/index.cfm |archive-date=May 27, 2010}}</ref>

=== Moon Treaty and explorational absence (1976–1990) ===
{{Main|Moon Treaty}}
Following the ] of 1976, there was little further lunar exploration for fourteen years. Astronautics had shifted its focus towards the exploration of the ] (e.g. ]) and ] (e.g. ], 1972) ] ]s, but also towards ], developing and continuously operating, beside ]s, ]s (e.g. ], 1972), ]s and particularly ]s (e.g. ], 1971).

Negotiation in 1979 of ], and its subsequent ratification in 1984 was the only major activity regarding the Moon until 1990.

===Renewed exploration (1990–present)===
In 1990 '']''-''Hagoromo'',<ref>{{cite web |title=Hiten-Hagomoro |publisher=NASA |url=http://solarsystem.nasa.gov/missions/profile.cfm?MCode=Hiten&Display=ReadMore |access-date=March 29, 2010 |url-status=dead |archive-url=https://web.archive.org/web/20110614115823/http://solarsystem.nasa.gov/missions/profile.cfm?MCode=Hiten&Display=ReadMore |archive-date=June 14, 2011}}</ref> the first dedicated lunar mission since 1976, reached the Moon. Sent by ], it became the first mission that was not a Soviet Union or U.S. mission to the Moon.

In 1994, the U.S. dedicated a mission to fly a spacecraft ('']'') to the Moon again for the first time since 1973. This mission obtained the first near-global topographic map of the Moon, and the first global ] images of the lunar surface.<ref>{{cite web |title=Clementine information |publisher=NASA |date=1994 |url=http://nssdc.gsfc.nasa.gov/planetary/cleminfo.html |access-date=March 29, 2010 |url-status=live |archive-url=https://web.archive.org/web/20100925095846/http://nssdc.gsfc.nasa.gov/planetary/cleminfo.html |archive-date=September 25, 2010}}</ref> In 1998, this was followed by the '']'' mission, whose instruments indicated the presence of excess hydrogen at the lunar poles, which is likely to have been caused by the presence of water ice in the upper few meters of the regolith within permanently shadowed craters.<ref>{{cite web |title=Lunar Prospector: Neutron Spectrometer |publisher=NASA |url=http://lunar.arc.nasa.gov/results/neutron.htm |date=2001 |access-date=March 29, 2010 |url-status=dead |archive-url=https://web.archive.org/web/20100527105801/http://lunar.arc.nasa.gov/results/neutron.htm |archive-date=May 27, 2010}}</ref>

The next years saw a row of first missions to the Moon by a new group of states actively exploring the Moon.
Between 2004 and 2006 the first spacecraft by the ] (ESA) ('']'') reached the Moon, recording the first detailed survey of chemical elements on the lunar surface.<ref>{{cite web |url=http://www.esa.int/SPECIALS/SMART-1/SEMSDE1A6BD_0.html |title=SMART-1 factsheet |date=February 26, 2007 |publisher=] |access-date=March 29, 2010 |url-status=live |archive-url=https://web.archive.org/web/20100323044139/http://www.esa.int/SPECIALS/SMART-1/SEMSDE1A6BD_0.html |archive-date=March 23, 2010}}</ref>
The ] reached the Moon for the first time with the orbiter '']'' (2007–2009),<ref>{{cite web |title=Chang'e 1 |publisher=NASA |date=2019 |url=https://solarsystem.nasa.gov/missions/change-1/in-depth/ |access-date=October 3, 2021 |archive-date=November 22, 2021 |archive-url=https://web.archive.org/web/20211122070043/https://solarsystem.nasa.gov/missions/change-1/in-depth/ |url-status=live }}</ref> obtaining a full image map of the Moon.
] reached, orbited and impacted the Moon in 2008 for the first time with its '']'' and ], becoming the fifth and sixth state to do so, creating a high-resolution chemical, mineralogical and photo-geological map of the lunar surface, and confirming the presence of ].<ref>{{cite web |url=http://www.isro.org/Chandrayaan/htmls/mission_sequence.htm |title=Mission Sequence |date=November 17, 2008 |publisher=] |access-date=April 13, 2010 |url-status=live |archive-url=https://web.archive.org/web/20100706225136/http://www.isro.org/chandrayaan/htmls/mission_sequence.htm |archive-date=July 6, 2010}}</ref>

The U.S. launched the ] and the '']'' impactor on June 18, 2009. ''LCROSS'' completed its mission by making a planned and widely observed impact in the crater ] on October 9, 2009,<ref>{{cite web |url=http://lcross.arc.nasa.gov/observation.htm |title=Lunar CRater Observation and Sensing Satellite (LCROSS): Strategy & Astronomer Observation Campaign |date=October 2009 |publisher=NASA |access-date=April 13, 2010 |url-status=dead |archive-url=https://web.archive.org/web/20120101191735/http://lcross.arc.nasa.gov/observation.htm |archive-date=January 1, 2012}}</ref> whereas ''LRO'' is currently in operation, obtaining precise lunar ] and high-resolution imagery.

China continued its lunar program in 2010 with '']'', mapping the surface at a higher resolution over an eight-month period, and in 2013 with '']'', a lunar ] along with a ] named '']'' ({{Lang-zh|c=玉兔|l=Jade Rabbit}}). This was the first lunar rover mission since '']'' in 1973 and the first lunar ] since '']'' in 1976, making China the third country to achieve this.

In 2014 the first privately funded probe, the ], reached the Moon.

Another Chinese rover mission, '']'', achieved the first landing on ] in early 2019.<ref>{{cite web |title=China Outlines New Rockets, Space Station and Moon Plans |url=http://www.space.com/28809-china-rocket-family-moon-plans.html |date=March 17, 2015 |first=Leonard | last=David |publisher=] |access-date=June 29, 2016 |url-status=live |archive-url=https://web.archive.org/web/20160701055507/http://www.space.com/28809-china-rocket-family-moon-plans.html |archive-date=July 1, 2016}}</ref>

Also in 2019, India successfully sent its second probe, '']'' to the Moon.

In 2020, China carried out its first robotic ] ('']''), bringing back 1,731 grams of lunar material to Earth.<ref>{{cite news |title=China's Chang'e-5 brought 1,731 grams of samples from the moon |url=https://www.thehindu.com/sci-tech/science/chinas-change-5-brought-1731-grams-of-samples-from-the-moon/article33377559.ece |date=December 20, 2020 |work=] |access-date=October 15, 2021 |archive-date=October 29, 2021 |archive-url=https://web.archive.org/web/20211029180538/https://www.thehindu.com/sci-tech/science/chinas-change-5-brought-1731-grams-of-samples-from-the-moon/article33377559.ece |url-status=live }}</ref>

The U.S. ] for returning to the Moon beginning in 2004,<ref>{{cite press release |url=http://www.nasa.gov/missions/solarsystem/bush_vision.html |title=President Bush Offers New Vision For NASA |date=December 14, 2004 |publisher=NASA |access-date=April 12, 2007 |url-status=live |archive-url=https://web.archive.org/web/20070510062228/http://www.nasa.gov/missions/solarsystem/bush_vision.html |archive-date=May 10, 2007}}</ref> and with the signing of the U.S.-led ] in 2020, the ] aims to return the astronauts to the Moon in the 2020s.<ref>{{Cite web|date=July 2019|first=Adam|last=Mann|title=NASA's Artemis Program|url=https://www.space.com/artemis-program.html|access-date=April 19, 2021|website=Space.com|language=en|archive-date=April 17, 2021|archive-url=https://web.archive.org/web/20210417175557/https://www.space.com/artemis-program.html|url-status=live}}</ref> The Accords have been joined by a growing number of countries. The introduction of the Artemis Accords has fueled a renewed discussion about the international framework and cooperation of lunar activity, building on the ] and the ESA-led ] concept.<ref name="The Space Review 2020"/><ref name="Australian Institute of International Affairs 2021"/><ref name="The Space Treaty Institute – Dedicated to Peace and Sustainability in Outer Space. Our Mission"/>

2023 and 2024 ] and Japan became the fourth and fifth country to ] a spacecraft on the Moon, following the ] and ] in the 1960s, and ] in the 2010s.<ref>{{Cite news |title=Japan makes contact with 'Moon Sniper' on lunar surface |url=https://www.bbc.co.uk/news/live/science-environment-68019846 |date=January 19, 2024 |access-date=January 19, 2024 |work=BBC News |language=en-gb |archive-date=January 19, 2024 |archive-url=https://web.archive.org/web/20240119143351/https://www.bbc.co.uk/news/live/science-environment-68019846 |url-status=live }}</ref> Notably, Japan's spacecraft, the ], survived 3 lunar nights.<ref>{{Cite web |author1=Robert Lea |date=April 24, 2024 |title=Japan's SLIM moon lander defies death to survive 3rd frigid lunar night (image) |url=https://www.space.com/japan-slim-moon-lander-survives-3rd-lunar-night |access-date=May 1, 2024 |website=Space.com |language=en |archive-date=April 30, 2024 |archive-url=https://web.archive.org/web/20240430163510/https://www.space.com/japan-slim-moon-lander-survives-3rd-lunar-night |url-status=live }}</ref> The ] lander became the first commercially built lander to land on the Moon in 2024.<ref>{{Cite web |title=Intuitive Machines' 'Odysseus' becomes first commercial lander to reach the Moon – Spaceflight Now |url=https://spaceflightnow.com/2024/02/22/live-coverage-intuitive-machines-aims-to-become-first-commercial-lander-to-safely-reach-the-moon/ |access-date=April 15, 2024 |language=en-US |archive-date=June 15, 2024 |archive-url=https://web.archive.org/web/20240615055824/https://spaceflightnow.com/2024/02/22/live-coverage-intuitive-machines-aims-to-become-first-commercial-lander-to-safely-reach-the-moon/ |url-status=live }}</ref>

China launched the ] on May 3, 2024, which conducted another lunar sample return from the ].<ref name="AJ_FI-20230425">{{cite tweet |author=Andrew Jones |user= AJ_FI |number=1650832520978526208 |title=China's Chang'e-6 sample return mission (a first ever lunar far side sample-return) is scheduled to launch in May 2024, and expected to take 53 days from launch to return module touchdown. Targeting southern area of Apollo basin (~43º S, 154º W) |date=April 25, 2023}}</ref> It also carried a Chinese rover to conduct ] of lunar surface.<ref>{{cite web |last1=Jones |first1=Andrew |title=China's Chang'e-6 is carrying a surprise rover to the moon |url=https://spacenews.com/chinas-change-6-is-carrying-a-surprise-rover-to-the-moon/ |website=SpaceNews |access-date=May 8, 2024 |date=May 6, 2024 |archive-date=May 8, 2024 |archive-url=https://web.archive.org/web/20240508193233/https://spacenews.com/chinas-change-6-is-carrying-a-surprise-rover-to-the-moon/ |url-status=live }}</ref> ] sent a lunar orbiter called ] along with Chang'e 6.<ref>{{cite web |last=Jones |first=Andrew |url=https://spacenews.com/chinas-change-6-probe-arrives-at-spaceport-for-first-ever-lunar-far-side-sample-mission/ |title=China's Chang'e-6 probe arrives at spaceport for first-ever lunar far side sample mission |work=] |date=January 10, 2024 |access-date=January 10, 2024 |archive-date=May 3, 2024 |archive-url=https://web.archive.org/web/20240503100724/https://spacenews.com/chinas-change-6-probe-arrives-at-spaceport-for-first-ever-lunar-far-side-sample-mission/ |url-status=live }}</ref>

], ] and ] are all planned to launch to the Moon in 2024.

] crew, with the ], person of color and non-US citizen astronaut planned to go to the Moon, scheduled for 2025, returning humans to the Moon for the first time since ] in 1972. ] from left: ], ], ] and ].]]

===Future===
{{See also|List of proposed missions to the Moon}}
Beside the progressing ] and supporting ], leading an international and commercial crewed opening up of the Moon and sending the ], person of color and non-US citizen to the Moon in the 2020s,<ref>{{Cite web |url=https://www.asianage.com/science/150519/nasa-plans-to-send-first-woman-on-moon-by-2024.html |title=NASA plans to send first woman on Moon by 2024 |date=May 15, 2019 |website=The Asian Age |access-date=May 15, 2019 |archive-date=April 14, 2020 |archive-url=https://web.archive.org/web/20200414162829/https://www.asianage.com/science/150519/nasa-plans-to-send-first-woman-on-moon-by-2024.html |url-status=live }}</ref> China is continuing its ambitious ], having announced with Russia's struggling '']'' program joint missions.<ref name="TASS 2019 x202">{{cite web | title=Russia, China agree on joint Moon exploration | website=TASS | date=September 17, 2019 | url=https://tass.com/science/1078599 | access-date=April 16, 2024 | archive-date=July 22, 2023 | archive-url=https://web.archive.org/web/20230722101456/https://tass.com/science/1078599 | url-status=live }}</ref><ref>{{cite magazine |url=http://www.aviationnow.com/avnow/news/channel_awst_story.jsp?id=news/aw060506p2.xml |title=Russia Plans Ambitious Robotic Lunar Mission |last=Covault |first=C. |magazine=] |date=June 4, 2006 |access-date=April 12, 2007 |url-status=live |archive-url=https://web.archive.org/web/20060612215659/http://www.aviationnow.com/avnow/news/channel_awst_story.jsp?id=news%2Faw060506p2.xml |archive-date=June 12, 2006}}</ref> Both the Chinese and US lunar programs have the goal to establish in the 2030s a ] with their international partners, though the US and its partners will first establish an orbital ] station in the 2020s, from which Artemis missions will land the ] to set up temporary surface camps.

While the Apollo missions were explorational in nature, the Artemis program plans to establish a more permanent presence. To this end, NASA is partnering with industry leaders to establish key elements such as modern communication infrastructure. A ] connectivity demonstration is to be launched aboard an ] lander in 2024.<ref>{{Cite web |last=Bantock |first=Jack |date=April 24, 2024 |title=Streaming and texting on the Moon: Nokia and NASA are taking 4G into space {{!}} CNN Business |url=https://www.cnn.com/2024/04/24/tech/nokia-moon-4g-network-nasa-spc/index.html |access-date=April 27, 2024 |website=CNN |language=en |archive-date=April 27, 2024 |archive-url=https://web.archive.org/web/20240427205419/https://www.cnn.com/2024/04/24/tech/nokia-moon-4g-network-nasa-spc/index.html |url-status=live }}</ref> Another focus is on ], which is a key part of the ]. ] has requested that industry partners develop a 10–year lunar architecture plan to enable the beginning of a lunar economy.<ref>{{Cite web |author1=Meredith Garofalo |date=December 8, 2023 |title=DARPA moon tech study selects 14 companies to develop a lunar economy |url=https://www.space.com/darpa-moon-tech-study-future-lunar-economy |access-date=April 27, 2024 |website=Space.com |language=en |archive-date=June 15, 2024 |archive-url=https://web.archive.org/web/20240615055827/https://www.space.com/darpa-moon-tech-study-future-lunar-economy |url-status=live }}</ref>

==Human presence==
{{See also|Human presence in space}}
]s on the Moon (2024)]]

In 1959 the first extraterrestrial probes reached the Moon (]), just a year into the ], after the first ever orbital flight. Since then, humans have sent a range of probes and people to the Moon. The first stay of people on the Moon was conducted in 1969, in a series of crewed exploration missions (the ]), the last having taken place in 1972.

Uninterrupted presence has been the case through the ] of impactors, landings and ]. Some landings and orbiters have maintained a small lunar infrastructure, providing continuous observation and communication at the Moon.

Increasing human activity in ] as well as on the Moon's surface, particularly missions at the far side of the Moon or the ] and ] regions, are in need for a lunar infrastructure. For that purpose, orbiters in ] or ], have since 2006 been operated. With highly ] providing continuous communication, as with the orbit of ] and ] or the planned first extraterrestrial space station, the ].<ref name="Williams 2022">{{cite web | last=Williams | first=Matt | title=A CubeSat is Flying to the Moon to Make Sure Lunar Gateway's Orbit is Actually Stable | website=Universe Today | date=May 14, 2022 | url=https://www.universetoday.com/155842/a-cubesat-is-flying-to-the-moon-to-make-sure-lunar-gateways-orbit-is-actually-stable-1/ | access-date=December 17, 2022 | archive-date=December 17, 2022 | archive-url=https://web.archive.org/web/20221217015619/https://www.universetoday.com/155842/a-cubesat-is-flying-to-the-moon-to-make-sure-lunar-gateways-orbit-is-actually-stable-1/ | url-status=live }}</ref><ref name="Phys.org 2021">{{cite web | title=Queqiao: The bridge between Earth and the far side of the moon | website=Phys.org | date=June 11, 2021 | url=https://phys.org/news/2021-06-queqiao-bridge-earth-side-moon.html | access-date=December 17, 2022 | archive-date=December 17, 2022 | archive-url=https://web.archive.org/web/20221217015553/https://phys.org/news/2021-06-queqiao-bridge-earth-side-moon.html | url-status=live }}</ref>

=== Human impact ===
{{See also|Space debris|Space sustainability|List of artificial objects on the Moon|Space art#Art in space|Moonbase|Lunar resources #Mining|Tourism on the Moon|Space archaeology}}

]<ref name="Garber 2012" />|thumb|right]]

While the Moon has the lowest ], its degradation as a pristine body and scientific place has been discussed.<ref name="Vidaurri 2019">{{cite web | last=Vidaurri | first=Monica | title=Will people go to space—and then colonize it? | website=Quartz | date=October 24, 2019 | url=https://qz.com/1734103/will-people-go-to-space-and-then-colonize-it/ | access-date=November 9, 2021 | archive-date=November 9, 2021 | archive-url=https://web.archive.org/web/20211109040803/https://qz.com/1734103/will-people-go-to-space-and-then-colonize-it/ | url-status=live }}</ref> If there is ], it will need to be free from any physical and ]. While the Moon has no significant atmosphere, traffic and impacts on the Moon causes clouds of dust that can spread far and possibly contaminate the original state of the Moon and its special scientific content.<ref name="David 2020">{{cite web | last=David | first=Leonard | title=Cold as (lunar) ice: Protecting the moon's polar regions from contamination | website=Space.com | date=August 21, 2020 | url=https://www.space.com/moon-ice-mining-contamination-concerns.html | access-date=February 3, 2022 | archive-date=February 4, 2022 | archive-url=https://web.archive.org/web/20220204000406/https://www.space.com/moon-ice-mining-contamination-concerns.html | url-status=live }}</ref> Scholar ] asserts that, although the Moon is inhospitable, it is not dead, and that sustainable human activity would require treating the Moon's ecology as a co-participant.<ref name="Gorman 2022">{{cite web | last=Gorman | first=Alice | title=#SpaceWatchGL Opinion: An ecofeminist approach to the sustainable use of the Moon | website=SpaceWatch.Global | date=July 1, 2022 | url=https://spacewatch.global/2022/07/spacewatchgl-opinion-an-ecofeminist-approach-to-the-sustainable-used-of-the-moon/ | access-date=July 3, 2022 | archive-date=July 4, 2022 | archive-url=https://web.archive.org/web/20220704024322/https://spacewatch.global/2022/07/spacewatchgl-opinion-an-ecofeminist-approach-to-the-sustainable-used-of-the-moon/ | url-status=live }} Note: see ] which Alice Gorman cites regarding co-participation.</ref>

The so-called "]" of the 2019 crashed ] lander and its carrying of ]s has been discussed as an example for lacking measures and lacking international regulation for ].<ref name="Alvarez 2020 p."/>

] beyond Earth around the Moon has been considered as a future challenge with increasing numbers of missions to the Moon, particularly as a danger for such missions.<ref name="Carter 2022">{{cite web | last=Carter | first=Jamie | title=As Chinese Rocket Strikes Moon This Week We Need To Act Now To Prevent New Space Junk Around The Moon Say Scientists | website=Forbes | date=February 27, 2022 | url=https://www.forbes.com/sites/jamiecartereurope/2022/02/27/as-chinese-rocket-strikes-moon-this-week-we-need-to-act-now-to-prevent-new-space-junk-around-the-moon-say-scientists/ | access-date=April 9, 2022 | archive-date=April 9, 2022 | archive-url=https://web.archive.org/web/20220409134704/https://www.forbes.com/sites/jamiecartereurope/2022/02/27/as-chinese-rocket-strikes-moon-this-week-we-need-to-act-now-to-prevent-new-space-junk-around-the-moon-say-scientists/ | url-status=live }}</ref><ref name="Nast 2013"/> As such lunar waste management has been raised as an issue which future lunar missions, particularly on the surface, need to tackle.<ref name="Pino Salmeri Hugo Hume p.">{{cite journal | last1=Pino | first1=Paolo | last2=Salmeri | first2=Antonino | last3=Hugo | first3=Adam | last4=Hume | first4=Shayna | title=Waste Management for Lunar Resources Activities: Toward a Circular Lunar Economy | journal=New Space | publisher=Mary Ann Liebert Inc | date=August 27, 2021 | issn=2168-0256 | doi=10.1089/space.2021.0012 | pages=274–283| s2cid=233335692 | volume=10 | issue=3 }}</ref><ref name="NASA/ADS">{{cite journal | title=1985lbsa.conf..423B Page 423 | journal=Lunar Bases and Space Activities of the 21st Century | bibcode=1985lbsa.conf..423B | url=https://adsabs.harvard.edu/full/1985lbsa.conf..423B | language=fi | access-date=May 26, 2022 | last1=Briggs | first1=Randall | last2=Sacco | first2=Albert | year=1985 | page=423 | archive-date=May 26, 2022 | archive-url=https://web.archive.org/web/20220526022021/https://adsabs.harvard.edu/full/1985lbsa.conf..423B | url-status=live }}</ref>

Human remains have been transported to the Moon, including by private companies such as ] and ]. Because the Moon has been sacred or significant to many cultures, the practice of ]s have attracted criticism from ] leaders. For example, then{{endash}}] president ] criticized NASA for sending the ] ashes of scientist ] to the Moon in 1998.<ref name="Magazine Sullivan 2024 a329">{{cite web | last1=Magazine | first1=Smithsonian | last2=Sullivan | first2=Will | title=Navajo Nation President Asks for Delay of Moon Mission Carrying Human Remains | website=Smithsonian Magazine | date=January 5, 2024 | url=https://www.smithsonianmag.com/smart-news/navajo-nation-president-asks-for-delay-of-moon-mission-carrying-human-remains-180983543/ | access-date=January 7, 2024 | archive-date=January 6, 2024 | archive-url=https://web.archive.org/web/20240106235545/https://www.smithsonianmag.com/smart-news/navajo-nation-president-asks-for-delay-of-moon-mission-carrying-human-remains-180983543/ | url-status=live }}</ref><ref name="web.archive.org 2011 c901">{{cite web | title=Celestis Memorial Spaceflights | date=August 8, 2011 | url=http://celestis.com/luna01Flight.asp | archive-url=https://web.archive.org/web/20140314165835/http://celestis.com/luna01Flight.asp | archive-date=March 14, 2014 | url-status=unfit | access-date=January 7, 2024}}</ref>

Beside the remains of human activity on the Moon, there have been some intended permanent installations like the '']'' art piece, ], six ]s, the '']'' memorial, and other artifacts.<ref name="Garber 2012">{{cite web | last=Garber | first=Megan | title=The Trash We've Left on the Moon | website=The Atlantic | date=December 19, 2012 | url=https://www.theatlantic.com/technology/archive/2012/12/the-trash-weve-left-on-the-moon/266465/ | access-date=April 11, 2022 | archive-date=April 9, 2022 | archive-url=https://web.archive.org/web/20220409080003/https://www.theatlantic.com/technology/archive/2012/12/the-trash-weve-left-on-the-moon/266465/ | url-status=live }}</ref>

Longterm missions continuing to be active are some orbiters such as the 2009-launched ] surveilling the Moon for future missions, as well as some Landers such as the 2013-launched ] with its Lunar Ultraviolet Telescope still operational.<ref>{{cite web|url=https://www.space.com/china-change-3-moon-lander-lasts-7-years|author=Andrew Jones|title=China's Chang'e 3 lunar lander still going strong after 7 years on the moon|website=]|date=September 23, 2020|access-date=November 16, 2020|archive-date=November 25, 2020|archive-url=https://web.archive.org/web/20201125043612/https://www.space.com/china-change-3-moon-lander-lasts-7-years|url-status=live}}</ref>
Five retroreflectors have been installed on the Moon since the 1970s and since used for accurate measurements of the physical ]s through ].

There are ] to establish a long-term human presence on the Moon, with the ] as the currently most advanced project as part of the ].

===Astronomy from the Moon===
{{Further|Extraterrestrial sky#The Moon}}
] illuminated creating its ], visible in ultraviolet and viewed by the ] of ] in 1972 from the Moon's surface.]]
The Moon has been used as a site for astronomical and ]s. The Earth appears in the ] with an ] of 1° 48{{prime}} to 2°,<ref name="Gorkavyi Krotkov Marshak 2023 pp. 1527–1537">{{cite journal | last1=Gorkavyi | first1=Nick | last2=Krotkov | first2=Nickolay | last3=Marshak | first3=Alexander | title=Earth observations from the Moon's surface: dependence on lunar libration | journal=Atmospheric Measurement Techniques | publisher=Copernicus GmbH | volume=16 | issue=6 | date=March 24, 2023 | issn=1867-8548 | doi=10.5194/amt-16-1527-2023 | pages=1527–1537| bibcode=2023AMT....16.1527G | s2cid=257753776 | doi-access=free }}</ref> three to four times the size of the Moon or Sun in Earth's sky, or about the apparent width of two little fingers at an arm's length away. Observations from the Moon started as early as 1966 with the ] from the Moon, taken by ]. Of particular cultural significance is the 1968 photograph called '']'', taken by ] of ] in 1968. In April 1972 the ] mission set up the first dedicated telescope,<ref name="w422">{{cite web | last=Betz | first=Eric | title=The History and Future of Telescopes on the Moon | website=Astronomy Magazine | date=2020-06-03 | url=https://www.astronomy.com/observing/the-history-and-future-of-telescopes-on-the-moon/ | access-date=2024-10-22}}</ref><ref name="x909">{{cite web | title=Remembering the First Moon-Based Telescope | website=NASA | date=2019-07-15 | url=https://www.nasa.gov/solar-system/remembering-the-first-moon-based-telescope/ | access-date=2024-10-22}}</ref> the ], recording various astronomical photos and spectra.<ref>{{cite web |url=http://www.lpi.usra.edu/lunar/missions/apollo/apollo_16/experiments/f_ultra/ |title=Far Ultraviolet Camera/Spectrograph |publisher=Lpi.usra.edu |access-date=October 3, 2013 |url-status=live |archive-url=https://web.archive.org/web/20131203010615/http://www.lpi.usra.edu/lunar/missions/apollo/apollo_16/experiments/f_ultra/ |archive-date=December 3, 2013}}</ref>

The Moon is recognized as an excellent site for telescopes.<ref>{{cite web |last=Takahashi |first=Yuki |title=Mission Design for Setting up an Optical Telescope on the Moon |publisher=] |date=September 1999 |url=http://www.ugcs.caltech.edu/~yukimoon/MoonTelescope/ |access-date=March 27, 2011 |url-status=dead |archive-url=https://web.archive.org/web/20151106142659/http://www.ugcs.caltech.edu/~yukimoon/MoonTelescope/ |archive-date=November 6, 2015 }}</ref> It is relatively nearby; certain craters near the poles are permanently dark and cold and especially useful for ]s; and ]s on the far side would be shielded from the radio chatter of Earth.<ref>{{cite web |last=Chandler |first=David |title=MIT to lead development of new telescopes on moon |work=MIT News |date=February 15, 2008 |url=http://web.mit.edu/newsoffice/2008/moonscope-0215.html |access-date=March 27, 2011 |url-status=live |archive-url=https://web.archive.org/web/20090304062601/http://web.mit.edu/newsoffice/2008/moonscope-0215.html |archive-date=March 4, 2009}}</ref> The ], although it poses a problem for any moving parts of ]s, can be mixed with ]s and ] and employed in the construction of mirrors up to 50 meters in diameter.<ref>{{cite web |last=Naeye |first=Robert |title=NASA Scientists Pioneer Method for Making Giant Lunar Telescopes |publisher=] |date=April 6, 2008 |url=http://www.nasa.gov/centers/goddard/news/topstory/2008/lunar_telescopes.html |access-date=March 27, 2011 |url-status=live |archive-url=https://web.archive.org/web/20101222142443/http://www.nasa.gov/centers/goddard/news/topstory/2008/lunar_telescopes.html |archive-date=December 22, 2010}}</ref> A lunar ] can be made cheaply with an ].<ref>{{cite web |last=Bell |first=Trudy |title=Liquid Mirror Telescopes on the Moon |work=Science News |publisher=NASA |date=October 9, 2008 |url=https://science.nasa.gov/science-news/science-at-nasa/2008/09oct_liquidmirror/ |access-date=March 27, 2011 |url-status=dead |archive-url=https://web.archive.org/web/20110323081215/http://science.nasa.gov/science-news/science-at-nasa/2008/09oct_liquidmirror/ |archive-date=March 23, 2011 }}</ref>

===Living on the Moon===
{{Main|Lunar habitation}}
] in ] looking back at the first ], the ] of ], during ] (1969), the first crewed ]]]
The only instances of ] have taken place in an ] for several days at a time (for example, during the ] mission).<ref>{{cite web|url=http://history.msfc.nasa.gov/saturn_apollo/documents/apollo17_overview.pdf|archive-url=https://web.archive.org/web/20060930204141/http://history.msfc.nasa.gov/saturn_apollo/documents/apollo17_overview.pdf|url-status=dead|archive-date=September 30, 2006|title=Mission Report: Apollo 17 – The Most Productive Lunar Expedition|publisher=NASA|access-date=February 10, 2021}}</ref> One challenge to astronauts during their stay on the surface is that ] sticks to their suits and is carried into their quarters. Astronauts could taste and smell the dust, which smells like gunpowder and was called the "Apollo aroma".<ref name="Aroma" /> This fine lunar dust can ].<ref name="Aroma">{{cite web|url=https://www.space.com/moon-dust-problem-lunar-exploration.html|title=Moon Dust Could Be a Problem for Future Lunar Explorers|first=Leonard|last=David|website=]|date=October 21, 2019|access-date=November 26, 2020|archive-date=December 1, 2020|archive-url=https://web.archive.org/web/20201201103751/https://www.space.com/moon-dust-problem-lunar-exploration.html|url-status=live}}</ref>

In 2019, at least one plant seed sprouted in an experiment on the ]. It was carried from Earth along with other small life in its ''Lunar Micro Ecosystem''.<ref name="Seeds">{{cite web|url=https://www.scmp.com/news/china/science/article/2182111/chinese-lunar-landers-cotton-seeds-lead-way-plant-life-germinates|title=Chinese lunar lander's cotton seeds spring to life on far side of the moon|last1=Zheng|first1=William|date=January 15, 2019|website=South China Morning Post|access-date=November 26, 2020|archive-date=January 16, 2019|archive-url=https://web.archive.org/web/20190116174611/https://www.scmp.com/news/china/science/article/2182111/chinese-lunar-landers-cotton-seeds-lead-way-plant-life-germinates|url-status=live}}</ref>

==Legal status==
{{See also|Space law|Politics of outer space|Space advocacy|Colonization of the Moon}}
Although '']'' landers scattered pennants of the ] on the Moon, and ] were symbolically planted at their landing sites by the ], no nation claims ownership of any part of the Moon's surface.<ref name="unoosa_q6" /> Likewise no ], is considered credible.<ref name="unoosa_q7" /><ref name="iisl_2004" /><ref name="iisl_2009" />

The 1967 ] defines the Moon and all outer space as the "]".<ref name="unoosa_q6" /> It restricts the use of the Moon to peaceful purposes, explicitly banning military installations and ].<ref name="unoosa_q5" /> A majority of countries are parties of this treaty.<ref name="unoosa_q4" />
The 1979 ] was created to elaborate, and restrict the exploitation of the ] by any single nation, leaving it to a yet unspecified international regulatory regime.<ref name="The Space Review 2021">{{cite web | title=The Space Review: Is outer space a de jure common-pool resource? | website=The Space Review | date=October 25, 2021 | url=https://www.thespacereview.com/article/4270/1 | access-date=April 9, 2022 | archive-date=November 2, 2021 | archive-url=https://web.archive.org/web/20211102004759/https://thespacereview.com/article/4270/1 | url-status=live }}</ref> As of January 2020, it has been signed and ratified by 18 nations,<ref name="unoosa_moon" /> none of which have ] capabilities.

Since 2020, countries have joined the U.S. in their ], which are challenging the treaty. The U.S. has furthermore emphasized in a presidential ] ("Encouraging International Support for the Recovery and Use of Space Resources.") that "the United States does not view outer space as a 'global commons{{' "}} and calls the Moon Agreement "a failed attempt at constraining free enterprise."<ref>{{cite web | first=Kiran | last=Vazhapully | title=Space Law at the Crossroads: Contextualizing the Artemis Accords and the Space Resources Executive Order | date=July 22, 2020 | website=OpinioJuris | access-date=May 10, 2021 | url=http://opiniojuris.org/2020/07/22/space-law-at-the-crossroads-contextualizing-the-artemis-accords-and-the-space-resources-executive-order/ | archive-date=May 10, 2021 | archive-url=https://web.archive.org/web/20210510140033/http://opiniojuris.org/2020/07/22/space-law-at-the-crossroads-contextualizing-the-artemis-accords-and-the-space-resources-executive-order/ | url-status=live }}</ref><ref>{{Cite press release |url=https://spaceref.com/press-release/administration-statement-on-executive-order-on-encouraging-international-support-for-the-recovery-and-use-of-space-resources/ |archive-url=https://archive.today/20240201151140/https://spaceref.com/press-release/administration-statement-on-executive-order-on-encouraging-international-support-for-the-recovery-and-use-of-space-resources/ |archive-date=February 1, 2024 |url-status=live |title=Administration Statement on Executive Order on Encouraging International Support for the Recovery and Use of Space Resources |via=SpaceRef |date=April 6, 2020 |publisher=White House |access-date=June 17, 2020 }}</ref>

With Australia signing and ratifying both the Moon Treaty in 1986 as well as the Artemis Accords in 2020, there has been a discussion if they can be harmonized.<ref name="Australian Institute of International Affairs 2021">{{cite web | title=Australia Between the Moon Agreement and the Artemis Accords | website=Australian Institute of International Affairs | date=June 2, 2021 | url=https://www.internationalaffairs.org.au/australianoutlook/australia-between-the-moon-agreement-and-the-artemis-accords/ | access-date=February 1, 2022 | archive-date=February 1, 2022 | archive-url=https://web.archive.org/web/20220201052259/https://www.internationalaffairs.org.au/australianoutlook/australia-between-the-moon-agreement-and-the-artemis-accords/ | url-status=live }}</ref> In this light an ''Implementation Agreement'' for the Moon Treaty has been advocated for, as a way to compensate for the shortcomings of the Moon Treaty and to harmonize it with other laws and agreements such as the Artemis Accords, allowing it to be more widely accepted.<ref name="The Space Review 2020">{{cite web | title=The Space Review: The Artemis Accords: repeating the mistakes of the Age of Exploration | website=The Space Review | date=June 29, 2020 | url=https://www.thespacereview.com/article/3975/1 | access-date=February 1, 2022 | archive-date=January 25, 2022 | archive-url=https://web.archive.org/web/20220125075833/https://www.thespacereview.com/article/3975/1 | url-status=live }}</ref><ref name="The Space Treaty Institute – Dedicated to Peace and Sustainability in Outer Space. Our Mission">{{cite web | title=The Space Treaty Institute – Dedicated to Peace and Sustainability in Outer Space. Our Mission: To give people Hope and Inspiration by helping the nations of Earth to build a Common Future | website=The Space Treaty Institute – Dedicated to Peace and Sustainability in Outer Space. Our Mission | url=http://www.spacetreaty.org/ | access-date=February 1, 2022 | archive-date=February 1, 2022 | archive-url=https://web.archive.org/web/20220201060827/http://www.spacetreaty.org/ | url-status=live }}</ref>

In the face of such increasing commercial and national interest, particularly prospecting territories, U.S. lawmakers have introduced in late 2020 specific regulation for the conservation of historic landing sites<ref name="HowStuffWorks 2021">{{cite web | title='One Small Step' Act Encourages Protection of Human Heritage in Space | website=HowStuffWorks | date=January 12, 2021 | url=https://science.howstuffworks.com/us-law-protect-lunar-landing-sites.htm | access-date=November 1, 2021 | archive-date=November 1, 2021 | archive-url=https://web.archive.org/web/20211101214329/https://science.howstuffworks.com/us-law-protect-lunar-landing-sites.htm | url-status=live }}</ref> and interest groups have argued for making such sites ]s<ref name="For All Moonkind">{{cite web | title=Moonkind – Human Heritage in Outer Space | website=For All Moonkind | url=https://www.forallmoonkind.org/moonkind-mission/human-heritage-in-outer-space/ | access-date=November 1, 2021 | archive-date=November 1, 2021 | archive-url=https://web.archive.org/web/20211101214336/https://www.forallmoonkind.org/moonkind-mission/human-heritage-in-outer-space/ | url-status=live }}</ref> and zones of scientific value protected zones, all of which add to the legal availability and territorialization of the Moon.<ref name="Alvarez 2020 p.">{{cite thesis | last=Alvarez | first=Tamara | title=The Eighth Continent: An Ethnography of Twenty-First Century Euro-American Plans to Settle the Moon | date=January 1, 2020 | url=https://www.academia.edu/43890727 | access-date=November 1, 2021 | page=109-115, 164–167, 176 | archive-date=February 5, 2022 | archive-url=https://web.archive.org/web/20220205171101/https://www.academia.edu/43890727 | url-status=live }}</ref>

In 2021, the ''Declaration of the Rights of the Moon''<ref name="Declaration">{{cite web | title=Declaration of the Rights of the Moon | date=February 11, 2021 | publisher=Australian Earth Laws Alliance | url=https://www.earthlaws.org.au/moon-declaration/ | access-date=May 10, 2021 | archive-date=April 23, 2021 | archive-url=https://web.archive.org/web/20210423050426/https://www.earthlaws.org.au/moon-declaration/ | url-status=live }}</ref> was created by a group of "lawyers, space archaeologists and concerned citizens", drawing on precedents in the ] movement and the concept of legal personality for non-human entities in space.<ref>{{Cite journal|last1=Tepper|first1=Eytan|last2=Whitehead|first2=Christopher|date=December 1, 2018|title=Moon, Inc.: The New Zealand Model of Granting Legal Personality to Natural Resources Applied to Space|url=https://www.liebertpub.com/doi/abs/10.1089/space.2018.0025|journal=New Space|volume=6|issue=4|pages=288–298|doi=10.1089/space.2018.0025|bibcode=2018NewSp...6..288T|s2cid=158616075|issn=2168-0256|access-date=July 30, 2022|archive-date=June 28, 2021|archive-url=https://web.archive.org/web/20210628015902/https://www.liebertpub.com/doi/abs/10.1089/space.2018.0025|url-status=live}}</ref><ref name="Evans 2021">{{cite web | last=Evans | first=Kate | title=Hear Ye! Hear Ye! A Declaration of the Rights of the Moon | website=Eos | date=July 20, 2021 | url=http://eos.org/features/hear-ye-hear-ye-a-declaration-of-the-rights-of-the-moon | access-date=April 9, 2022 | archive-date=February 6, 2022 | archive-url=https://web.archive.org/web/20220206102833/https://eos.org/features/hear-ye-hear-ye-a-declaration-of-the-rights-of-the-moon | url-status=live }}</ref>

===Coordination and regulation===
Increasing human activity at the Moon has raised the need for coordination to safeguard international and commercial lunar activity. Issues from cooperation to mere coordination, through for example the development of a shared ], have been raised.

In particular the establishment of an ] or ] regulatory regime for lunar human activity has been called for by the ] and suggested through an ''Implementation Agreement'',<ref name="The Space Review 2020"/><ref name="The Space Treaty Institute – Dedicated to Peace and Sustainability in Outer Space. Our Mission"/> but remains contentious. Current lunar programs are ], with the US-led ] and the China-led ]. For broader international cooperation and coordination, the ] (ILEWG), the ] (MVA) and more generally the International Space Exploration Coordination Group (ISECG) has been established.

==In culture and life==
===Timekeeping===
{{Further|Lunar calendar |Lunisolar calendar |Metonic cycle }}
] (c. 25,000 ]) holding a crescent shaped horn. The 13 notches on the horn may symbolize the average number of days from menstruation to an ], or the approximate number of full ]s and ]s per year (although these two phenomena are unrelated).<ref name=":0b">{{Cite book |last=Thompson, William Irwin. |url=https://www.worldcat.org/oclc/6890108 |title=The time falling bodies take to light : mythology, sexuality, and the origins of culture |date=1981 |publisher=St. Martin's Press |isbn=0-312-80510-1 |location=New York |pages=105 |oclc=6890108 |access-date=July 30, 2022 |archive-url=https://web.archive.org/web/20211003030402/https://www.worldcat.org/title/time-falling-bodies-take-to-light-mythology-sexuality-and-the-origins-of-culture/oclc/6890108 |archive-date=October 3, 2021 |url-status=live}}</ref><ref name="Boyle 2019">{{cite web |last=Boyle |first=Rebecca |date=July 9, 2019 |title=Ancient humans used the moon as a calendar in the sky |url=https://www.sciencenews.org/article/moon-time-calendar-ancient-human-art |url-status=live |archive-url=https://web.archive.org/web/20211104145754/https://www.sciencenews.org/article/moon-time-calendar-ancient-human-art |archive-date=November 4, 2021 |access-date=November 4, 2021 |website=Science News}}</ref>]]Since pre-historic times people have taken note of ] and its ] and used it to keep record of time. ]s, notched bones dating as far back as 20–30,000 years ago, are believed by some to mark the phases of the Moon.<ref name="Burton2011" /><ref>{{cite journal | last1=Brooks | first1=A. S. | last2=Smith | first2=C. C. | date=1987 | title=Ishango revisited: new age determinations and cultural interpretations | journal=The African Archaeological Review | volume=5 | issue=1 | pages=65–78 | doi=10.1007/BF01117083 | jstor=25130482 | s2cid=129091602 }}</ref><ref>{{cite book |last=Duncan |first=David Ewing |title=The Calendar |date=1998 |publisher=Fourth Estate Ltd. |isbn=978-1-85702-721-1 |pages= |url=https://archive.org/details/calendar5000year0000dunc_l8r5 }}</ref> The counting of the days between the Moon's phases gave eventually rise to generalized ]s of lunar cycles as ]s, and possibly of its phases as ]s.<ref name="Zerubavel 1989 p. 9">{{cite book | last=Zerubavel | first=E. | title=The Seven Day Circle: The History and Meaning of the Week | publisher=University of Chicago Press | year=1989 | isbn=978-0-226-98165-9 | url=https://books.google.com/books?id=Cd5ZjRsNj4sC&pg=PA9 | access-date=February 25, 2022 | page=9 | archive-date=July 25, 2022 | archive-url=https://web.archive.org/web/20220725234921/https://books.google.com/books?id=Cd5ZjRsNj4sC&pg=PA9 | url-status=live }}</ref>

The words for the month in a range of different languages carry this relation between the period of the month and the Moon etymologically. The English ''month'' as well as ''moon'', and its cognates in other Indo-European languages (e.g. the ] {{lang|la |mensis}} and ] {{lang|grc |μείς}} (''meis'') or {{lang |grc |μήν}} (mēn), meaning "month")<ref>{{cite book |author=Smith, William George |title=Dictionary of Greek and Roman Biography and Mythology: Oarses-Zygia |url=https://books.google.com/books?id=PJ0YAAAAIAAJ |access-date=March 29, 2010 |volume=3 |date=1849 |publisher=J. Walton |page=768 |archive-date=November 26, 2020 |archive-url=https://web.archive.org/web/20201126140722/https://books.google.com/books?id=PJ0YAAAAIAAJ |url-status=live }}</ref><ref>{{cite book |author=Estienne, Henri |title=Thesaurus graecae linguae |url=https://books.google.com/books?id=0qQ_AAAAcAAJ |access-date=March 29, 2010 |volume=5 |date=1846 |publisher=Didot |page=1001 |archive-date=July 28, 2020 |archive-url=https://web.archive.org/web/20200728014911/https://books.google.com/books?id=0qQ_AAAAcAAJ |url-status=live }}</ref><ref>{{L&S |mensis |ref}}</ref><ref>{{LSJ |mei/s |μείς |shortref}}.</ref> stem from the ] (PIE) root of ''moon'', *''méh<sub>1</sub>nōt'', derived from the PIE verbal root *''meh<sub>1</sub>''-, "to measure", "indicat a functional conception of the Moon, i.e. marker of the month" (] the English words ''measure'' and ''menstrual'').<ref>{{cite book |title=The Oxford Introduction to Proto-Indo-European and the Proto-Indo-European World |series=Oxford Linguistics |author1-first=J.P. |author1-last=Mallory |author2-first=D.Q. |author2-last=Adams |date=2006 |pages=98, 128, 317 |publisher=] |isbn=978-0-19-928791-8}}</ref><ref>{{OEtymD |measure |}}</ref><ref>{{OEtymD |menstrual |}}</ref> To give another example from a different ], the ] uses the same word ({{lang|zh |{{linktext|月}}}}) for ''moon'' as well as for ''month'', which furthermore can be found in the symbols for the word ''week'' ({{lang|zh |{{linktext|星期}}}}).

This lunar timekeeping gave rise to the historically dominant, but varied, ]s. The 7th-century ] is an example of a purely ], where months are traditionally determined by the visual sighting of the hilal, or earliest crescent moon, over the horizon.<ref>{{cite journal | title=Lunar Crescent Visibility Criterion and Islamic Calendar | last=Ilyas | first=Mohammad | journal=Quarterly Journal of the Royal Astronomical Society | volume=35 | page=425 | date=March 1994 | bibcode=1994QJRAS..35..425I }}</ref>

Of particular significance has been the occasion of ], highlighted and celebrated in a range of calendars and cultures, an example being the Buddhist ]. The full moon around the ] or ] is often called the ] and is celebrated with festivities such as the ] of the ], its second most important celebration after ] lunisolar ].<ref name="Confucius Institute for Scotland 2022">{{cite web | title=Mid-Autumn Festival Celebration | website=Confucius Institute for Scotland | date=August 30, 2022 | url=https://www.confuciusinstitute.ac.uk/events/mid-autumn-festival-activities-10-september/ | access-date=November 22, 2022 | archive-date=November 22, 2022 | archive-url=https://web.archive.org/web/20221122172612/https://www.confuciusinstitute.ac.uk/events/mid-autumn-festival-activities-10-september/ | url-status=live }}</ref>

Furthermore, association of time with the Moon can also be found in religion, such as the ancient Egyptian temporal and lunar deity ].

===Cultural representation===
{{Further|Cultural astronomy|Archaeoastronomy|Lunar deity |Selene |Luna (goddess) |Crescent |Man in the Moon }}
{{see also|Nocturne (painting)|Moon magic}}

{{multiple image
| title = Recurring lunar ] of ]
| align = right
| direction = vertical
| image1 = Sumerian_Cylinder_Seal_of_King_Ur-Nammu.jpg
| alt1 = ]n ] and impression, dated {{circa|2100}} BC, of Ḫašḫamer, ] (governor) of Iškun-Sin c. 2100 BC. The seated figure is probably king ], bestowing the governorship on Ḫašḫamer, who is led before him by ] (protective goddess).<ref name="Collections Search – Museum of Fine Arts, Boston 1987">{{cite web | title=Cylinder vase | website=Collections Search – Museum of Fine Arts, Boston | date=May 20, 1987 | url=https://collections.mfa.org/objects/6027/cylinder-vase;jsessionid=F2E906D47F69B2A85DB31D259E691783 | access-date=November 11, 2021 | archive-date=November 11, 2021 | archive-url=https://web.archive.org/web/20211111060850/https://collections.mfa.org/objects/6027/cylinder-vase;jsessionid=F2E906D47F69B2A85DB31D259E691783 | url-status=live }}</ref>
| caption1 = The ] of ], {{circa|2100}} BC
| image2 = Patera di Parabiago - MI - Museo archeologico - Diana - Luna - 25-7-2003 - Foto Giovanni Dall'Orto - 25-7-2003.jpg
| alt2 = ] on the ] (2nd–5th century), featuring the crescent crown, ] and ] as lunar ] found in different cultures.
| caption2 = Crescent headgear, ] and ] of ], 2nd–5th century
| image3 = Goddess O Ixchel.jpg
| alt3 = Rabbits are in a range of cultures identified with the Moon, from China to the ], as with the rabbit (on the left) of the ] (6th–9th century).
| caption3 = A ] of the ], 6th–9th century
| image4 =
| caption4 =
}}

Since prehistoric times humans have depicted and later described their perception of the Moon and its importance for them and their ]. It has been characterized and associated in many different ways, from having a ] or being ], and an ] thereof or an aspect ].

====Crescent====
For the representation of the Moon, especially its ]s, the ] (🌙) has been a recurring symbol in a range of cultures since at least 3,000 BCE or possibly earlier with bull horns dating to the earliest ]s at 40,000 ].<ref name="e093"/><ref name="k874"/> In ]s such as Chinese the crescent has developed into the symbol {{lang|zh |{{linktext|月}}}}, the word for Moon, and in ancient Egyptian it was the symbol {{linktext|𓇹}}, meaning Moon and spelled like the ancient Egyptian lunar deity '']'',<ref name="Hart 2005 p. 77">{{cite book | last=Hart | first=G. | title=The Routledge Dictionary of Egyptian Gods and Goddesses | publisher=Taylor & Francis | series=Routledge Dictionaries | year=2005 | isbn=978-1-134-28424-5 | url=https://books.google.com/books?id=Q1LAiPylZm4C&pg=PA77 | access-date=February 23, 2022 | page=77 | archive-date=July 25, 2022 | archive-url=https://web.archive.org/web/20220725234921/https://books.google.com/books?id=Q1LAiPylZm4C&pg=PA77 | url-status=live }}</ref> which the other ancient Egyptian lunar deities ] and ] were associated with.

Iconographically the crescent was used in ] as the primary symbol of ],<ref name=BlackGreen1992/> the ancient ]n lunar deity,<ref name=Nemet1998>{{citation |last=Nemet-Nejat |first=Karen Rhea |date=1998 |title=Daily Life in Ancient Mesopotamia |publisher=Greenwood |isbn=978-0-313-29497-6 |page= |url=https://archive.org/details/dailylifeinancie00neme |access-date=June 11, 2019 |archive-date=June 16, 2020 |archive-url=https://web.archive.org/web/20200616064441/https://archive.org/details/dailylifeinancie00neme/page/203 |url-status=live }}</ref><ref name=BlackGreen1992>{{cite book |last1=Black |first1=Jeremy |first2=Anthony |last2=Green |title=Gods, Demons and Symbols of Ancient Mesopotamia: An Illustrated Dictionary |url=https://books.google.com/books?id=05LXAAAAMAAJ |publisher=The British Museum Press |year=1992 |isbn=978-0-7141-1705-8 |pages=54, 135 |access-date=October 28, 2017 |archive-date=August 19, 2020 |archive-url=https://web.archive.org/web/20200819021935/https://books.google.com/books?id=05LXAAAAMAAJ&hl=en |url-status=live }}</ref> who was the father of ], the goddess of the planet ] (symbolized as the ] ]),<ref name="Nemet1998"/><ref name=BlackGreen1992/> and ], the god of the Sun (]),<ref name="Nemet1998"/><ref name=BlackGreen1992/> all three often depicted next to each other. Nanna/Sîn is, like some other lunar deities, for example Iah and Khonsu of ancient Egypt, ]/] of ancient Greece and ] of ancient Rome, depicted as a ], featuring crescent shaped headgears or crowns.<ref>{{cite book |last=Zschietzschmann |first=W. |date=2006 |title=Hellas and Rome: The Classical World in Pictures |location=Whitefish, Montana |publisher=Kessinger Publishing |isbn=978-1-4286-5544-7 |page=23 }}</ref><ref>{{cite book |last=Cohen |first=Beth |date=2006 |article=Outline as a Special Technique in Black- and Red-figure Vase-painting |url=https://books.google.com/books?id=YyufPUA_S74C&pg=PA178 |title=The Colors of Clay: Special Techniques in Athenian Vases |location=Los Angeles |publisher=Getty Publications |isbn=978-0-89236-942-3 |pages=178–179 |access-date=April 28, 2020 |archive-date=August 19, 2020 |archive-url=https://web.archive.org/web/20200819021937/https://books.google.com/books?id=YyufPUA_S74C&pg=PA178&hl=en |url-status=live }}</ref>

The particular arrangement of the crescent with a star known as the ] (☪️) goes back to the Bronze Age, representing either the Sun and Moon, or the Moon and the planet Venus, in combination. It came to represent the selene goddess ], and via the patronage of ], which as ] under the ] ''trimorphos''/''trivia'' included aspects of Artemis/], came to be used as a ], with ] (]) later taking her place, becoming depicted in ] on a crescent and adorned with stars. Since then the ] use of the star and crescent proliferated, Byzantium's symbolism possibly influencing the development of the ], specifically the combination of the Turkish crescent with a star,<ref>"It seems possible, though not certain, that after the conquest Mehmed took over the crescent ''and'' star as an emblem of sovereignty from the Byzantines. The half-moon alone on a blood red flag, allegedly conferred on the Janissaries by Emir Orhan, was much older, as is demonstrated by numerous references to it dating from before 1453. But since these flags lack the star, which along with the half-moon is to be found on Sassanid and Byzantine municipal coins, it may be regarded as an innovation of Mehmed. It seems certain that in the interior of Asia tribes of Turkish nomads had been using the half-moon alone as an emblem for some time past, but it is equally certain that crescent and star ''together'' are attested only for a much later period. There is good reason to believe that old Turkish and Byzantine traditions were combined in the emblem of Ottoman and, much later, present-day Republican Turkish sovereignty." Franz Babinger (William C. Hickman Ed., Ralph Manheim Trans.), ''Mehmed the Conqueror and His Time'', Princeton University Press, 1992, p 108</ref> and becoming a popular ] (as the '']'' of the ]) and ].<ref name="Kadoi 2014">{{cite journal | last=Kadoi | first=Yuka | title=Crescent (symbol of Islam) | website=Brill Encyclopedia of Islam Online | date=October 1, 2014 | url=https://referenceworks.brillonline.com/entries/encyclopaedia-of-islam-3/crescent-symbol-of-islam-COM_25588?s.num=27&s.start=20 | access-date=April 8, 2022 | archive-date=April 8, 2022 | archive-url=https://web.archive.org/web/20220408190925/https://referenceworks.brillonline.com/entries/encyclopaedia-of-islam-3/crescent-symbol-of-islam-COM_25588?s.num=27&s.start=20 | url-status=live }}</ref>

====Other association====
The features of the Moon, the contrasting brighter highlands and darker maria, have been seen by different cultures ]. Such shapes are among others the ] (e.g. ]) or the ] (e.g. the Chinese ] or in ] the aspect of the ], from which possibly ] is derived, or of ]/]).<ref name="Collections Search – Museum of Fine Arts, Boston 1987"/>

Occasionally some lunar deities have been also depicted ], such as the Hindu ], the Greek Artemis, which is associated with Selene, or Luna, Selene's ancient Roman equivalent.

Color and material wise the Moon has been associated in Western ] with ], while gold is associated with the Sun.<ref name="Abbri 2019 pp. 39–44">{{cite journal | last=Abbri | first=Ferdinando | title=Gold and silver: perfection of metals in medieval and early modern alchemy | journal=Substantia | date=August 30, 2019 | issn=2532-3997 | doi=10.13128/Substantia-603 | pages=39–44 | url=https://riviste.fupress.net/index.php/subs/article/view/603 | access-date=April 8, 2022 | archive-date=June 17, 2022 | archive-url=https://web.archive.org/web/20220617041849/https://riviste.fupress.net/index.php/subs/article/view/603 | url-status=live }}</ref>

Through a miracle, the so-called ] ({{langx|ar|انشقاق القمر}}) in ], association with the Moon applies also to ].<ref>"Muhammad." '']''. 2007. Encyclopædia Britannica Online, p.13</ref>{{clear}}

=== Modern culture representation ===
{{See also|Moon in science fiction|List of appearances of the Moon in fiction}}

{{Multiple images
| align = right
| total_width = 410
| image1 = Van Gogh - Starry Night - Google Art Project.jpg
| image2 = Melies_color_Voyage_dans_la_lune.jpg
| caption1 = The Moon is prominently featured in ]'s 1889 painting, '']''.<ref name="The New York Times 2019"/>
| caption2 = An iconic image of the ] from the first ] set in space, '']'' (1902, ]), inspired by a history of literature about going to the Moon.
}}

The perception of the Moon in modern times has been informed by ] enabled ] and later by ] enabled actual human activity at the Moon, particularly the ]s. These new insights inspired cultural references, connecting romantic reflections about the Moon<ref name="The MIT Press Reader 2020">{{cite web | title=The Moon of Science or the Moon of Lovers? | website=The MIT Press Reader | date=September 29, 2020 | url=https://thereader.mitpress.mit.edu/moon-of-science-vs-moon-of-lovers/ | access-date=November 1, 2021 | archive-date=November 1, 2021 | archive-url=https://web.archive.org/web/20211101231807/https://thereader.mitpress.mit.edu/moon-of-science-vs-moon-of-lovers/ | url-status=live }}</ref> and speculative fiction such as science-fiction dealing with the Moon.<ref name="The New York Times 2019">{{cite web | title=Imagining the Moon | website=The New York Times | date=July 9, 2019 | url=https://www.nytimes.com/2019/07/09/science/moon-art-culture.html |archive-url=https://web.archive.org/web/20190709091131/https://www.nytimes.com/2019/07/09/science/moon-art-culture.html |archive-date=July 9, 2019 |url-access=subscription |url-status=live | access-date=November 4, 2021}}</ref><ref name="Nature 2019">{{cite journal | title=Moon on the mind: two millennia of lunar literature | journal=Nature | date=July 9, 2019 | doi=10.1038/d41586-019-02090-w | last1=Seed | first1=David | volume=571 | issue=7764 | pages=172–173 | bibcode=2019Natur.571..172S | s2cid=195847287 | doi-access=free }}</ref>

Contemporarily the Moon has been seen as a place for ], with missions prospecting for ]. This has been accompanied with renewed public and critical reflection on humanity's cultural and ], especially regarding ],<ref name="Alvarez 2020 p."/> as in the 1970 poem "]". In this light the Moon's nature has been invoked,<ref name="Declaration"/> particularly for lunar conservation<ref name="Nast 2013">{{cite magazine | title=Space: The Final Frontier of Environmental Disasters? | magazine=Wired | date=July 15, 2013 | url=https://www.wired.com/2013/07/space-environmentalism/ | access-date=April 9, 2022 | archive-date=July 14, 2021 | archive-url=https://web.archive.org/web/20210714235012/https://www.wired.com/2013/07/space-environmentalism/ | url-status=live }}</ref> and as a ].<ref name="Open Lunar Foundation 2022">{{cite web | title=Polycentricity for Governance of the Moon as a Commons | website=Open Lunar Foundation | date=March 22, 2022 | url=https://www.openlunar.org/library/polycentricity-for-governance-of-the-moon-as-a-commons | access-date=April 9, 2022 | archive-date=April 20, 2022 | archive-url=https://web.archive.org/web/20220420015444/https://www.openlunar.org/library/polycentricity-for-governance-of-the-moon-as-a-commons | url-status=live }}</ref><ref name="The Space Review 2021"/><ref name="Evans 2021"/>

In 2021 20 July, the date of the ], became the annual ''International Moon Day''.<ref name="Nations 1967 a849">{{cite web | last=Nations | first=United | title=International Moon Day | publisher=United Nations | date=October 10, 1967 | url=https://www.un.org/en/observances/moon-day | access-date=November 8, 2023 | archive-date=June 27, 2023 | archive-url=https://web.archive.org/web/20230627042218/https://www.un.org/en/observances/moon-day | url-status=live }}</ref>

===Lunar effect===
{{Main|Lunar effect}}
The lunar effect is a purported unproven correlation between specific stages of the roughly 29.5-day lunar cycle and behavior and physiological changes in living beings on Earth, including humans. The Moon has long been associated with insanity and irrationality; the words ''lunacy'' and '']'' are derived from the Latin name for the Moon, ''Luna''. Philosophers ] and ] argued that the full moon induced insanity in susceptible individuals, believing that the brain, which is mostly water, must be affected by the Moon and its power over the tides, but the Moon's gravity is too slight to affect any single person.<ref name="sciam"/> Even today, people who believe in a lunar effect claim that admissions to psychiatric hospitals, traffic accidents, homicides or suicides increase during a full moon, but dozens of studies invalidate these claims.<ref name="sciam"/><ref name="RottonKelly1985"/><ref name="MartensKelly1988"/><ref name="kelly"/><ref name="FosterRoenneberg2008"/>


== See also == == See also ==
*]
{{MultiCol}}
*] (geography of the Moon)
* ]
*]
* ]

* ]
== Explanatory notes ==
* ]
{{Notelist
* ]
|notes=
* ]
{{efn|name=maxval
* ]
|The ''maximum value'' is given based on scaling of the brightness from the value of −12.74 given for an equator to Moon-centre distance of 378&nbsp;000&nbsp;km in the NASA factsheet reference to the minimum Earth–Moon distance given there, after the latter is corrected for Earth's equatorial radius of 6&nbsp;378&nbsp;km, giving 350&nbsp;600&nbsp;km. The ''minimum value'' (for a distant ]) is based on a similar scaling using the maximum Earth–Moon distance of 407&nbsp;000&nbsp;km (given in the factsheet) and by calculating the brightness of the ] onto such a new moon. The brightness of the earthshine is {{nowrap|] ×}} {{nowrap|(] /}} Radius of ])<sup>2</sup>&nbsp;] relative to the direct solar illumination that occurs for a full moon. ({{nowrap |Earth albedo {{=}} 0.367}}; {{nowrap |Earth radius {{=}} (polar}} radius&nbsp;× equatorial {{nowrap |radius)<sup>½</sup> {{=}} 6 367 km}}.)
{{ColBreak}}
}}
;Lunar location listings
{{efn |name=angular size
* ]
|The range of angular size values given are based on simple scaling of the following values given in the fact sheet reference: at an Earth-equator to Moon-centre distance of 378&nbsp;000&nbsp;km, the ] is 1896&nbsp;]s. The same fact sheet gives extreme Earth–Moon distances of 407&nbsp;000&nbsp;km and 357&nbsp;000&nbsp;km. For the maximum angular size, the minimum distance has to be corrected for Earth's equatorial radius of 6&nbsp;378&nbsp;km, giving 350&nbsp;600&nbsp;km.
* ]
}}
* ]
{{efn|name=pressure explanation
* ]
|Lucey et al. (2006) give {{nowrap |10<sup>7</sup> particles cm<sup>−3</sup>}} by day and {{nowrap |10<sup>5</sup> particles cm<sup>−3</sup>}} by night. Along with equatorial surface temperatures of 390&nbsp;] by day and 100&nbsp;K by night, the ] yields the pressures given in the infobox (rounded to the nearest ]): 10<sup>−7</sup>&nbsp;] by day and 10<sup>−10</sup>&nbsp;Pa by night.
* ]
}}
* ]
{{efn |name=near-Earth asteroids
{{EndMultiCol}}
|There are a number of ]s, including ], that are ] with Earth: their orbits bring them close to Earth for periods of time but then alter in the long term (Morais et al, 2002). These are ]s&nbsp;– they are not moons as they do not orbit Earth. For more information, see ].
}}
{{efn|name=Moon vs. Charon
|With 27% the diameter and 60% the density of Earth, the Moon has 1.23% of the mass of Earth. The moon ] is larger relative to its primary ], but Earth and the Moon are different since Pluto is considered a ] and not a planet, unlike Earth.
}}
{{efn |name=orbpd
|More accurately, the Moon's mean sidereal period (fixed star to fixed star) is 27.321661&nbsp;days {{nowrap |(27 d 07 h 43 min 11.5 s)}}, and its mean tropical orbital period (from equinox to equinox) is 27.321582&nbsp;days {{nowrap |(27 d 07 h 43 min 04.7 s)}} (''Explanatory Supplement to the Astronomical Ephemeris'', 1961, at p.107).
}}
{{efn |name=synpd
|More accurately, the Moon's mean synodic period (between mean solar conjunctions) is 29.530589&nbsp;days {{nowrap |(29 d 12 h 44 min 02.9 s)}} (''Explanatory Supplement to the Astronomical Ephemeris'', 1961, at p.107).
}}
{{efn |name=brightness
|The Sun's ] is −26.7, while the full moon's apparent magnitude is −12.7.
}}
{{efn|name=area
|On average, the Moon covers an area of {{nowrap |0.21078 square degrees}} on the night sky.
}}
{{efn |name=size changes
|See graph in ]. At present, the diameter of the Sun is increasing at a rate of about five percent per billion years. This is very similar to the rate at which the apparent angular diameter of the Moon is decreasing as it recedes from Earth.
}}
}}


==References== ==References==
{{Reflist|refs=
<!-- ----------------------------------------------------------
See http://en.wikipedia.org/Wikipedia:Footnotes for a
discussion of different citation methods and how to generate
footnotes using the<ref>, </ref> and <reference /> tags
----------------------------------------------------------- -->
<div class="references-2column">
'''Cited references'''
<references />
'''Scientific references'''
* Ben Bussey and ], ''The Clementine Atlas of the Moon'', Cambridge University Press, 2004, ISBN 0-521-81528-2.
* {{cite journal | last = Don Wilhelms | title = , | journal = U.S. Geological Survey Professional paper| date = 1987 |volume = 1348}}
* , Brad Jolliff, Mark Wieczorek, Charles Shearer and Clive Neal (editors), Rev. Mineral. Geochem., 60, Min. Soc. Amer., Chantilly, Virginia, 721 pp., 2006.
* {{cite book | last = Stuart R. Taylor | title = Solar system evolution | publisher = Cambridge Univ. Press | pages = 307 pp | date = 1992 }}
'''General references'''
* {{cite book| title=To a Rocky Moon: A Geologist's History of Lunar Exploration | last = D.E. Wilhelms | publisher = University of Arizona Press, Tucson | date = 1993}}
* ], ''On the Moon'', Sterling Publishing Co., ], ISBN 0-304-35469-4.
* Paul D. Spudis, ''The Once and Future Moon'', Smithsonian Institution Press, 1996, ISBN 1-56098-634-4.
*
</div>


<ref name="W06">{{cite journal |last1=Wieczorek |first1=Mark A. |last2=Jolliff |first2=Bradley L. |last3=Khan |first3=Amir |last4=Pritchard |first4=Matthew E. |last5=Weiss |first5=Benjamin P. |last6=Williams |first6=James G. |last7=Hood |first7=Lon L. |last8=Righter |first8=Kevin |last9=Neal |first9=Clive R. |last10=Shearer |first10=Charles K. |last11=McCallum |first11=I. Stewart |last12=Tompkins |first12=Stephanie |last13=Hawke |first13=B. Ray |last14=Peterson |first14=Chris |last15=Gillis |first15=Jeffrey J. |last16=Bussey |first16=Ben |title=The constitution and structure of the lunar interior |journal=] |volume=60 |issue=1 |pages=221–364 |date=2006 |doi=10.2138/rmg.2006.60.3 |bibcode=2006RvMG...60..221W |s2cid=130734866 }}</ref>
==External links==
{{sisterlinks|Moon}}
=== Moon phases ===
* Full Moon Names:
*
*
*


<ref name="Lang2011">{{cite book |last=Lang |first=Kenneth R. |year=2011 |url=https://books.google.com/books?id=S4xDhVCxAQIC&pg=PA184 |title=The Cambridge Guide to the Solar System |archive-url=https://web.archive.org/web/20160101071141/https://books.google.com/books?id=S4xDhVCxAQIC&pg=PA184 |archive-date=January 1, 2016 |edition=2nd |publisher=Cambridge University Press |isbn=978-1139494175 }}</ref>
=== Exploration ===
* — Definitive history of Apollo lunar exploration programme.
*
*


<ref name="NSSDC">{{cite web |last=Williams |first=David R. |title=Moon Fact Sheet |publisher=NASA/] |url=http://nssdc.gsfc.nasa.gov/planetary/factsheet/moonfact.html |date=February 2, 2006 |access-date=December 31, 2008 |url-status=live |archive-url=https://web.archive.org/web/20100323165650/http://nssdc.gsfc.nasa.gov/planetary/factsheet/moonfact.html |archive-date=March 23, 2010}}</ref>
=== Images and maps ===
{{MultiCol}}
*
*
*
*
*
{{ColBreak}}
*
* A view of the moon.
*
*
*
{{EndMultiCol}}


<ref name="Saari">{{cite journal |doi=10.1364/AO.47.004981 |title=Celestial body irradiance determination from an underfilled satellite radiometer: application to albedo and thermal emission measurements of the Moon using CERES |date=2008 |last1=Matthews |first1=Grant |journal=] |volume=47 |pages=4981–4993 |pmid=18806861 |issue=27 |bibcode=2008ApOpt..47.4981M}}</ref>
=== Myth and folklore ===
{{MultiCol}}
*
*
{{ColBreak}}
*
{{EndMultiCol}}


<ref name="Vasavada1999">{{cite journal |first1=A. R. | last1=Vasavada | first2=D. A. | last2=Paige | first3=S. E. | last3=Wood |journal=] |title=Near-Surface Temperatures on Mercury and the Moon and the Stability of Polar Ice Deposits |volume=141 |issue=2 |pages=179–193 |bibcode=1999Icar..141..179V |doi=10.1006/icar.1999.6175 |date=1999 |s2cid=37706412 }}</ref>
===Others===
{{MultiCol}}
*
* Moon Reference and News
* Virtual globe including detailed 3D moon.
*
{{ColBreak}}
*
* Moon related articles
* general reference, with atlas, nightly tours, articles
{{EndMultiCol}}


<ref name="L06">{{cite journal |last1=Lucey |first1=Paul |last2=Korotev |first2=Randy L. |last3=Gillis |first3=Jeffrey J. |last4=Taylor |first4=Larry A. |last5=Lawrence |first5=David |last6=Campbell |first6=Bruce A. |last7=Elphic |first7=Rick |last8=Feldman |first8=Bill |last9=Hood |first9=Lon L.| last10 = Hunten| first10 = Donald |last11=Mendillo |first11=Michael |last12=Noble |first12=Sarah |last13=Papike |first13=James J. |last14=Reedy |first14=Robert C. |last15=Lawson |first15=Stefanie |last16=Prettyman |first16=Tom |last17=Gasnault |first17=Olivier |last18=Maurice |first18=Sylvestre |title=Understanding the lunar surface and space-Moon interactions |journal=] |volume=60 |issue=1 |pages=83–219 |date=2006 |doi=10.2138/rmg.2006.60.2 |bibcode=2006RvMG...60...83L}}</ref>
{{moon_footer}}
{{Footer_SolarSystem}}
{{SolarSatellites Footer}}


<ref name="Morais2002">{{cite journal |last1=Morais |first1=M. H. M. |last2=Morbidelli | first2=A. |title=The Population of Near-Earth Asteroids in Coorbital Motion with the Earth |journal=] |date=2002 |volume=160 |issue=1 |pages=1–9 |bibcode=2002Icar..160....1M |doi=10.1006/icar.2002.6937 |hdl=10316/4391 |s2cid=55214551 |hdl-access=free }}</ref>
]
]
]


<!--<ref name="test">{{cite web |url=http://www.astrobio.net/pressrelease/4673/titanium-paternity-test-says-earth-is-the-moons-only-parent |title=Titanium Paternity Test Says Earth is the Moon's Only Parent (University of Chicago) |publisher=Astrobiology Magazine |access-date=October 3, 2013 |date=April 5, 2012 |archive-date=August 8, 2012 |archive-url=https://web.archive.org/web/20120808105553/http://www.astrobio.net/pressrelease/4673/titanium-paternity-test-says-earth-is-the-moons-only-parent |url-status=usurped }}</ref>-->
{{Link FA|af}}
{{Link FA|ar}}
{{Link FA|bg}}
{{Link FA|cs}}
{{Link FA|de}}
{{Link FA|es}}
{{Link FA|fr}}
{{Link FA|sk}}
{{Link FA|sr}}


<ref name="PN-FAQ">{{cite web |url=http://planetarynames.wr.usgs.gov/nomenFAQ.html |title=Gazetteer of Planetary Nomenclature: Planetary Nomenclature FAQ |publisher=] |access-date=April 6, 2020 |url-status=live |archive-url=https://web.archive.org/web/20100527120646/http://planetarynames.wr.usgs.gov/nomenFAQ.html |archive-date=May 27, 2010}}</ref>
]

]
<ref name="barnhart1995">{{cite book |last=Barnhart |first=Robert K. |title=The Barnhart Concise Dictionary of Etymology |date=1995 |publisher=] |isbn=978-0-06-270084-1 |page=487}}</ref>
]

]
<ref name="oed">{{cite web |url=http://dictionary.oed.com/cgi/entry/50136796?single=1&query_type=word&queryword=lunar&first=&max_to_show=10 |title=Oxford English Dictionary: lunar, a. and n. |work=Oxford English Dictionary: Second Edition 1989 |publisher=] |access-date=March 23, 2010 |archive-date=August 19, 2020 |archive-url=https://web.archive.org/web/20200819021946/https://public.oed.com/help/ |url-status=live }}</ref>
]

]
<ref name="Binder">{{cite journal |last=Binder |first=A. B. |title=On the origin of the Moon by rotational fission |journal=] |date=1974 |volume=11 |issue=2 |pages=53–76 |bibcode=1974Moon...11...53B |doi=10.1007/BF01877794|s2cid=122622374 }}</ref>
]

]
<ref name="BotM">{{cite book |last=Stroud |first=Rick |title=The Book of the Moon |url=https://archive.org/details/bookofmoon0000stro |url-access=registration |date=2009 |publisher=Walken and Company |isbn=978-0-8027-1734-4 |pages= |access-date=November 11, 2019 |archive-date=June 17, 2020 |archive-url=https://web.archive.org/web/20200617181611/https://archive.org/details/bookofmoon0000stro |url-status=live }}</ref>
]

]
<ref name="Mitler">{{cite journal |last=Mitler |first=H. E. |title=Formation of an iron-poor moon by partial capture, or: Yet another exotic theory of lunar origin |journal=] |date=1975 |volume=24 |issue=2 |pages=256–268 |bibcode=1975Icar...24..256M |doi=10.1016/0019-1035(75)90102-5}}</ref>
]

]
<ref name="taylor1998">{{cite web |url=http://www.psrd.hawaii.edu/Dec98/OriginEarthMoon.html |title=Origin of the Earth and Moon |last=Taylor |first=G. Jeffrey |date=December 31, 1998 |work=Planetary Science Research Discoveries |publisher=Hawai'i Institute of Geophysics and Planetology |access-date=April 7, 2010 |url-status=live |archive-url=https://web.archive.org/web/20100610011142/http://www.psrd.hawaii.edu/Dec98/OriginEarthMoon.html |archive-date=June 10, 2010}}</ref>
]

]
<ref name="Pahlevan2007">{{cite journal |last1=Pahlevan |first1=Kaveh |last2=Stevenson | first2=David J. |date=2007 |title=Equilibration in the aftermath of the lunar-forming giant impact |journal=] |volume=262 |issue=3–4 |pages=438–449 |doi=10.1016/j.epsl.2007.07.055 |bibcode=2007E&PSL.262..438P |arxiv=1012.5323|s2cid=53064179 }}</ref>
]

]
<ref name="Warren1985">{{cite journal |last=Warren |first=P. H. |date=1985 |title=The magma ocean concept and lunar evolution |journal=] |volume=13 |issue=1 |pages=201–240 |bibcode=1985AREPS..13..201W |doi=10.1146/annurev.ea.13.050185.001221}}</ref>
]

]
<ref name="S06">{{cite journal |last1=Shearer |first1=Charles K. |last2=Hess |first2=Paul C. |last3=Wieczorek |first3=Mark A. |last4=Pritchard |first4=Matt E. |last5=Parmentier |first5=E. Mark |last6=Borg |first6=Lars E. |last7=Longhi |first7=John |last8=Elkins-Tanton |first8=Linda T. |last9=Neal |first9=Clive R. |last10=Antonenko |first10=Irene |last11=Canup |first11=Robin M. |last12=Halliday |first12=Alex N. |last13=Grove |first13=Tim L. |last14=Hager |first14=Bradford H. |last15=Lee |first15=D.-C. |last16=Wiechert |first16=Uwe |title=Thermal and magmatic evolution of the Moon |journal=] |volume=60 |issue=1 |pages=365–518 |date=2006 |doi=10.2138/rmg.2006.60.4 |bibcode=2006RvMG...60..365S |s2cid=129184748 }}</ref>
]

]
<ref name="Schubert2004">{{cite book |last=Schubert |first=J. |editor=F. Bagenal |display-editors=etal |title=Jupiter: The Planet, Satellites, and Magnetosphere |date=2004 |publisher=] |isbn=978-0-521-81808-7 |pages=281–306 |chapter=Interior composition, structure, and dynamics of the Galilean satellites.}}</ref>
]

]
<ref name="Spudis1994">{{cite journal |doi=10.1126/science.266.5192.1848 |last=Spudis |first=Paul D. |author2=Reisse, Robert A. |author3=Gillis, Jeffrey J. |date=1994 |title=Ancient Multiring Basins on the Moon Revealed by Clementine Laser Altimetry |journal=] |volume=266 |issue=5192 |pages=1848–1851 |bibcode=1994Sci...266.1848S |pmid=17737079|s2cid=41861312 }}</ref>
]

]
<ref name="worldbook">{{cite web |last=Spudis |first=P. D. |date=2004 |url=http://www.nasa.gov/worldbook/moon_worldbook.html |title=Moon |publisher=World Book Online Reference Center, NASA |archive-url=https://web.archive.org/web/20130703162844/http://www.nasa.gov/worldbook/moon_worldbook.html |archive-date=July 3, 2013 |url-status=dead |access-date=April 12, 2007}}</ref>
]

]
<ref name="Papike">{{cite journal |last1=Papike |first1=J. | last2=Ryder | first2=G. | last3=Shearer | first3=C. |title=Lunar Samples |journal=] |volume=36 |pages=5.1–5.234 |date=1998}}</ref>
]

]
<ref name="Hiesinger">{{cite journal |last1=Hiesinger |first1=H. | last2=Head | first2=J. W. | last3=Wolf | first3=U. | last4=Jaumann | first4=R. | last5=Neukum | first5=G. |title=Ages and stratigraphy of mare basalts in Oceanus Procellarum, Mare Numbium, Mare Cognitum, and Mare Insularum |journal=] |volume=108 |issue=E7 |page=1029 |date=2003 |doi=10.1029/2002JE001985 |bibcode=2003JGRE..108.5065H |s2cid=9570915 |doi-access=free }}</ref>
]

]
<ref name="geologic">{{cite book |first=Don |last=Wilhelms |date=1987 |title=Geologic History of the Moon |publisher=] |chapter-url=http://ser.sese.asu.edu/GHM/ghm_07txt.pdf |chapter=Relative Ages |url-status=dead |archive-url=https://web.archive.org/web/20100611054723/http://ser.sese.asu.edu/GHM/ghm_07txt.pdf |archive-date=June 11, 2010 |access-date=April 4, 2010 }}</ref>
]

]
<ref name="Margot1999">{{cite journal | last1=Margot | first1=J. L. | last2=Campbell | first2=D. B. | last3=Jurgens | first3=R. F. | last4=Slade | first4=M. A. |title=Topography of the Lunar Poles from Radar Interferometry: A Survey of Cold Trap Locations |journal=] |date=June 4, 1999 |volume=284 |issue=5420 |pages=1658–1660 |doi=10.1126/science.284.5420.1658 |pmid=10356393 |bibcode=1999Sci...284.1658M |url=http://www.astro.cornell.edu/~jlm/publications/Margot00.science284.lunarice.pdf |citeseerx=10.1.1.485.312 |access-date=October 25, 2017 |archive-date=August 11, 2017 |archive-url=https://web.archive.org/web/20170811165220/http://www.astro.cornell.edu/~jlm/publications/Margot00.science284.lunarice.pdf |url-status=live }}</ref>
]

]
<ref name="M03">{{cite journal |url=http://www.psrd.hawaii.edu/June03/lunarShadows.html |title=The Moon's Dark, Icy Poles |page=73 |last=Martel |first=L. M. V. |journal=Planetary Science Research Discoveries |date=June 4, 2003 |access-date=April 12, 2007 |url-status=dead |archive-url=https://web.archive.org/web/20120301090706/http://www.psrd.hawaii.edu/June03/lunarShadows.html |archive-date=March 1, 2012 |bibcode=2003psrd.reptE..73M }}</ref>
]

]
<ref name="seedhouse2009">{{cite book |last=Seedhouse |first=Erik |title=Lunar Outpost: The Challenges of Establishing a Human Settlement on the Moon |publisher=] |location=Germany |date=2009 |series=Springer-Praxis Books in Space Exploration |page=136 |isbn=978-0-387-09746-6 |url=https://books.google.com/books?id=ZJm_i3GS4r4C&pg=PA136 |access-date=August 22, 2020 |archive-date=November 26, 2020 |archive-url=https://web.archive.org/web/20201126140722/https://books.google.com/books?id=ZJm_i3GS4r4C&pg=PA136 |url-status=live }}</ref>
]

]
<ref name="moonwater_18032010">{{cite web |url=https://science.nasa.gov/headlines/y2010/18mar_moonwater.htm?list940097 |archive-url=https://archive.today/20121213142650/http://science.nasa.gov/headlines/y2010/18mar_moonwater.htm?list940097 |url-status=dead |archive-date=December 13, 2012 |title=The Multiplying Mystery of Moonwater |last=Coulter |first=Dauna |date=March 18, 2010 |publisher=NASA |access-date=March 28, 2010 }}</ref>
]

]
<ref name="Feldman1998">{{cite journal |last1=Feldman |first1=W. C. | first2=S. | last2=Maurice | first3=A. B. | last3=Binder | first4=B. L. | last4=Barraclough |author5=R.C. Elphic |author6=D.J. Lawrence |date=1998 |title=Fluxes of Fast and Epithermal Neutrons from Lunar Prospector: Evidence for Water Ice at the Lunar Poles |journal=] |pmid=9727973 |volume=281 |issue=5382 |pages=1496–1500 |doi=10.1126/science.281.5382.1496 |bibcode=1998Sci...281.1496F |s2cid=9005608 |doi-access=free }}</ref>
]

]
<ref name="Saal2008">{{cite journal |last1=Saal |first1=Alberto E. | last2=Hauri | first2=Erik H. | last3=Cascio | first3=Mauro L. | last4=van Orman | first4=James A. | last5=Rutherford | first5=Malcolm C. | last6=Cooper | first6=Reid F. |date=2008 |title=Volatile content of lunar volcanic glasses and the presence of water in the Moon's interior |journal=] |pmid=18615079 |volume=454 |issue=7201 |pages=192–195 |doi=10.1038/nature07047 |bibcode=2008Natur.454..192S|s2cid=4394004 }}</ref>
]

]
<ref name="Pieters2009">{{cite journal |doi=10.1126/science.1178658 |last1=Pieters |first1=C. M. |last2=Goswami |first2=J. N. |last3=Clark |first3=R. N. |last4=Annadurai |first4=M. |last5=Boardman |first5=J. |last6=Buratti |first6=B. |last7=Combe |first7=J.-P. |last8=Dyar |first8=M. D. |last9=Green |first9=R. |last10=Head |first10=J. W. |last11=Hibbitts |first11=C. |last12=Hicks |first12=M. |last13=Isaacson |first13=P. |last14=Klima |first14=R. |last15=Kramer |first15=G. |last16=Kumar |first16=S. |last17=Livo |first17=E. |last18=Lundeen |first18=S. |last19=Malaret |first19=E. |last20=McCord |first20=T. |last21=Mustard |first21=J. |last22=Nettles |first22=J. |last23=Petro |first23=N. |last24=Runyon |first24=C. |last25=Staid |first25=M. |last26=Sunshine |first26=J. |last27=Taylor |first27=L.A. |last28=Tompkins |first28=S. |last29=Varanasi |first29=P. |date=2009 |title=Character and Spatial Distribution of OH/H2O on the Surface of the Moon Seen by M3 on Chandrayaan-1 |journal=] |volume=326 |issue=5952 |pages=568–572 |pmid=19779151 |bibcode=2009Sci...326..568P |s2cid=447133 |doi-access=free }}</ref>
]

]
<ref name="Planetary">{{cite web |url=http://planetary.org/news/2009/1113_LCROSS_Lunar_Impactor_Mission_Yes_We.html |title=LCROSS Lunar Impactor Mission: "Yes, We Found Water!" |last=Lakdawalla |first=Emily |date=November 13, 2009 |publisher=] |access-date=April 13, 2010 |url-status=dead |archive-url=https://web.archive.org/web/20100122233405/http://www.planetary.org/news/2009/1113_LCROSS_Lunar_Impactor_Mission_Yes_We.html |archive-date=January 22, 2010}}</ref>
]

]
<ref name="Colaprete">{{cite journal |last1=Colaprete |first1=A. |last2=Ennico |first2=K. |last3=Wooden |first3=D. |last4=Shirley |first4=M. |last5=Heldmann |first5=J. |last6=Marshall |first6=W. |last7=Sollitt |first7=L. |last8=Asphaug |first8=E. |last9=Korycansky |first9=D.| last10 = Schultz| first10 = P. |last11=Hermalyn |first11=B. |last12=Galal |first12=K. |last13=Bart |first13=G.D. |last14=Goldstein |first14=D. |last15=Summy |first15=D. |date=March 1–5, 2010 |title=Water and More: An Overview of LCROSS Impact Results |journal=41st Lunar and Planetary Science Conference |volume=41 |issue=1533 |page=2335 |bibcode=2010LPI....41.2335C}}</ref>
]

]
<ref name="Colaprete2010">{{cite journal |last1=Colaprete |first1=Anthony |last2=Schultz |first2=Peter |last3=Heldmann |first3=Jennifer |last4=Wooden |first4=Diane |last5=Shirley |first5=Mark |last6=Ennico |first6=Kimberly |last7=Hermalyn |first7=Brendan |last8=Marshall |first8=William |last9=Ricco |first9=Antonio |last10=Elphic |first10=Richard C. |last11=Goldstein |first11=David |last12=Summy |first12=Dustin |last13=Bart |first13=Gwendolyn D. |last14=Asphaug |first14=Erik |last15=Korycansky |first15=Don |last16=Landis |first16=David |last17=Sollitt |first17=Luke |title=Detection of Water in the LCROSS Ejecta Plume |journal=] |date=October 22, 2010 |volume=330 |issue=6003 |pmid=20966242 |pages=463–468 |doi=10.1126/science.1186986 |bibcode=2010Sci...330..463C |s2cid=206525375 }}</ref>
]

]
<ref name="hauri">{{cite journal |last=Hauri |first=Erik |author2=Thomas Weinreich |author3=Albert E. Saal |author4=Malcolm C. Rutherford |author5=James A. Van Orman |date=May 26, 2011 |title=High Pre-Eruptive Water Contents Preserved in Lunar Melt Inclusions |journal=] |volume=10 |issue=1126 |doi=10.1126/science.1204626 |pmid=21617039 |bibcode=2011Sci...333..213H |pages=213–215 |s2cid=44437587 |doi-access=free }}</ref>
]

]
<ref name="GB2009">{{cite journal |doi=10.1126/science.1166804 |last1=Garrick-Bethell |first1=Ian |first2=iBenjamin P. |last2=Weiss |first3=David L. |last3=Shuster |first4=Jennifer |last4=Buz |date=2009 |title=Early Lunar Magnetism |journal=] |volume=323 |issue=5912 |pages=356–359 |pmid=19150839 |bibcode=2009Sci...323..356G |s2cid=23227936 }}</ref>
]

]
<ref name="Stern1999">{{cite journal |last=Stern |first=S.A. |title=The Lunar atmosphere: History, status, current problems, and context |journal=] |volume=37 |date=1999 |issue=4 |pages=453–491 |doi=10.1029/1999RG900005 |bibcode=1999RvGeo..37..453S |citeseerx=10.1.1.21.9994|s2cid=10406165 }}</ref>
]

]
<ref name="Sridharan2010">{{cite journal |author1=R. Sridharan |author2=S.M. Ahmed |author3=Tirtha Pratim Dasa |author4=P. Sreelathaa |author5=P. Pradeepkumara |author6=Neha Naika |author7=Gogulapati Supriya |date=2010 |pages=947–950 |issue=6 |volume=58 |title='Direct' evidence for water (H2O) in the sunlit lunar ambience from CHACE on MIP of Chandrayaan I |journal=] |doi=10.1016/j.pss.2010.02.013 |bibcode=2010P&SS...58..947S}}</ref>
]

]
<ref name="SolarViews">Hamilton, Calvin J.; Hamilton, Rosanna L., ''The Moon'', {{webarchive|url=https://web.archive.org/web/20160204134527/http://solarviews.com/eng/moon.htm |date=February 4, 2016 }}, 1995–2011.</ref>
]

]
<ref name="bbc">{{cite news |title='Coldest place' found on the Moon |work=BBC News |url=http://news.bbc.co.uk/1/hi/8416749.stm |first=Jonathan |last=Amos |access-date=March 20, 2010 |date=December 16, 2009 |archive-date=August 11, 2017 |archive-url=https://web.archive.org/web/20170811182717/http://news.bbc.co.uk/1/hi/8416749.stm |url-status=live }}</ref>
]

]
<ref name="Beletskii2">{{cite book |author=V V Belet︠s︡kiĭ |title=Essays on the Motion of Celestial Bodies |url=https://books.google.com/books?id=byWZusmVSecC |date=2001 |publisher=] |isbn=978-3-7643-5866-2 |page=183 |access-date=August 22, 2020 |archive-date=March 23, 2018 |archive-url=https://web.archive.org/web/20180323203843/https://books.google.com/books?id=byWZusmVSecC |url-status=live }}</ref>
]

]
<ref name="Moon">{{cite web |title=How Bright is the Moon? |author=Luciuk, Mike |url=http://www.asterism.org/tutorials/tut26-1.htm |publisher=Amateur Astronomers |access-date=March 16, 2010 |url-status=live |archive-url=https://web.archive.org/web/20100312092655/http://www.asterism.org/tutorials/tut26-1.htm |archive-date=March 12, 2010}}</ref>
]

]
<ref name="Lambeck1977">{{cite journal |doi=10.1098/rsta.1977.0159 |last=Lambeck |first=K. |date=1977 |title=Tidal Dissipation in the Oceans: Astronomical, Geophysical and Oceanographic Consequences |journal=] |volume=287 |issue=1347 |pages=545–594 |bibcode=1977RSPTA.287..545L|s2cid=122853694 }}</ref>
]

]
<ref name="touma1994">{{cite journal |last=Touma |first=Jihad |author2=Wisdom, Jack |date=1994 |title=Evolution of the Earth-Moon system |journal=] |volume=108 |issue=5 |pages=1943–1961 |doi=10.1086/117209 |bibcode=1994AJ....108.1943T}}</ref>
]

]
<ref name="eclipse">{{cite web |last=Thieman |first=J. |author2=Keating, S. |date=May 2, 2006 |url=http://eclipse99.nasa.gov/pages/faq.html |title=Eclipse 99, Frequently Asked Questions |publisher=NASA |access-date=April 12, 2007 |url-status=dead |archive-url=https://web.archive.org/web/20070211120127/http://eclipse99.nasa.gov/pages/faq.html |archive-date=February 11, 2007}}</ref>
]

]
<ref name="Sarma-Ast-Ind">{{cite book |last=Sarma |first=K.V. |author-link=K. V. Sarma |editor=Helaine Selin |editor-link=Helaine Selin |title=Encyclopaedia of the History of Science, Technology, and Medicine in Non-Western Cultures |edition=2 |date=2008 |publisher=] |isbn=978-1-4020-4559-2 |pages=317–321 |contribution=Astronomy in India |bibcode=2008ehst.book.....S}}</ref>
]

]
<ref name="Hall1977">{{cite web |url=https://history.nasa.gov/SP-4210/pages/App_A.htm |title=Appendix A: Lunar Theory Before 1964 |last=Hall |first=R. Cargill |date=1977 |work=NASA History Series. Lunar Impact: A History of Project Ranger. |publisher=Scientific and Technical Information Office, NASA |access-date=April 13, 2010 |location=Washington, DC |url-status=live |archive-url=https://web.archive.org/web/20100410085526/http://history.nasa.gov/SP-4210/pages/App_A.htm |archive-date=April 10, 2010}}</ref>
]

]
<ref name="CNN">{{cite news |last=Coren |first=M. |title='Giant leap' opens world of possibility |publisher=CNN |date=July 26, 2004 |url=http://edition.cnn.com/2004/TECH/space/07/16/moon.landing/index.html |access-date=March 16, 2010 |url-status=live |archive-url=https://web.archive.org/web/20120120133640/http://edition.cnn.com/2004/TECH/space/07/16/moon.landing/index.html |archive-date=January 20, 2012}}</ref>
]

]
<ref name="unoosa_q6">{{cite web |url=http://www.unoosa.org/oosa/en/FAQ/splawfaq.html#Q6 |title=Can any State claim a part of outer space as its own? |publisher=] |access-date=March 28, 2010 |url-status=live |archive-url=https://web.archive.org/web/20100421232450/http://www.unoosa.org/oosa/en/FAQ/splawfaq.html#Q6 |archive-date=April 21, 2010}}</ref>
]

]
<ref name="unoosa_q4">{{cite web |url=http://www.unoosa.org/oosa/en/FAQ/splawfaq.html#Q4 |title=How many States have signed and ratified the five international treaties governing outer space? |date=January 1, 2006 |publisher=] |access-date=March 28, 2010 |url-status=live |archive-url=https://web.archive.org/web/20100421232450/http://www.unoosa.org/oosa/en/FAQ/splawfaq.html#Q4 |archive-date=April 21, 2010}}</ref>
]

]
<ref name="unoosa_q5">{{cite web |url=http://www.unoosa.org/oosa/en/FAQ/splawfaq.html#Q5 |title=Do the five international treaties regulate military activities in outer space? |publisher=] |access-date=March 28, 2010 |url-status=live |archive-url=https://web.archive.org/web/20100421232450/http://www.unoosa.org/oosa/en/FAQ/splawfaq.html#Q5 |archive-date=April 21, 2010}}</ref>

<ref name="unoosa_moon">{{cite web |url=http://www.unoosa.org/oosa/en/SpaceLaw/moon.html |title=Agreement Governing the Activities of States on the Moon and Other Celestial Bodies |publisher=] |access-date=March 28, 2010 |url-status=live |archive-url=https://web.archive.org/web/20100809072447/http://www.unoosa.org/oosa/en/SpaceLaw/moon.html |archive-date=August 9, 2010}}</ref>

<ref name="unoosa_q7">{{cite web |url=http://www.unoosa.org/oosa/en/FAQ/splawfaq.html#Q7 |title=The treaties control space-related activities of States. What about non-governmental entities active in outer space, like companies and even individuals? |publisher=] |access-date=March 28, 2010 |url-status=live |archive-url=https://web.archive.org/web/20100421232450/http://www.unoosa.org/oosa/en/FAQ/splawfaq.html#Q7 |archive-date=April 21, 2010}}</ref>

<ref name="iisl_2004">{{cite web |url=http://www.iislweb.org/docs/IISL_Outer_Space_Treaty_Statement.pdf |title=Statement by the Board of Directors of the IISL On Claims to Property Rights Regarding The Moon and Other Celestial Bodies (2004) |date=2004 |publisher=] |access-date=March 28, 2010 |url-status=usurped |archive-url=https://web.archive.org/web/20091222021426/http://www.iislweb.org/docs/IISL_Outer_Space_Treaty_Statement.pdf |archive-date=December 22, 2009 }}</ref>

<ref name="iisl_2009">{{cite web |url=http://www.iislweb.org/docs/Statement%20BoD.pdf |title=Further Statement by the Board of Directors of the IISL On Claims to Lunar Property Rights (2009) |date=March 22, 2009 |publisher=] |access-date=March 28, 2010 |url-status=usurped |archive-url=https://web.archive.org/web/20091222022107/http://www.iislweb.org/docs/Statement%20BoD.pdf |archive-date=December 22, 2009 }}</ref>

<ref name=Burton2011>{{cite book
| title=The History of Mathematics: An Introduction
| first=David M. | last=Burton | date=2011
| page=3 | isbn=978-0077419219 | publisher=Mcgraw-Hill
| url=https://books.google.com/books?id=B6uUCgAAQBAJ&pg=PA3 }}</ref>

<!-- <ref name="barnhart-and-germania">For etymology, see {{cite book |last=Barnhart |first=Robert K. |title=The Barnhart Concise Dictionary of Etymology |date=1995 |publisher=] |isbn=978-0-06-270084-1 |page=487}}. For the lunar calendar of the Germanic peoples, see {{cite book |last=Birley |first=A. R. (Trans.) |title=Agricola and Germany |series=Oxford World's Classics |date=1999 |publisher=] |location=US |isbn=978-0-19-283300-6 |page= |url=https://archive.org/details/agricolagermany00taci/page/108 |access-date=June 11, 2019 |archive-date=June 17, 2020 |archive-url=https://web.archive.org/web/20200617081723/https://archive.org/details/agricolagermany00taci/page/108 |url-status=live }}</ref> -->

<ref name="sciam">{{cite magazine |title=Lunacy and the Full Moon |magazine=Scientific American |date=2009 |first1=Scott O. |last1=Lilienfeld |first2=Hal |last2=Arkowitz |url=http://www.scientificamerican.com/article.cfm?id=lunacy-and-the-full-moon |access-date=April 13, 2010 |url-status=live |archive-url=https://web.archive.org/web/20091016163312/http://www.scientificamerican.com/article.cfm?id=lunacy-and-the-full-moon |archive-date=October 16, 2009}}
</ref>

<ref name="Williams1996">{{cite journal |last1=Williams |first1=James G. |last2=Newhall |first2=XX |last3=Dickey |first3=Jean O. |title=Lunar moments, tides, orientation, and coordinate frames |journal=] |volume=44 |issue=10 |date=1996 |pages=1077–1080 |doi=10.1016/0032-0633(95)00154-9 |bibcode=1996P&SS...44.1077W}}</ref>

<ref name="MartensKelly1988">{{cite journal |last1=Martens |first1=R. |last2=Kelly |first2=I.W. |last3=Saklofske |first3=D.H. |title=Lunar Phase and Birthrate: A 50-year Critical Review |journal=] |volume=63 |issue=3 |date=1988 |pages=923–934 |doi=10.2466/pr0.1988.63.3.923|pmid=3070616 |s2cid=34184527 }}</ref>

<ref name="RottonKelly1985">{{cite journal |last1=Rotton |first1=James |last2=Kelly |first2=I.W. |title=Much ado about the full moon: A meta-analysis of lunar-lunacy research |journal=] |volume=97 |issue=2 |date=1985 |pages=286–306 |doi=10.1037/0033-2909.97.2.286 |pmid=3885282}}</ref>

<ref name="FosterRoenneberg2008">{{cite journal |last1=Foster |first1=Russell G. |last2=Roenneberg |first2=Till |title=Human Responses to the Geophysical Daily, Annual and Lunar Cycles |journal=] |volume=18 |issue=17 |date=2008 |pages=R784–R794 |doi=10.1016/j.cub.2008.07.003 |pmid=18786384 |s2cid=15429616 |doi-access=free |bibcode=2008CBio...18.R784F }}</ref>

<ref name="kelly">{{Citation |last1=Kelly |first1=Ivan |last2=Rotton |first2=James |last3=Culver |first3=Roger |date=1986 |title=The Moon Was Full and Nothing Happened: A Review of Studies on the Moon and Human Behavior |journal=] |volume=10 |issue=2 |pages=129–143 }} Reprinted in ''The Hundredth Monkey – and other paradigms of the paranormal'', edited by Kendrick Frazier, Prometheus Books. Revised and updated in ''The Outer Edge: Classic Investigations of the Paranormal'', edited by ], ], and Tom Genoni, 1996, ].</ref>

<ref name=Needham1986>{{cite book |last=Needham |first=Joseph |title=Science and Civilization in China, Volume III: Mathematics and the Sciences of the Heavens and Earth |url=https://books.google.com/books?id=jfQ9E0u4pLAC |date=1986 |publisher=Caves Books |isbn=978-0-521-05801-8 |place=Taipei |access-date=August 22, 2020 |archive-date=June 22, 2019 |archive-url=https://web.archive.org/web/20190622004236/https://books.google.com/books?id=jfQ9E0u4pLAC |url-status=live }}</ref>

}}<!--(end {{Notelist}})-->

==Further reading==
{{Refbegin}}
* {{cite news |last=Angier |first=Natalie |date=September 7, 2014 |title=The Moon Comes Around Again |url=https://www.nytimes.com/2014/09/09/science/revisiting-the-moon.html |work=] |access-date=September 8, 2014 |archive-date=September 8, 2014 |archive-url=https://web.archive.org/web/20140908072715/http://www.nytimes.com/2014/09/09/science/revisiting-the-moon.html |url-status=live }}
* {{cite web | url=http://www.bbc.co.uk/worldservice/specials/948_discovery_2008/page4.shtml | title=The Moon | work=Discovery 2008 | publisher=BBC World Service | access-date=May 9, 2021 | archive-date=March 11, 2011 | archive-url=https://web.archive.org/web/20110311073446/http://www.bbc.co.uk/worldservice/specials/948_discovery_2008/page4.shtml | url-status=live }}
* {{cite book |last=Bussey |first=B. |author2=Spudis, P.D. |author-link2=Paul Spudis |title=The Clementine Atlas of the Moon |date=2004 |publisher=] |isbn=978-0-521-81528-4}}
* {{cite news |last=Cain |first=Fraser |title=Where does the Moon Come From? |work=] |url=https://www.universetoday.com/1143/podcast-where-does-the-moon-come-from/ |access-date=May 9, 2021 |archive-date=May 10, 2021 |archive-url=https://web.archive.org/web/20210510142948/https://www.universetoday.com/1143/podcast-where-does-the-moon-come-from/ |url-status=live }} (podcast and transcript)
* {{cite journal |last=Jolliff |first=B. |editor1-last=Wieczorek |editor1-first=M. |editor2-last=Shearer |editor2-first=C. |editor3-last=Neal |editor3-first=C. |title=New views of the Moon |url=http://www.minsocam.org/msa/RIM/Rim60.html |access-date=April 12, 2007 |volume=60 |date=2006 |publisher=Mineralogy Society of America |location=Chantilly, Virginia |isbn=978-0-939950-72-0 |doi=10.2138/rmg.2006.60.0 |page=721 |issue=1 |journal=] |bibcode=2006RvMG...60D...5J |archive-date=June 27, 2007 |archive-url=https://web.archive.org/web/20070627165803/http://www.minsocam.org/MSA/RIM/Rim60.html |url-status=live }}
* {{cite web |last=Jones |first=E. M. |title=Apollo Lunar Surface Journal |publisher=NASA |date=2006 |url=https://www.hq.nasa.gov/alsj/ |access-date=May 9, 2021 |archive-date=May 8, 2021 |archive-url=https://web.archive.org/web/20210508133136/https://www.hq.nasa.gov/alsj/ |url-status=live }}
* {{cite web | title=Exploring the Moon | publisher=] | url=https://www.lpi.usra.edu/lunar/missions/ | access-date=May 9, 2021 | archive-date=May 10, 2021 | archive-url=https://web.archive.org/web/20210510141741/https://www.lpi.usra.edu/lunar/missions/ | url-status=live }}
* {{cite book |last=Mackenzie |first=Dana |title=The Big Splat, or How Our Moon Came to Be |date=2003 |publisher=] |location=Hoboken, NJ |isbn=978-0-471-15057-2 |url=https://archive.org/details/bigsplatorhowour00mack |access-date=June 11, 2019 |archive-date=June 17, 2020 |archive-url=https://web.archive.org/web/20200617181357/https://archive.org/details/bigsplatorhowour00mack |url-status=live }}
* {{cite book |last=] |title=On the Moon |date=2001 |publisher=] |location=Tucson, Arizona |isbn=978-0-304-35469-6 |url=https://archive.org/details/patrickmooreonmo00patr }}
* {{cite web |title=Moon Articles |work=Planetary Science Research Discoveries |publisher=Hawai'i Institute of Geophysics and Planetology |url=http://www.psrd.hawaii.edu/Archive/Archive-Moon.html |access-date=November 18, 2006 |archive-date=November 17, 2015 |archive-url=https://web.archive.org/web/20151117030432/http://www.psrd.hawaii.edu/Archive/Archive-Moon.html |url-status=live }}
* {{cite book |last=Spudis |first=P.D. |title=The Once and Future Moon |date=1996 |publisher=] |isbn=978-1-56098-634-8 |url=https://archive.org/details/oncefuturemoon0000spud |access-date=June 11, 2019 |archive-date=June 17, 2020 |archive-url=https://web.archive.org/web/20200617181602/https://archive.org/details/oncefuturemoon0000spud |url-status=live }}
* {{cite book |last=Taylor |first=S.R. |title=Solar system evolution |publisher=] |page= |date=1992 |isbn=978-0-521-37212-1 |url=https://archive.org/details/isbn_9780521372121 }}
* {{cite web |last=Teague |first=K. |title=The Project Apollo Archive |date=2006 |url=http://www.apolloarchive.com/apollo_archive.html |access-date=April 12, 2007 |archive-date=April 4, 2007 |archive-url=https://web.archive.org/web/20070404042710/http://www.apolloarchive.com/apollo_archive.html |url-status=live }}
* {{cite journal |last=Wilhelms |first=D.E. |title=Geologic History of the Moon |journal=U.S. Geological Survey Professional Paper |date=1987 |volume=1348 |url=http://ser.sese.asu.edu/GHM/ |access-date=April 12, 2007 |doi=10.3133/pp1348 |series=Professional Paper |doi-access=free |archive-date=February 23, 2019 |archive-url=https://web.archive.org/web/20190223214805/http://ser.sese.asu.edu/GHM/ |url-status=live }}
* {{cite book |last=Wilhelms |first=D.E. |title=To a Rocky Moon: A Geologist's History of Lunar Exploration |url=https://archive.org/details/torockymoongeolo0000wilh |access-date=March 10, 2009 |date=1993 |publisher=] |location=Tucson |isbn=978-0-8165-1065-8 |url-access=registration |archive-date=June 17, 2020 |archive-url=https://web.archive.org/web/20200617181456/https://archive.org/details/torockymoongeolo0000wilh |url-status=live }}
{{Refend}}

==External links==
{{Sister project links |Moon |voy=Moon}}
*
* {{youTube|nr5Pj6GQL2o|Video (04:56) – The Moon in 4K (NASA, April 2018)}}
*

===Cartographic resources===
* – ]
*
*
* 3D zoomable globes:
** on ], a 3-D rendition of the Moon akin to Google Earth
** {{Webarchive|url=https://web.archive.org/web/20070515064406/http://www.worldwindcentral.com/Moon |date=May 15, 2007 }}
*
*
*

{{The Moon}}
{{Earth}}
{{Solar System moons (compact)}}
{{Solar System}}
{{Portal bar|Solar System|Astronomy|Stars|Spaceflight|Outer space}}
{{Authority control}}

]
]
]
]
]
]
]
]

Latest revision as of 20:04, 7 January 2025

Natural satellite orbiting Earth This article is about Earth's natural satellite. For moons in general, see Natural satellite. For other uses, see Moon (disambiguation).

Moon
Full Moon in the darkness of the night sky. It is patterned with a mix of light-tone regions and darker, irregular blotches, and scattered with varied circles surrounded by out-thrown rays of bright ejecta: impact craters.Near side of the Moon, lunar north pole at top
Designations
DesignationEarth I
Alternative names
Adjectives
Symbol☾ or ☽
Orbital characteristics
Epoch J2000
Perigee362600 km
(356400–370400 km)
Apogee405400 km
(404000–406700 km)
Semi-major axis384399 km  (1.28 ls, 0.00257 AU)
Eccentricity0.0549
Orbital period (sidereal)27.321661 d
(27 d 7 h 43 min 11.5 s)
Orbital period (synodic)29.530589 d
(29 d 12 h 44 min 2.9 s)
Average orbital speed1.022 km/s
Inclination5.145° to the ecliptic
Longitude of ascending nodeRegressing by one revolution in 18.61 years
Argument of perigeeProgressing by one
revolution in 8.85 years
Satellite ofEarth
Physical characteristics
Mean radius1737.4 km  
(0.2727 of Earth's)
Equatorial radius1738.1 km  
(0.2725 of Earth's)
Polar radius1736.0 km  
(0.2731 of Earth's)
Flattening0.0012
Circumference10921 km  (equatorial)
Surface area3.793×10 km  
(0.074 of Earth's)
Volume2.1958×10 km  
(0.02 of Earth's)
Mass7.346×10 kg  
(0.0123 of Earth's)
Mean density3.344 g/cm
0.606 × Earth
Surface gravity1.622 m/s (5.32 ft/s)
0.1654 g0
Moment of inertia factor0.3929±0.0009
Escape velocity2.38 km/s
(8600 km/h; 5300 mph)
Synodic rotation period29.530589 d
(29 d 12 h 44 min 2.9 s; synodic; solar day) (spin-orbit locked)
Sidereal rotation period27.321661 d  (spin-orbit locked)
Equatorial rotation velocity4.627 m/s
Axial tilt
North pole right ascension
  • 17 47 26
  • 266.86°
North pole declination65.64°
Albedo0.136
Surface temp. min mean max
Equator 100 K 250 K 390 K
85°N  150 K 230 K
Surface absorbed dose rate13.2 μGy/h
(during lunar daytime)
Surface equivalent dose rate57.0 μSv/h
(during lunar daytime)
Apparent magnitude
  • −2.5 to −12.9
  • −12.74  (mean full moon)
Absolute magnitude (H)0.2
Angular diameter29.3 to 34.1 arcminutes
Atmosphere
Surface pressure
  • 10 Pa (1 picobar)  (day)
  • 10 Pa (1 femtobar)   
    (night)
Composition by volume

The Moon is Earth's only natural satellite. It orbits at an average distance of 384,400 km (238,900 mi), about 30 times the diameter of Earth. Tidal forces between Earth and the Moon have synchronized the Moon's orbital period (lunar month) with its rotation period (lunar day) at 29.5 Earth days, causing the same side of the Moon to always face Earth. The Moon's gravitational pull—and, to a lesser extent, the Sun's—are the main drivers of Earth's tides.

In geophysical terms, the Moon is a planetary-mass object or satellite planet. Its mass is 1.2% that of the Earth, and its diameter is 3,474 km (2,159 mi), roughly one-quarter of Earth's (about as wide as the United States from coast to coast). Within the Solar System, it is the largest and most massive satellite in relation to its parent planet, the fifth largest and most massive moon overall, and larger and more massive than all known dwarf planets. Its surface gravity is about one sixth of Earth's, about half of that of Mars, and the second highest among all Solar System moons, after Jupiter's moon Io. The body of the Moon is differentiated and terrestrial, with no significant hydrosphere, atmosphere, or magnetic field. It formed 4.51 billion years ago, not long after Earth's formation, out of the debris from a giant impact between Earth and a hypothesized Mars-sized body called Theia.

The lunar surface is covered in lunar dust and marked by mountains, impact craters, their ejecta, ray-like streaks, rilles and, mostly on the near side of the Moon, by dark maria ("seas"), which are plains of cooled lava. These maria were formed when molten lava flowed into ancient impact basins. The Moon is, except when passing through Earth's shadow during a lunar eclipse, always illuminated by the Sun, but from Earth the visible illumination shifts during its orbit, producing the lunar phases. The Moon is the brightest celestial object in Earth's night sky. This is mainly due to its large angular diameter, while the reflectance of the lunar surface is comparable to that of asphalt. The apparent size is nearly the same as that of the Sun, allowing it to cover the Sun completely during a total solar eclipse. From Earth about 59% of the lunar surface is visible over time due to cyclical shifts in perspective (libration), making parts of the far side of the Moon visible.

The Moon has been an important source of inspiration and knowledge for humans, having been crucial to cosmography, mythology, religion, art, time keeping, natural science, and spaceflight. The first human-made objects to fly to an extraterrestrial body were sent to the Moon, starting in 1959 with the flyby of the Soviet Union's Luna 1 and the intentional impact of Luna 2. In 1966, the first soft landing (by Luna 9) and orbital insertion (by Luna 10) followed. On July 20, 1969, humans for the first time stepped on an extraterrestrial body, landing on the Moon at Mare Tranquillitatis with the lander Eagle of the United States' Apollo 11 mission. Five more crews were sent between then and 1972, each with two men landing on the surface. The longest stay was 75 hours by the Apollo 17 crew. Since then, exploration of the Moon has continued robotically, and crewed missions are being planned to return beginning in the late 2020s.

Names and etymology

See also: Moon § Cultural representation

The usual English proper name for Earth's natural satellite is simply Moon, with a capital M. The noun moon is derived from Old English mōna, which (like all its Germanic cognates) stems from Proto-Germanic *mēnōn, which in turn comes from Proto-Indo-European *mēnsis 'month' (from earlier *mēnōt, genitive *mēneses) which may be related to the verb 'measure' (of time).

Occasionally, the name Luna /ˈluːnə/ is used in scientific writing and especially in science fiction to distinguish the Earth's moon from others, while in poetry "Luna" has been used to denote personification of the Moon. Cynthia /ˈsɪnθiə/ is another poetic name, though rare, for the Moon personified as a goddess, while Selene /səˈliːniː/ (literally 'Moon') is the Greek goddess of the Moon.

The English adjective pertaining to the Moon is lunar, derived from the Latin word for the Moon, lūna. Selenian /səliːniən/ is an adjective used to describe the Moon as a world, rather than as a celestial object, but its use is rare. It is derived from σελήνη selēnē, the Greek word for the Moon, and its cognate selenic was originally a rare synonym but now nearly always refers to the chemical element selenium. The element name selenium and the prefix seleno- (as in selenography, the study of the physical features of the Moon) come from this Greek word.

Artemis, the Greek goddess of the wilderness and the hunt, came to also be identified as the goddess of the Moon (Selene) and was sometimes called Cynthia, after her birthplace on Mount Cynthus. Her Roman equivalent is Diana. The names Luna, Cynthia, and Selene are reflected in technical terms for lunar orbits such as apolune, pericynthion and selenocentric.

The astronomical symbol for the Moon is a crescent\decrescent, ☽\☾, for example in M 'lunar mass' (also ML).

Natural history

Lunar geologic timescale

Main article: Lunar geologic timescale Early ImbrianLate ImbrianPre-NectarianNectarianEratosthenianCopernican period Millions of years before present


The lunar geological periods are named after their characteristic features, from most impact craters outside the dark mare, to the mare and later craters, and finally the young, still bright and therefore readily visible craters with ray systems like Copernicus or Tycho.

Formation

Main articles: Origin of the Moon, Giant-impact hypothesis, and Circumplanetary disk
The far side of the Moon lacks the near side's characteristic large dark areas of maria. The near side of the Moon might have looked like this early in the Moon's history.

Isotope dating of lunar samples suggests the Moon formed around 50 million years after the origin of the Solar System. Historically, several formation mechanisms have been proposed, but none satisfactorily explains the features of the Earth–Moon system. A fission of the Moon from Earth's crust through centrifugal force would require too great an initial rotation rate of Earth. Gravitational capture of a pre-formed Moon depends on an unfeasibly extended atmosphere of Earth to dissipate the energy of the passing Moon. A co-formation of Earth and the Moon together in the primordial accretion disk does not explain the depletion of metals in the Moon. None of these hypotheses can account for the high angular momentum of the Earth–Moon system.

The prevailing theory is that the Earth–Moon system formed after a giant impact of a Mars-sized body (named Theia) with the proto-Earth. The oblique impact blasted material into orbit about the Earth and the material accreted and formed the Moon just beyond the Earth's Roche limit of ~2.56 R🜨.

Giant impacts are thought to have been common in the early Solar System. Computer simulations of giant impacts have produced results that are consistent with the mass of the lunar core and the angular momentum of the Earth–Moon system. These simulations show that most of the Moon derived from the impactor, rather than the proto-Earth. However, models from 2007 and later suggest a larger fraction of the Moon derived from the proto-Earth. Other bodies of the inner Solar System such as Mars and Vesta have, according to meteorites from them, very different oxygen and tungsten isotopic compositions compared to Earth. However, Earth and the Moon have nearly identical isotopic compositions. The isotopic equalization of the Earth-Moon system might be explained by the post-impact mixing of the vaporized material that formed the two, although this is debated.

The impact would have released enough energy to liquefy both the ejecta and the Earth's crust, forming a magma ocean. The liquefied ejecta could have then re-accreted into the Earth–Moon system. The newly formed Moon would have had its own magma ocean; its depth is estimated from about 500 km (300 miles) to 1,737 km (1,079 miles).

While the giant-impact theory explains many lines of evidence, some questions are still unresolved, most of which involve the Moon's composition. Models that have the Moon acquiring a significant amount of the proto-earth are more difficult to reconcile with geochemical data for the isotopes of zirconium, oxygen, silicon, and other elements. A study published in 2022, using high-resolution simulations (up to 10 particles), found that giant impacts can immediately place a satellite with similar mass and iron content to the Moon into orbit far outside Earth's Roche limit. Even satellites that initially pass within the Roche limit can reliably and predictably survive, by being partially stripped and then torqued onto wider, stable orbits.

On November 1, 2023, scientists reported that, according to computer simulations, remnants of Theia could still be present inside the Earth.

Natural development

Artist's depiction of the Moon as it might have appeared in Earth's sky after the Late Heavy Bombardment around 4 billion years ago. At that time the Moon orbited the Earth at half its current distance, making it appear 2.8 times larger than it does today.

The newly formed Moon settled into a much closer Earth orbit than it has today. Each body therefore appeared much larger in the sky of the other, eclipses were more frequent, and tidal effects were stronger. Due to tidal acceleration, the Moon's orbit around Earth has become significantly larger, with a longer period.

Following formation, the Moon has cooled and most of its atmosphere has been stripped. The lunar surface has since been shaped by large impact events and many small ones, forming a landscape featuring craters of all ages.

The Moon was volcanically active until 1.2 billion years ago, which laid down the prominent lunar maria. Most of the mare basalts erupted during the Imbrian period, 3.3–3.7 billion years ago, though some are as young as 1.2 billion years and some as old as 4.2 billion years. There are differing explanations for the eruption of mare basalts, particularly their uneven occurrence which mainly appear on the near-side. Causes of the distribution of the lunar highlands on the far side are also not well understood. Topological measurements show the near side crust is thinner than the far side. One possible scenario then is that large impacts on the near side may have made it easier for lava to flow onto the surface.

Physical characteristics

The Moon is a very slightly scalene ellipsoid due to tidal stretching, with its long axis displaced 30° from facing the Earth, due to gravitational anomalies from impact basins. Its shape is more elongated than current tidal forces can account for. This 'fossil bulge' indicates that the Moon solidified when it orbited at half its current distance to the Earth, and that it is now too cold for its shape to restore hydrostatic equilibrium at its current orbital distance.

Size and mass

Further information: List of natural satellites
Size comparison of the main moons of the Solar System with Earth to scale. Nineteen moons are large enough to be round, several having subsurface oceans and one, Titan, having a considerable atmosphere.

The Moon is by size and mass the fifth largest natural satellite of the Solar System, categorizable as one of its planetary-mass moons, making it a satellite planet under the geophysical definitions of the term. It is smaller than Mercury and considerably larger than the largest dwarf planet of the Solar System, Pluto. While the minor-planet moon Charon of the Pluto-Charon system is larger relative to Pluto, the Moon is the largest natural satellite of the Solar System relative to their primary planets.

The Moon's diameter is about 3,500 km, more than a quarter of Earth's, with the face of the Moon comparable to the width of either Mainland Australia, Europe or the Contiguous United States (which excludes Alaska, etc.). The whole surface area of the Moon is about 38 million square kilometers, comparable to North and South America combined, the combined American landmass having an area (excluding all islands) of 37.7 million square kilometers.

The Moon's mass is 1/81 of Earth's, being the second densest among the planetary moons, and having the second highest surface gravity, after Io, at 0.1654 g and an escape velocity of 2.38 km/s (8600 km/h; 5300 mph).

Structure

Main articles: Internal structure of the Moon and Geology of the Moon
Moon's internal structure: solid inner core (iron-metallic), molten outer core, hardened mantle and crust. The crust on the Moon's near side permanently facing Earth is thinner, featuring larger areas flooded by material of the once molten mantle forming today's lunar mare.

The Moon is a differentiated body that was initially in hydrostatic equilibrium but has since departed from this condition. It has a geochemically distinct crust, mantle, and core. The Moon has a solid iron-rich inner core with a radius possibly as small as 240 kilometres (150 mi) and a fluid outer core primarily made of liquid iron with a radius of roughly 300 kilometres (190 mi). Around the core is a partially molten boundary layer with a radius of about 500 kilometres (310 mi). This structure is thought to have developed through the fractional crystallization of a global magma ocean shortly after the Moon's formation 4.5 billion years ago.

Crystallization of this magma ocean would have created a mafic mantle from the precipitation and sinking of the minerals olivine, clinopyroxene, and orthopyroxene; after about three-quarters of the magma ocean had crystallized, lower-density plagioclase minerals could form and float into a crust atop. The final liquids to crystallize would have been initially sandwiched between the crust and mantle, with a high abundance of incompatible and heat-producing elements. Consistent with this perspective, geochemical mapping made from orbit suggests a crust of mostly anorthosite. The Moon rock samples of the flood lavas that erupted onto the surface from partial melting in the mantle confirm the mafic mantle composition, which is more iron-rich than that of Earth. The crust is on average about 50 kilometres (31 mi) thick.

The Moon is the second-densest satellite in the Solar System, after Io. However, the inner core of the Moon is small, with a radius of about 350 kilometres (220 mi) or less, around 20% of the radius of the Moon. Its composition is not well understood but is probably metallic iron alloyed with a small amount of sulfur and nickel; analyzes of the Moon's time-variable rotation suggest that it is at least partly molten. The pressure at the lunar core is estimated to be 5 GPa (49,000 atm).

Gravitational field

Astronaut John Young jumping on the Moon, illustrating that the gravitational pull of the Moon is approximately 1/6 of Earth's. The jumping height is limited by the EVA space suit's weight on the Moon of about 13.6 kg (30 lb) and by the suit's pressurization resisting the bending of the suit, as needed for jumping.

On average the Moon's surface gravity is 1.62 m/s (0.1654 g; 5.318 ft/s), about half of the surface gravity of Mars and about a sixth of Earth's.

The Moon's gravitational field is not uniform. The details of the gravitational field have been measured through tracking the Doppler shift of radio signals emitted by orbiting spacecraft. The main lunar gravity features are mascons, large positive gravitational anomalies associated with some of the giant impact basins, partly caused by the dense mare basaltic lava flows that fill those basins. The anomalies greatly influence the orbit of spacecraft about the Moon. There are some puzzles: lava flows by themselves cannot explain all of the gravitational signature, and some mascons exist that are not linked to mare volcanism.

Magnetic field

The Moon has an external magnetic field of less than 0.2 nanoteslas, or less than one hundred thousandth that of Earth. The Moon does not have a global dipolar magnetic field and only has crustal magnetization likely acquired early in its history when a dynamo was still operating. Early in its history, 4 billion years ago, its magnetic field strength was likely close to that of Earth today. This early dynamo field apparently expired by about one billion years ago, after the lunar core had crystallized. Theoretically, some of the remnant magnetization may originate from transient magnetic fields generated during large impacts through the expansion of plasma clouds. These clouds are generated during large impacts in an ambient magnetic field. This is supported by the location of the largest crustal magnetizations situated near the antipodes of the giant impact basins.

Atmosphere

Main article: Atmosphere of the Moon
The thin lunar atmosphere is visible on the Moon's surface at sunrise and sunset with the lunar horizon glow and lunar twilight rays, like Earth's crepuscular rays. This Apollo 17 sketch depicts the glow and rays among the general zodiacal light.

The Moon has an atmosphere so tenuous as to be nearly vacuum, with a total mass of less than 10 tonnes (9.8 long tons; 11 short tons). The surface pressure of this small mass is around 3 × 10 atm (0.3 nPa); it varies with the lunar day. Its sources include outgassing and sputtering, a product of the bombardment of lunar soil by solar wind ions. Elements that have been detected include sodium and potassium, produced by sputtering (also found in the atmospheres of Mercury and Io); helium-4 and neon from the solar wind; and argon-40, radon-222, and polonium-210, outgassed after their creation by radioactive decay within the crust and mantle. The absence of such neutral species (atoms or molecules) as oxygen, nitrogen, carbon, hydrogen and magnesium, which are present in the regolith, is not understood. Water vapor has been detected by Chandrayaan-1 and found to vary with latitude, with a maximum at ~60–70 degrees; it is possibly generated from the sublimation of water ice in the regolith. These gases either return into the regolith because of the Moon's gravity or are lost to space, either through solar radiation pressure or, if they are ionized, by being swept away by the solar wind's magnetic field.

Studies of Moon magma samples retrieved by the Apollo missions demonstrate that the Moon had once possessed a relatively thick atmosphere for a period of 70 million years between 3 and 4 billion years ago. This atmosphere, sourced from gases ejected from lunar volcanic eruptions, was twice the thickness of that of present-day Mars. The ancient lunar atmosphere was eventually stripped away by solar winds and dissipated into space.

A permanent Moon dust cloud exists around the Moon, generated by small particles from comets. Estimates are 5 tons of comet particles strike the Moon's surface every 24 hours, resulting in the ejection of dust particles. The dust stays above the Moon approximately 10 minutes, taking 5 minutes to rise, and 5 minutes to fall. On average, 120 kilograms of dust are present above the Moon, rising up to 100 kilometers above the surface. Dust counts made by LADEE's Lunar Dust EXperiment (LDEX) found particle counts peaked during the Geminid, Quadrantid, Northern Taurid, and Omicron Centaurid meteor showers, when the Earth, and Moon pass through comet debris. The lunar dust cloud is asymmetric, being denser near the boundary between the Moon's dayside and nightside.

Surface conditions

Gene Cernan with lunar dust stuck on his suit. Lunar dust is highly abrasive and can cause damage to human lungs, nervous, and cardiovascular systems.

Ionizing radiation from cosmic rays, the Sun and the resulting neutron radiation produce radiation levels on average of 1.369 millisieverts per day during lunar daytime, which is about 2.6 times more than on the International Space Station with 0.53 millisieverts per day at about 400 km above Earth in orbit, 5–10 times more than during a trans-Atlantic flight, 200 times more than on Earth's surface. For further comparison radiation on a flight to Mars is about 1.84 millisieverts per day and on Mars on average 0.64 millisieverts per day, with some locations on Mars possibly having levels as low as 0.342 millisieverts per day. Solar radiation charges the highly abrasive lunar dust, making it levitate and therefore add to the easy spread of the lung and gear damaging sticky lunar dust.

The Moon's axial tilt with respect to the ecliptic is only 1.5427°, much less than the 23.44° of Earth. Because of this small tilt, the Moon's solar illumination varies much less with season than on Earth and it allows for the existence of some peaks of eternal light at the Moon's north pole, at the rim of the crater Peary.

The surface is exposed to drastic temperature differences ranging from 120 °C to −171 °C depending on the solar irradiance. Because of the lack of atmosphere, temperatures of different areas vary particularly upon whether they are in sunlight or shadow, making topographical details play a decisive role on local surface temperatures. Parts of many craters, particularly the bottoms of many polar craters, are permanently shadowed, these "craters of eternal darkness" have extremely low temperatures. The Lunar Reconnaissance Orbiter measured the lowest summer temperatures in craters at the southern pole at 35 K (−238 °C; −397 °F) and just 26 K (−247 °C; −413 °F) close to the winter solstice in the north polar crater Hermite. This is the coldest temperature in the Solar System ever measured by a spacecraft, colder even than the surface of Pluto.

Blanketed on top of the Moon's crust is a highly comminuted (broken into ever smaller particles) and impact gardened mostly gray surface layer called regolith, formed by impact processes. The finer regolith, the lunar soil of silicon dioxide glass, has a texture resembling snow and a scent resembling spent gunpowder. The regolith of older surfaces is generally thicker than for younger surfaces: it varies in thickness from 10–15 m (33–49 ft) in the highlands and 4–5 m (13–16 ft) in the maria. Beneath the finely comminuted regolith layer is the megaregolith, a layer of highly fractured bedrock many kilometers thick.

These extreme conditions are considered to make it unlikely for spacecraft to harbor bacterial spores at the Moon for longer than just one lunar orbit.

Surface features

Main articles: Selenography, Lunar terrane, List of lunar features, and List of quadrangles on the Moon
Apollo 17 astronaut Harrison H. Schmitt next to the large Moon boulder nicknamed "Tracy's Rock"

The topography of the Moon has been measured with laser altimetry and stereo image analysis. Its most extensive topographic feature is the giant far-side South Pole–Aitken basin, some 2,240 km (1,390 mi) in diameter, the largest crater on the Moon and the second-largest confirmed impact crater in the Solar System. At 13 km (8.1 mi) deep, its floor is the lowest point on the surface of the Moon. The highest elevations of the Moon's surface are located directly to the northeast, which might have been thickened by the oblique formation impact of the South Pole–Aitken basin. Other large impact basins such as Imbrium, Serenitatis, Crisium, Smythii, and Orientale possess regionally low elevations and elevated rims. The far side of the lunar surface is on average about 1.9 km (1.2 mi) higher than that of the near side.

The discovery of fault scarp cliffs suggest that the Moon has shrunk by about 90 metres (300 ft) within the past billion years. Similar shrinkage features exist on Mercury. Mare Frigoris, a basin near the north pole long assumed to be geologically dead, has cracked and shifted. Since the Moon does not have tectonic plates, its tectonic activity is slow, and cracks develop as it loses heat.

Scientists have confirmed the presence of a cave on the Moon near the Sea of Tranquillity, not far from the 1969 Apollo 11 landing site. The cave, identified as an entry point to a collapsed lava tube, is roughly 45 meters wide and up to 80 m long. This discovery marks the first confirmed entry point to a lunar cave. The analysis was based on photos taken in 2010 by NASA's Lunar Reconnaissance Orbiter. The cave's stable temperature of around 17 °C could provide a hospitable environment for future astronauts, protecting them from extreme temperatures, solar radiation, and micrometeorites. However, challenges include accessibility and risks of avalanches and cave-ins. This discovery offers potential for future lunar bases or emergency shelters.

Volcanic features

Main article: Volcanism on the Moon
The names of the main volcanic features the maria (blue) and some crater (brown) features of the near side of the Moon

The main features visible from Earth by the naked eye are dark and relatively featureless lunar plains called maria (singular mare; Latin for "seas", as they were once believed to be filled with water) are vast solidified pools of ancient basaltic lava. Although similar to terrestrial basalts, lunar basalts have more iron and no minerals altered by water. The majority of these lava deposits erupted or flowed into the depressions associated with impact basins, though the Moon's largest expanse of basalt flooding, Oceanus Procellarum, does not correspond to an obvious impact basin. Different episodes of lava flow in maria can often be recognized by variations in surface albedo and distinct flow margins.

As the maria formed, cooling and contraction of the basaltic lava created wrinkle ridges in some areas. These low, sinuous ridges can extend for hundreds of kilometers and often outline buried structures within the mare. Another result of maria formation is the creation of concentric depressions along the edges, known as arcuate rilles. These features occur as the mare basalts sink inward under their own weight, causing the edges to fracture and separate.

In addition to the visible maria, the Moon has mare deposits covered by ejecta from impacts. Called cryptomares, these hidden mares are likely older than the exposed ones. Conversely, mare lava has obscured many impact melt sheets and pools. Impact melts are formed when intense shock pressures from collisions vaporize and melt zones around the impact site. Where still exposed, impact melt can be distinguished from mare lava by its distribution, albedo, and texture.

Sinuous rilles, found in and around maria, are likely extinct lava channels or collapsed lava tubes. They typically originate from volcanic vents, meandering and sometimes branching as they progress. The largest examples, such as Schroter's Valley and Rima Hadley, are significantly longer, wider, and deeper than terrestrial lava channels, sometimes featuring bends and sharp turns that again, are uncommon on Earth.

Mare volcanism has altered impact craters in various ways, including filling them to varying degrees, and raising and fracturing their floors from uplift of mare material beneath their interiors. Examples of such craters include Taruntius and Gassendi. Some craters, such as Hyginus, are of wholly volcanic origin, forming as calderas or collapse pits. Such craters are relatively rare and tend to be smaller (typically a few kilometers wide), shallower, and more irregularly shaped than impact craters. They also lack the upturned rims characteristic of impact craters.

Several geologic provinces containing shield volcanoes and volcanic domes are found within the near side maria. There are also some regions of pyroclastic deposits, scoria cones and non-basaltic domes made of particularly high viscosity lava.

Almost all maria are on the near side of the Moon, and cover 31% of the surface of the near side compared with 2% of the far side. This is likely due to a concentration of heat-producing elements under the crust on the near side, which would have caused the underlying mantle to heat up, partially melt, rise to the surface and erupt. Most of the Moon's mare basalts erupted during the Imbrian period, 3.3–3.7 billion years ago, though some being as young as 1.2 billion years and as old as 4.2 billion years.

Old hardened lava flows of Mare Imbrium forming wrinkle ridges

In 2006, a study of Ina, a tiny depression in Lacus Felicitatis, found jagged, relatively dust-free features that, because of the lack of erosion by infalling debris, appeared to be only 2 million years old. Moonquakes and releases of gas indicate continued lunar activity. Evidence of recent lunar volcanism has been identified at 70 irregular mare patches, some less than 50 million years old. This raises the possibility of a much warmer lunar mantle than previously believed, at least on the near side where the deep crust is substantially warmer because of the greater concentration of radioactive elements. Evidence has been found for 2–10 million years old basaltic volcanism within the crater Lowell, inside the Orientale basin. Some combination of an initially hotter mantle and local enrichment of heat-producing elements in the mantle could be responsible for prolonged activities on the far side in the Orientale basin.

The lighter-colored regions of the Moon are called terrae, or more commonly highlands, because they are higher than most maria. They have been radiometrically dated to having formed 4.4 billion years ago and may represent plagioclase cumulates of the lunar magma ocean. In contrast to Earth, no major lunar mountains are believed to have formed as a result of tectonic events.

The concentration of maria on the near side likely reflects the substantially thicker crust of the highlands of the Far Side, which may have formed in a slow-velocity impact of a second moon of Earth a few tens of millions of years after the Moon's formation. Alternatively, it may be a consequence of asymmetrical tidal heating when the Moon was much closer to the Earth.

Impact craters

Further information: List of craters on the Moon
A gray, many-ridged surface from high above. The largest feature is a circular ringed structure with high walled sides and a lower central peak: the entire surface out to the horizon is filled with similar structures that are smaller and overlapping.
A view of a three-kilometer-deep larger crater Daedalus on the Moon's far side

A major geologic process that has affected the Moon's surface is impact cratering, with craters formed when asteroids and comets collide with the lunar surface. There are estimated to be roughly 300,000 craters wider than 1 km (0.6 mi) on the Moon's near side. Lunar craters exhibit a variety of forms, depending on their size. In order of increasing diameter, the basic types are simple craters with smooth bowl shaped interiors and upturned rims, complex craters with flat floors, terraced walls and central peaks, peak ring basins, and multi-ring basins with two or more concentric rings of peaks. The vast majority of impact craters are circular, but some, like Cantor and Janssen, have more polygonal outlines, possibly guided by underlying faults and joints. Others, such as the Messier pair, Schiller, and Daniell, are elongated. Such elongation can result from highly oblique impacts, binary asteroid impacts, fragmentation of impactors before surface strike, or closely spaced secondary impacts.

The lunar geologic timescale is based on the most prominent impact events, such as multi-ring formations like Nectaris, Imbrium, and Orientale that are between hundreds and thousands of kilometers in diameter and associated with a broad apron of ejecta deposits that form a regional stratigraphic horizon. The lack of an atmosphere, weather, and recent geological processes mean that many of these craters are well-preserved. Although only a few multi-ring basins have been definitively dated, they are useful for assigning relative ages. Because impact craters accumulate at a nearly constant rate, counting the number of craters per unit area can be used to estimate the age of the surface. However care needs to be exercised with the crater counting technique due to the potential presence of secondary craters. Ejecta from impacts can create secondary craters that often appear in clusters or chains but can also occur as isolated formations at a considerable distance from the impact. These can resemble primary craters, and may even dominate small crater populations, so their unidentified presence can distort age estimates.

The radiometric ages of impact-melted rocks collected during the Apollo missions cluster between 3.8 and 4.1 billion years old: this has been used to propose a Late Heavy Bombardment period of increased impacts.

High-resolution images from the Lunar Reconnaissance Orbiter in the 2010s show a contemporary crater-production rate significantly higher than was previously estimated. A secondary cratering process caused by distal ejecta is thought to churn the top two centimeters of regolith on a timescale of 81,000 years. This rate is 100 times faster than the rate computed from models based solely on direct micrometeorite impacts.

Lunar swirls

Main article: Lunar swirls
Wide angle image of a lunar swirl, the 70 kilometer long Reiner Gamma

Lunar swirls are enigmatic features found across the Moon's surface. They are characterized by a high albedo, appear optically immature (i.e. the optical characteristics of a relatively young regolith), and often have a sinuous shape. Their shape is often accentuated by low albedo regions that wind between the bright swirls. They are located in places with enhanced surface magnetic fields and many are located at the antipodal point of major impacts. Well known swirls include the Reiner Gamma feature and Mare Ingenii. They are hypothesized to be areas that have been partially shielded from the solar wind, resulting in slower space weathering.

Presence of water

Main article: Lunar water

Liquid water cannot persist on the lunar surface. When exposed to solar radiation, water quickly decomposes through a process known as photodissociation and is lost to space. However, since the 1960s, scientists have hypothesized that water ice may be deposited by impacting comets or possibly produced by the reaction of oxygen-rich lunar rocks, and hydrogen from solar wind, leaving traces of water which could possibly persist in cold, permanently shadowed craters at either pole on the Moon. Computer simulations suggest that up to 14,000 km (5,400 sq mi) of the surface may be in permanent shadow. The presence of usable quantities of water on the Moon is an important factor in rendering lunar habitation as a cost-effective plan; the alternative of transporting water from Earth would be prohibitively expensive.

In years since, signatures of water have been found to exist on the lunar surface. In 1994, the bistatic radar experiment located on the Clementine spacecraft, indicated the existence of small, frozen pockets of water close to the surface. However, later radar observations by Arecibo, suggest these findings may rather be rocks ejected from young impact craters. In 1998, the neutron spectrometer on the Lunar Prospector spacecraft showed that high concentrations of hydrogen are present in the first meter of depth in the regolith near the polar regions. Volcanic lava beads, brought back to Earth aboard Apollo 15, showed small amounts of water in their interior.

In 2008, NASA's Moon Mineralogy Mapper equipment on India's Chandrayaan-1 discovered, for the first time, water-rich minerals (shown in blue around a small crater from which they were ejected).

The 2008 Chandrayaan-1 spacecraft has since confirmed the existence of surface water ice, using the on-board Moon Mineralogy Mapper. The spectrometer observed absorption lines common to hydroxyl, in reflected sunlight, providing evidence of large quantities of water ice, on the lunar surface. The spacecraft showed that concentrations may possibly be as high as 1,000 ppm. Using the mapper's reflectance spectra, indirect lighting of areas in shadow confirmed water ice within 20° latitude of both poles in 2018. In 2009, LCROSS sent a 2,300 kg (5,100 lb) impactor into a permanently shadowed polar crater, and detected at least 100 kg (220 lb) of water in a plume of ejected material. Another examination of the LCROSS data showed the amount of detected water to be closer to 155 ± 12 kg (342 ± 26 lb).

In May 2011, 615–1410 ppm water in melt inclusions in lunar sample 74220 was reported, the famous high-titanium "orange glass soil" of volcanic origin collected during the Apollo 17 mission in 1972. The inclusions were formed during explosive eruptions on the Moon approximately 3.7 billion years ago. This concentration is comparable with that of magma in Earth's upper mantle. Although of considerable selenological interest, this insight does not mean that water is easily available since the sample originated many kilometers below the surface, and the inclusions are so difficult to access that it took 39 years to find them with a state-of-the-art ion microprobe instrument.

Analysis of the findings of the Moon Mineralogy Mapper (M3) revealed in August 2018 for the first time "definitive evidence" for water-ice on the lunar surface. The data revealed the distinct reflective signatures of water-ice, as opposed to dust and other reflective substances. The ice deposits were found on the North and South poles, although it is more abundant in the South, where water is trapped in permanently shadowed craters and crevices, allowing it to persist as ice on the surface since they are shielded from the sun.

In October 2020, astronomers reported detecting molecular water on the sunlit surface of the Moon by several independent spacecraft, including the Stratospheric Observatory for Infrared Astronomy (SOFIA).

Earth–Moon system

See also: Satellite system (astronomy), Claimed moons of Earth, and Double planet

Orbit

Main articles: Orbit of the Moon, Lunar theory, Lunar orbit, and Cislunar space
A view of the rotating Earth and the far side of the Moon as the Moon passes on its orbit in between the observing DSCOVR satellite and Earth

The Earth and the Moon form the Earth-Moon satellite system with a shared center of mass, or barycenter. This barycenter is 1,700 km (1,100 mi) (about a quarter of Earth's radius) beneath the Earth's surface.

The Moon's orbit is slightly elliptical, with an orbital eccentricity of 0.055. The semi-major axis of the geocentric lunar orbit, called the lunar distance, is approximately 400,000 km (250,000 miles or 1.28 light-seconds), comparable to going around Earth 9.5 times.

The Moon makes a complete orbit around Earth with respect to the fixed stars, its sidereal period, about once every 27.3 days. However, because the Earth-Moon system moves at the same time in its orbit around the Sun, it takes slightly longer, 29.5 days, to return at the same lunar phase, completing a full cycle, as seen from Earth. This synodic period or synodic month is commonly known as the lunar month and is equal to the length of the solar day on the Moon.

Due to tidal locking, the Moon has a 1:1 spin–orbit resonance. This rotationorbit ratio makes the Moon's orbital periods around Earth equal to its corresponding rotation periods. This is the reason for only one side of the Moon, its so-called near side, being visible from Earth. That said, while the movement of the Moon is in resonance, it still is not without nuances such as libration, resulting in slightly changing perspectives, making over time and location on Earth about 59% of the Moon's surface visible from Earth.

Unlike most satellites of other planets, the Moon's orbital plane is closer to the ecliptic plane than to the planet's equatorial plane. The Moon's orbit is subtly perturbed by the Sun and Earth in many small, complex and interacting ways. For example, the plane of the Moon's orbit gradually rotates once every 18.61 years, which affects other aspects of lunar motion. These follow-on effects are mathematically described by Cassini's laws.

Minimum, mean and maximum distances of the Moon from Earth with its angular diameter as seen from Earth's surface to scale

Tidal effects

Main articles: Tidal force, Tidal acceleration, Tide, and Theory of tides
Simplified diagram of the Moon's gravity tidal effect on the Earth

The gravitational attraction that Earth and the Moon (as well as the Sun) exert on each other manifests in a slightly greater attraction on the sides closest to each other, resulting in tidal forces. Ocean tides are the most widely experienced result of this, but tidal forces also considerably affect other mechanics of Earth, as well as the Moon and their system.

The lunar solid crust experiences tides of around 10 cm (4 in) amplitude over 27 days, with three components: a fixed one due to Earth, because they are in synchronous rotation, a variable tide due to orbital eccentricity and inclination, and a small varying component from the Sun. The Earth-induced variable component arises from changing distance and libration, a result of the Moon's orbital eccentricity and inclination (if the Moon's orbit were perfectly circular and un-inclined, there would only be solar tides). According to recent research, scientists suggest that the Moon's influence on the Earth may contribute to maintaining Earth's magnetic field.

The cumulative effects of stress built up by these tidal forces produces moonquakes. Moonquakes are much less common and weaker than are earthquakes, although moonquakes can last for up to an hour – significantly longer than terrestrial quakes – because of scattering of the seismic vibrations in the dry fragmented upper crust. The existence of moonquakes was an unexpected discovery from seismometers placed on the Moon by Apollo astronauts from 1969 through 1972.

The most commonly known effect of tidal forces is elevated sea levels called ocean tides. While the Moon exerts most of the tidal forces, the Sun also exerts tidal forces and therefore contributes to the tides as much as 40% of the Moon's tidal force; producing in interplay the spring and neap tides.

The tides are two bulges in the Earth's oceans, one on the side facing the Moon and the other on the side opposite. As the Earth rotates on its axis, one of the ocean bulges (high tide) is held in place "under" the Moon, while another such tide is opposite. The tide under the Moon is explained by the Moon's gravity being stronger on the water close to it. The tide on the opposite side can be explained either by the centrifugal force as the Earth orbits the barycenter or by the water's inertia as the Moon's gravity is stronger on the solid Earth close to it and it is pull away from the farther water.

Thus, there are two high tides, and two low tides in about 24 hours. Since the Moon is orbiting the Earth in the same direction of the Earth's rotation, the high tides occur about every 12 hours and 25 minutes; the 25 minutes is due to the Moon's time to orbit the Earth.

If the Earth were a water world (one with no continents) it would produce a tide of only one meter, and that tide would be very predictable, but the ocean tides are greatly modified by other effects:

  • the frictional coupling of water to Earth's rotation through the ocean floors
  • the inertia of water's movement
  • ocean basins that grow shallower near land
  • the sloshing of water between different ocean basins

As a result, the timing of the tides at most points on the Earth is a product of observations that are explained, incidentally, by theory.

System evolution

Delays in the tidal peaks of both ocean and solid-body tides cause torque in opposition to the Earth's rotation. This "drains" angular momentum and rotational kinetic energy from Earth's rotation, slowing the Earth's rotation. That angular momentum, lost from the Earth, is transferred to the Moon in a process known as tidal acceleration, which lifts the Moon into a higher orbit while lowering orbital speed around the Earth.

Thus the distance between Earth and Moon is increasing, and the Earth's rotation is slowing in reaction. Measurements from laser reflectors left during the Apollo missions (lunar ranging experiments) have found that the Moon's distance increases by 38 mm (1.5 in) per year (roughly the rate at which human fingernails grow). Atomic clocks show that Earth's Day lengthens by about 17 microseconds every year, slowly increasing the rate at which UTC is adjusted by leap seconds.

This tidal drag makes the rotation of the Earth, and the orbital period of the Moon very slowly match. This matching first results in tidally locking the lighter body of the orbital system, as is already the case with the Moon. Theoretically, in 50 billion years, the Earth's rotation will have slowed to the point of matching the Moon's orbital period, causing the Earth to always present the same side to the Moon. However, the Sun will become a red giant, most likely engulfing the Earth-Moon system long before then.

If the Earth-Moon system isn't engulfed by the enlarged Sun, the drag from the solar atmosphere can cause the orbit of the Moon to decay. Once the orbit of the Moon closes to a distance of 18,470 km (11,480 mi), it will cross Earth's Roche limit, meaning that tidal interaction with Earth would break apart the Moon, turning it into a ring system. Most of the orbiting rings will begin to decay, and the debris will impact Earth. Hence, even if the Sun does not swallow up Earth, the planet may be left moonless.

Position and appearance

See also: Lunar observation
Over one lunar month more than half of the Moon's surface can be seen from Earth's surface.
Libration, the slight variation in the Moon's apparent size and viewing angle over a single lunar month as viewed from somewhere on the Earth's northern hemisphere.

The Moon's highest altitude at culmination varies by its lunar phase, or more correctly its orbital position, and time of the year, or more correctly the position of the Earth's axis. The full moon is highest in the sky during winter and lowest during summer (for each hemisphere respectively), with its altitude changing towards dark moon to the opposite.

At the North and South Poles the Moon is 24 hours above the horizon for two weeks every tropical month (about 27.3 days), comparable to the polar day of the tropical year. Zooplankton in the Arctic use moonlight when the Sun is below the horizon for months on end.

The apparent orientation of the Moon depends on its position in the sky and the hemisphere of the Earth from which it is being viewed. In the northern hemisphere it appears upside down compared to the view from the southern hemisphere. Sometimes the "horns" of a crescent moon appear to be pointing more upwards than sideways. This phenomenon is called a wet moon and occurs more frequently in the tropics.

The distance between the Moon and Earth varies from around 356,400 km (221,500 mi) (perigee) to 406,700 km (252,700 mi) (apogee), making the Moon's distance and apparent size fluctuate up to 14%. On average the Moon's angular diameter is about 0.52°, roughly the same apparent size as the Sun (see § Eclipses). In addition, a purely psychological effect, known as the Moon illusion, makes the Moon appear larger when close to the horizon.

Rotation

Comparison between the Moon on the left, rotating tidally locked (correct), and with the Moon on the right, without rotation (incorrect)

The tidally locked synchronous rotation of the Moon as it orbits the Earth results in it always keeping nearly the same face turned towards the planet. The side of the Moon that faces Earth is called the near side, and the opposite the far side. The far side is often inaccurately called the "dark side", but it is in fact illuminated as often as the near side: once every 29.5 Earth days. During dark moon to new moon, the near side is dark.

The Moon originally rotated at a faster rate, but early in its history its rotation slowed and became tidally locked in this orientation as a result of frictional effects associated with tidal deformations caused by Earth. With time, the energy of rotation of the Moon on its axis was dissipated as heat, until there was no rotation of the Moon relative to Earth. In 2016, planetary scientists using data collected on the 1998-99 NASA Lunar Prospector mission, found two hydrogen-rich areas (most likely former water ice) on opposite sides of the Moon. It is speculated that these patches were the poles of the Moon billions of years ago before it was tidally locked to Earth.

Illumination and phases

See also: Lunar phase, Moonlight, and Halo (optical phenomenon)
The monthly changes in the angle between the direction of sunlight and view from Earth, and the phases of the Moon that result, as viewed from the Northern Hemisphere. The Earth–Moon distance is not to scale.

Half of the Moon's surface is always illuminated by the Sun (except during a lunar eclipse). Earth also reflects light onto the Moon, observable at times as Earthlight when it is reflected back to Earth from areas of the near side of the Moon that are not illuminated by the Sun.

Since the Moon's axial tilt with respect to the ecliptic is 1.5427°, in every draconic year (346.62 days) the Sun moves from being 1.5427° north of the lunar equator to being 1.5427° south of it and then back, just as on Earth the Sun moves from the Tropic of Cancer to the Tropic of Capricorn and back once every tropical year. The poles of the Moon are therefore in the dark for half a draconic year (or with only part of the Sun visible) and then lit for half a draconic year. The amount of sunlight falling on horizontal areas near the poles depends on the altitude angle of the Sun. But these "seasons" have little effect in more equatorial areas.

With the different positions of the Moon, different areas of it are illuminated by the Sun. This illumination of different lunar areas, as viewed from Earth, produces the different lunar phases during the synodic month. The phase is equal to the area of the visible lunar sphere that is illuminated by the Sun. This area or degree of illumination is given by ( 1 cos e ) / 2 = sin 2 ( e / 2 ) {\displaystyle (1-\cos e)/2=\sin ^{2}(e/2)} , where e {\displaystyle e} is the elongation (i.e., the angle between Moon, the observer on Earth, and the Sun).

Brightness and apparent size of the Moon changes also due to its elliptic orbit around Earth. At perigee (closest), since the Moon is up to 14% closer to Earth than at apogee (most distant), it subtends a solid angle which is up to 30% larger. Consequently, given the same phase, the Moon's brightness also varies by up to 30% between apogee and perigee. A full (or new) moon at such a position is called a supermoon.

Observational phenomena

There has been historical controversy over whether observed features on the Moon's surface change over time. Today, many of these claims are thought to be illusory, resulting from observation under different lighting conditions, poor astronomical seeing, or inadequate drawings. However, outgassing does occasionally occur and could be responsible for a minor percentage of the reported lunar transient phenomena. Recently, it has been suggested that a roughly 3 km (1.9 mi) diameter region of the lunar surface was modified by a gas release event about a million years ago.

Albedo and color

The changing apparent color of the Moon, filtered by Earth's atmosphere

The Moon has an exceptionally low albedo, giving it a reflectance that is slightly brighter than that of worn asphalt. Despite this, it is the brightest object in the sky after the Sun. This is due partly to the brightness enhancement of the opposition surge; the Moon at quarter phase is only one-tenth as bright, rather than half as bright, as at full moon. Additionally, color constancy in the visual system recalibrates the relations between the colors of an object and its surroundings, and because the surrounding sky is comparatively dark, the sunlit Moon is perceived as a bright object. The edges of the full moon seem as bright as the center, without limb darkening, because of the reflective properties of lunar soil, which retroreflects light more towards the Sun than in other directions. The Moon's color depends on the light the Moon reflects, which in turn depends on the Moon's surface and its features, having for example large darker regions. In general, the lunar surface reflects a brown-tinged gray light.

At times, the Moon can appear red or blue. It may appear red during a lunar eclipse, because of the red spectrum of the Sun's light being refracted onto the Moon by Earth's atmosphere. Because of this red color, lunar eclipses are also sometimes called blood moons. The Moon can also seem red when it appears at low angles and through a thick atmosphere.

The Moon may appear blue depending on the presence of certain particles in the air, such as volcanic particles, in which case it can be called a blue moon.

Because the words "red moon" and "blue moon" can also be used to refer to specific full moons of the year, they do not always refer to the presence of red or blue moonlight.

Eclipses

Main articles: Solar eclipse, Lunar eclipse, Solar eclipses on the Moon, and Eclipse cycle A solar eclipse causes the Sun to be covered, revealing the white corona.The Moon, tinted reddish, during a lunar eclipse

Eclipses only occur when the Sun, Earth, and Moon are all in a straight line (termed "syzygy"). Solar eclipses occur at new moon, when the Moon is between the Sun and Earth. In contrast, lunar eclipses occur at full moon, when Earth is between the Sun and Moon. The apparent size of the Moon is roughly the same as that of the Sun, with both being viewed at close to one-half a degree wide. The Sun is much larger than the Moon, but it is the vastly greater distance that gives it the same apparent size as the much closer and much smaller Moon from the perspective of Earth. The variations in apparent size, due to the non-circular orbits, are nearly the same as well, though occurring in different cycles. This makes possible both total (with the Moon appearing larger than the Sun) and annular (with the Moon appearing smaller than the Sun) solar eclipses. In a total eclipse, the Moon completely covers the disc of the Sun and the solar corona becomes visible to the naked eye.

Because the distance between the Moon and Earth is very slowly increasing over time, the angular diameter of the Moon is decreasing. As it evolves toward becoming a red giant, the size of the Sun, and its apparent diameter in the sky, are slowly increasing. The combination of these two changes means that hundreds of millions of years ago, the Moon would always completely cover the Sun on solar eclipses, and no annular eclipses were possible. Likewise, hundreds of millions of years in the future, the Moon will no longer cover the Sun completely, and total solar eclipses will not occur.

As the Moon's orbit around Earth is inclined by about 5.145° (5° 9') to the orbit of Earth around the Sun, eclipses do not occur at every full and new moon. For an eclipse to occur, the Moon must be near the intersection of the two orbital planes. The periodicity and recurrence of eclipses of the Sun by the Moon, and of the Moon by Earth, is described by the saros, which has a period of approximately 18 years.

Because the Moon continuously blocks the view of a half-degree-wide circular area of the sky, the related phenomenon of occultation occurs when a bright star or planet passes behind the Moon and is occulted: hidden from view. In this way, a solar eclipse is an occultation of the Sun. Because the Moon is comparatively close to Earth, occultations of individual stars are not visible everywhere on the planet, nor at the same time. Because of the precession of the lunar orbit, each year different stars are occulted.

History of exploration and human presence

Main articles: Exploration of the Moon, List of spacecraft that orbited the Moon, List of missions to the Moon, and List of lunar probes

Pre-telescopic observation (before 1609)

It is believed by some that the oldest cave paintings from up to 40,000 BP of bulls and geometric shapes, or 20–30,000 year old tally sticks were used to observe the phases of the Moon, keeping time using the waxing and waning of the Moon's phases. One of the earliest-discovered possible depictions of the Moon is a 3,000 BCE rock carving Orthostat 47 at Knowth, Ireland. Lunar deities like Nanna/Sin featuring crescents are found since the 3rd millennium BCE. Though the oldest found and identified astronomical depiction of the Moon is the Nebra sky disc from c. 1800–1600 BCE.

The Nebra sky disc (c. 1800–1600 BCE), found near a possibly astronomical complex, most likely depicting the Sun or full Moon, the Moon as a crescent, the Pleiades and the summer and winter solstices as strips of gold on the side of the disc, with the top representing the horizon and north.

The ancient Greek philosopher Anaxagoras (d. 428 BC) reasoned that the Sun and Moon were both giant spherical rocks, and that the latter reflected the light of the former. Elsewhere in the 5th century BC to 4th century BC, Babylonian astronomers had recorded the 18-year Saros cycle of lunar eclipses, and Indian astronomers had described the Moon's monthly elongation. The Chinese astronomer Shi Shen (fl. 4th century BC) gave instructions for predicting solar and lunar eclipses.

In Aristotle's (384–322 BC) description of the universe, the Moon marked the boundary between the spheres of the mutable elements (earth, water, air and fire), and the imperishable stars of aether, an influential philosophy that would dominate for centuries. Archimedes (287–212 BC) designed a planetarium that could calculate the motions of the Moon and other objects in the Solar System. In the 2nd century BC, Seleucus of Seleucia correctly thought that tides were due to the attraction of the Moon, and that their height depends on the Moon's position relative to the Sun. In the same century, Aristarchus computed the size and distance of the Moon from Earth, obtaining a value of about twenty times the radius of Earth for the distance.

The Chinese of the Han dynasty believed the Moon to be energy equated to qi and their 'radiating influence' theory recognized that the light of the Moon was merely a reflection of the Sun; Jing Fang (78–37 BC) noted the sphericity of the Moon. Ptolemy (90–168 AD) greatly improved on the numbers of Aristarchus, calculating a mean distance of 59 times Earth's radius and a diameter of 0.292 Earth diameters, close to the correct values of about 60 and 0.273 respectively. In the 2nd century AD, Lucian wrote the novel A True Story, in which the heroes travel to the Moon and meet its inhabitants. In 510 AD, the Indian astronomer Aryabhata mentioned in his Aryabhatiya that reflected sunlight is the cause of the shining of the Moon. The astronomer and physicist Ibn al-Haytham (965–1039) found that sunlight was not reflected from the Moon like a mirror, but that light was emitted from every part of the Moon's sunlit surface in all directions. Shen Kuo (1031–1095) of the Song dynasty created an allegory equating the waxing and waning of the Moon to a round ball of reflective silver that, when doused with white powder and viewed from the side, would appear to be a crescent. During the Middle Ages, before the invention of the telescope, the Moon was increasingly recognized as a sphere, though many believed that it was "perfectly smooth".

Telescopic exploration (1609–1959)

Galileo's sketches of the Moon from the ground-breaking Sidereus Nuncius (1610), publishing among other findings the first descriptions of the Moon's topography

In 1609, Galileo Galilei used an early telescope to make drawings of the Moon for his book Sidereus Nuncius, and deduced that it was not smooth but had mountains and craters. Thomas Harriot had made but not published such drawings a few months earlier.

Telescopic mapping of the Moon followed: later in the 17th century, the efforts of Giovanni Battista Riccioli and Francesco Maria Grimaldi led to the system of naming of lunar features in use today. The more exact 1834–1836 Mappa Selenographica of Wilhelm Beer and Johann Heinrich von Mädler, and their associated 1837 book Der Mond, the first trigonometrically accurate study of lunar features, included the heights of more than a thousand mountains, and introduced the study of the Moon at accuracies possible in earthly geography. Lunar craters, first noted by Galileo, were thought to be volcanic until the 1870s proposal of Richard Proctor that they were formed by collisions. This view gained support in 1892 from the experimentation of geologist Grove Karl Gilbert, and from comparative studies from 1920 to the 1940s, leading to the development of lunar stratigraphy, which by the 1950s was becoming a new and growing branch of astrogeology.

First missions to the Moon (1959–1976)

See also: Space Race and Moon landing

After World War II the first launch systems were developed and by the end of the 1950s they reached capabilities that allowed the Soviet Union and the United States to launch spacecraft into space. The Cold War fueled a closely followed development of launch systems by the two states, resulting in the so-called Space Race and its later phase the Moon Race, accelerating efforts and interest in exploration of the Moon.

First view of the far side of the Moon, taken by Luna 3, October 7, 1959. Clearly visible is Mare Moscoviense (top right) and a mare triplet of Mare Crisium, Mare Marginis and Mare Smythii (left center).

After the first spaceflight of Sputnik 1 in 1957 during International Geophysical Year the spacecraft of the Soviet Union's Luna program were the first to accomplish a number of goals. Following three unnamed failed missions in 1958, the first human-made object Luna 1 escaped Earth's gravity and passed near the Moon in 1959. Later that year the first human-made object Luna 2 reached the Moon's surface by intentionally impacting. By the end of the year Luna 3 reached as the first human-made object the normally occluded far side of the Moon, taking the first photographs of it. The first spacecraft to perform a successful lunar soft landing was Luna 9 and the first vehicle to orbit the Moon was Luna 10, both in 1966.

The small blue-white semicircle of Earth, almost glowing with color in the blackness of space, rising over the limb of the desolate, cratered surface of the Moon.
Earthrise, the first color image of Earth taken by a human from the Moon, during Apollo 8 (1968) the first time a crewed spacecraft left Earth orbit and reached another astronomical body

Following President John F. Kennedy's 1961 commitment to a crewed Moon landing before the end of the decade, the United States, under NASA leadership, launched a series of uncrewed probes to develop an understanding of the lunar surface in preparation for human missions: the Jet Propulsion Laboratory's Ranger program, the Lunar Orbiter program and the Surveyor program. The crewed Apollo program was developed in parallel; after a series of uncrewed and crewed tests of the Apollo spacecraft in Earth orbit, and spurred on by a potential Soviet lunar human landing, in 1968 Apollo 8 made the first human mission to lunar orbit (the first Earthlings, two tortoises, had circled the Moon three months earlier on the Soviet Union's Zond 5, followed by turtles on Zond 6).

The first time a person landed on the Moon and any extraterrestrial body was when Neil Armstrong, the commander of the American mission Apollo 11, set foot on the Moon at 02:56 UTC on July 21, 1969. Considered the culmination of the Space Race, an estimated 500 million people worldwide watched the transmission by the Apollo TV camera, the largest television audience for a live broadcast at that time. While at the same time another mission, the robotic sample return mission Luna 15 by the Soviet Union had been in orbit around the Moon, becoming together with Apollo 11 the first ever case of two extraterrestrial missions being conducted at the same time.

The Apollo missions 11 to 17 (except Apollo 13, which aborted its planned lunar landing) removed 380.05 kilograms (837.87 lb) of lunar rock and soil in 2,196 separate samples. Scientific instrument packages were installed on the lunar surface during all the Apollo landings. Long-lived instrument stations, including heat flow probes, seismometers, and magnetometers, were installed at the Apollo 12, 14, 15, 16, and 17 landing sites. Direct transmission of data to Earth concluded in late 1977 because of budgetary considerations, but as the stations' lunar laser ranging corner-cube retroreflector arrays are passive instruments, they are still being used. Apollo 17 in 1972 remains the last crewed mission to the Moon. Explorer 49 in 1973 was the last dedicated U.S. probe to the Moon until the 1990s.

The Soviet Union continued sending robotic missions to the Moon until 1976, deploying in 1970 with Luna 17 the first remote controlled rover Lunokhod 1 on an extraterrestrial surface, and collecting and returning 0.3 kg of rock and soil samples with three Luna sample return missions (Luna 16 in 1970, Luna 20 in 1972, and Luna 24 in 1976).

Moon Treaty and explorational absence (1976–1990)

Main article: Moon Treaty

Following the last Soviet mission to the Moon of 1976, there was little further lunar exploration for fourteen years. Astronautics had shifted its focus towards the exploration of the inner (e.g. Venera program) and outer (e.g. Pioneer 10, 1972) Solar System planets, but also towards Earth orbit, developing and continuously operating, beside communication satellites, Earth observation satellites (e.g. Landsat program, 1972), space telescopes and particularly space stations (e.g. Salyut program, 1971).

Negotiation in 1979 of Moon treaty, and its subsequent ratification in 1984 was the only major activity regarding the Moon until 1990.

Renewed exploration (1990–present)

In 1990 Hiten-Hagoromo, the first dedicated lunar mission since 1976, reached the Moon. Sent by Japan, it became the first mission that was not a Soviet Union or U.S. mission to the Moon.

In 1994, the U.S. dedicated a mission to fly a spacecraft (Clementine) to the Moon again for the first time since 1973. This mission obtained the first near-global topographic map of the Moon, and the first global multispectral images of the lunar surface. In 1998, this was followed by the Lunar Prospector mission, whose instruments indicated the presence of excess hydrogen at the lunar poles, which is likely to have been caused by the presence of water ice in the upper few meters of the regolith within permanently shadowed craters.

The next years saw a row of first missions to the Moon by a new group of states actively exploring the Moon. Between 2004 and 2006 the first spacecraft by the European Space Agency (ESA) (SMART-1) reached the Moon, recording the first detailed survey of chemical elements on the lunar surface. The Chinese Lunar Exploration Program reached the Moon for the first time with the orbiter Chang'e 1 (2007–2009), obtaining a full image map of the Moon. India reached, orbited and impacted the Moon in 2008 for the first time with its Chandrayaan-1 and Moon Impact Probe, becoming the fifth and sixth state to do so, creating a high-resolution chemical, mineralogical and photo-geological map of the lunar surface, and confirming the presence of water molecules in lunar soil.

The U.S. launched the Lunar Reconnaissance Orbiter (LRO) and the LCROSS impactor on June 18, 2009. LCROSS completed its mission by making a planned and widely observed impact in the crater Cabeus on October 9, 2009, whereas LRO is currently in operation, obtaining precise lunar altimetry and high-resolution imagery.

China continued its lunar program in 2010 with Chang'e 2, mapping the surface at a higher resolution over an eight-month period, and in 2013 with Chang'e 3, a lunar lander along with a lunar rover named Yutu (Chinese: 玉兔; lit. 'Jade Rabbit'). This was the first lunar rover mission since Lunokhod 2 in 1973 and the first lunar soft landing since Luna 24 in 1976, making China the third country to achieve this.

In 2014 the first privately funded probe, the Manfred Memorial Moon Mission, reached the Moon.

Another Chinese rover mission, Chang'e 4, achieved the first landing on the Moon's far side in early 2019.

Also in 2019, India successfully sent its second probe, Chandrayaan-2 to the Moon.

In 2020, China carried out its first robotic sample return mission (Chang'e 5), bringing back 1,731 grams of lunar material to Earth.

The U.S. developed plans for returning to the Moon beginning in 2004, and with the signing of the U.S.-led Artemis Accords in 2020, the Artemis program aims to return the astronauts to the Moon in the 2020s. The Accords have been joined by a growing number of countries. The introduction of the Artemis Accords has fueled a renewed discussion about the international framework and cooperation of lunar activity, building on the Moon Treaty and the ESA-led Moon Village concept.

2023 and 2024 India and Japan became the fourth and fifth country to soft land a spacecraft on the Moon, following the Soviet Union and United States in the 1960s, and China in the 2010s. Notably, Japan's spacecraft, the Smart Lander for Investigating Moon, survived 3 lunar nights. The IM-1 lander became the first commercially built lander to land on the Moon in 2024.

China launched the Chang'e 6 on May 3, 2024, which conducted another lunar sample return from the far side of the Moon. It also carried a Chinese rover to conduct infrared spectroscopy of lunar surface. Pakistan sent a lunar orbiter called ICUBE-Q along with Chang'e 6.

Nova-C 2, iSpace Lander and Blue Ghost are all planned to launch to the Moon in 2024.

Artemis II crew, with the first woman, person of color and non-US citizen astronaut planned to go to the Moon, scheduled for 2025, returning humans to the Moon for the first time since Apollo 17 in 1972. Clockwise from left: Koch, Glover, Hansen and Wiseman.

Future

See also: List of proposed missions to the Moon

Beside the progressing Artemis program and supporting Commercial Lunar Payload Services, leading an international and commercial crewed opening up of the Moon and sending the first woman, person of color and non-US citizen to the Moon in the 2020s, China is continuing its ambitious Chang'e program, having announced with Russia's struggling Luna-Glob program joint missions. Both the Chinese and US lunar programs have the goal to establish in the 2030s a lunar base with their international partners, though the US and its partners will first establish an orbital Lunar Gateway station in the 2020s, from which Artemis missions will land the Human Landing System to set up temporary surface camps.

While the Apollo missions were explorational in nature, the Artemis program plans to establish a more permanent presence. To this end, NASA is partnering with industry leaders to establish key elements such as modern communication infrastructure. A 4G connectivity demonstration is to be launched aboard an Intuitive Machines Nova-C lander in 2024. Another focus is on in situ resource utilization, which is a key part of the DARPA lunar programs. DARPA has requested that industry partners develop a 10–year lunar architecture plan to enable the beginning of a lunar economy.

Human presence

See also: Human presence in space
Map of all the sites of soft landings on the Moon (2024)

In 1959 the first extraterrestrial probes reached the Moon (Luna program), just a year into the space age, after the first ever orbital flight. Since then, humans have sent a range of probes and people to the Moon. The first stay of people on the Moon was conducted in 1969, in a series of crewed exploration missions (the Apollo Program), the last having taken place in 1972.

Uninterrupted presence has been the case through the remains of impactors, landings and lunar orbiters. Some landings and orbiters have maintained a small lunar infrastructure, providing continuous observation and communication at the Moon.

Increasing human activity in cislunar space as well as on the Moon's surface, particularly missions at the far side of the Moon or the lunar north and south polar regions, are in need for a lunar infrastructure. For that purpose, orbiters in orbits around the Moon or the Earth–Moon Lagrange points, have since 2006 been operated. With highly eccentric orbits providing continuous communication, as with the orbit of Queqiao and Queqiao-2 relay satellite or the planned first extraterrestrial space station, the Lunar Gateway.

Human impact

See also: Space debris, Space sustainability, List of artificial objects on the Moon, Space art § Art in space, Moonbase, Lunar resources § Mining, Tourism on the Moon, and Space archaeology
Artifacts of human activity, Apollo 17's Lunar Surface Experiments Package

While the Moon has the lowest planetary protection target-categorization, its degradation as a pristine body and scientific place has been discussed. If there is astronomy performed from the Moon, it will need to be free from any physical and radio pollution. While the Moon has no significant atmosphere, traffic and impacts on the Moon causes clouds of dust that can spread far and possibly contaminate the original state of the Moon and its special scientific content. Scholar Alice Gorman asserts that, although the Moon is inhospitable, it is not dead, and that sustainable human activity would require treating the Moon's ecology as a co-participant.

The so-called "Tardigrade affair" of the 2019 crashed Beresheet lander and its carrying of tardigrades has been discussed as an example for lacking measures and lacking international regulation for planetary protection.

Space debris beyond Earth around the Moon has been considered as a future challenge with increasing numbers of missions to the Moon, particularly as a danger for such missions. As such lunar waste management has been raised as an issue which future lunar missions, particularly on the surface, need to tackle.

Human remains have been transported to the Moon, including by private companies such as Celestis and Elysium Space. Because the Moon has been sacred or significant to many cultures, the practice of space burials have attracted criticism from indigenous peoples leaders. For example, then–Navajo Nation president Albert Hale criticized NASA for sending the cremated ashes of scientist Eugene Shoemaker to the Moon in 1998.

Beside the remains of human activity on the Moon, there have been some intended permanent installations like the Moon Museum art piece, Apollo 11 goodwill messages, six lunar plaques, the Fallen Astronaut memorial, and other artifacts.

Longterm missions continuing to be active are some orbiters such as the 2009-launched Lunar Reconnaissance Orbiter surveilling the Moon for future missions, as well as some Landers such as the 2013-launched Chang'e 3 with its Lunar Ultraviolet Telescope still operational. Five retroreflectors have been installed on the Moon since the 1970s and since used for accurate measurements of the physical librations through laser ranging to the Moon.

There are several missions by different agencies and companies planned to establish a long-term human presence on the Moon, with the Lunar Gateway as the currently most advanced project as part of the Artemis program.

Astronomy from the Moon

Further information: Extraterrestrial sky § The Moon
Earth's exosphere illuminated creating its geocorona, visible in ultraviolet and viewed by the Far Ultraviolet Camera/Spectrograph of Apollo 16 in 1972 from the Moon's surface.

The Moon has been used as a site for astronomical and Earth observations. The Earth appears in the Moon's sky with an apparent size of 1° 48′ to 2°, three to four times the size of the Moon or Sun in Earth's sky, or about the apparent width of two little fingers at an arm's length away. Observations from the Moon started as early as 1966 with the first images of Earth from the Moon, taken by Lunar Orbiter 1. Of particular cultural significance is the 1968 photograph called Earthrise, taken by Bill Anders of Apollo 8 in 1968. In April 1972 the Apollo 16 mission set up the first dedicated telescope, the Far Ultraviolet Camera/Spectrograph, recording various astronomical photos and spectra.

The Moon is recognized as an excellent site for telescopes. It is relatively nearby; certain craters near the poles are permanently dark and cold and especially useful for infrared telescopes; and radio telescopes on the far side would be shielded from the radio chatter of Earth. The lunar soil, although it poses a problem for any moving parts of telescopes, can be mixed with carbon nanotubes and epoxies and employed in the construction of mirrors up to 50 meters in diameter. A lunar zenith telescope can be made cheaply with an ionic liquid.

Living on the Moon

Main article: Lunar habitation
Astronaut Buzz Aldrin in life-supporting suit looking back at the first lunar habitat and base, the Lunar Module Eagle of Tranquility Base, during Apollo 11 (1969), the first crewed Moon landing

The only instances of humans living on the Moon have taken place in an Apollo Lunar Module for several days at a time (for example, during the Apollo 17 mission). One challenge to astronauts during their stay on the surface is that lunar dust sticks to their suits and is carried into their quarters. Astronauts could taste and smell the dust, which smells like gunpowder and was called the "Apollo aroma". This fine lunar dust can cause health issues.

In 2019, at least one plant seed sprouted in an experiment on the Chang'e 4 lander. It was carried from Earth along with other small life in its Lunar Micro Ecosystem.

Legal status

See also: Space law, Politics of outer space, Space advocacy, and Colonization of the Moon

Although Luna landers scattered pennants of the Soviet Union on the Moon, and U.S. flags were symbolically planted at their landing sites by the Apollo astronauts, no nation claims ownership of any part of the Moon's surface. Likewise no private ownership of parts of the Moon, or as a whole, is considered credible.

The 1967 Outer Space Treaty defines the Moon and all outer space as the "province of all mankind". It restricts the use of the Moon to peaceful purposes, explicitly banning military installations and weapons of mass destruction. A majority of countries are parties of this treaty. The 1979 Moon Agreement was created to elaborate, and restrict the exploitation of the Moon's resources by any single nation, leaving it to a yet unspecified international regulatory regime. As of January 2020, it has been signed and ratified by 18 nations, none of which have human spaceflight capabilities.

Since 2020, countries have joined the U.S. in their Artemis Accords, which are challenging the treaty. The U.S. has furthermore emphasized in a presidential executive order ("Encouraging International Support for the Recovery and Use of Space Resources.") that "the United States does not view outer space as a 'global commons'" and calls the Moon Agreement "a failed attempt at constraining free enterprise."

With Australia signing and ratifying both the Moon Treaty in 1986 as well as the Artemis Accords in 2020, there has been a discussion if they can be harmonized. In this light an Implementation Agreement for the Moon Treaty has been advocated for, as a way to compensate for the shortcomings of the Moon Treaty and to harmonize it with other laws and agreements such as the Artemis Accords, allowing it to be more widely accepted.

In the face of such increasing commercial and national interest, particularly prospecting territories, U.S. lawmakers have introduced in late 2020 specific regulation for the conservation of historic landing sites and interest groups have argued for making such sites World Heritage Sites and zones of scientific value protected zones, all of which add to the legal availability and territorialization of the Moon.

In 2021, the Declaration of the Rights of the Moon was created by a group of "lawyers, space archaeologists and concerned citizens", drawing on precedents in the Rights of Nature movement and the concept of legal personality for non-human entities in space.

Coordination and regulation

Increasing human activity at the Moon has raised the need for coordination to safeguard international and commercial lunar activity. Issues from cooperation to mere coordination, through for example the development of a shared Lunar time, have been raised.

In particular the establishment of an international or United Nations regulatory regime for lunar human activity has been called for by the Moon Treaty and suggested through an Implementation Agreement, but remains contentious. Current lunar programs are multilateral, with the US-led Artemis program and the China-led International Lunar Research Station. For broader international cooperation and coordination, the International Lunar Exploration Working Group (ILEWG), the Moon Village Association (MVA) and more generally the International Space Exploration Coordination Group (ISECG) has been established.

In culture and life

Timekeeping

Further information: Lunar calendar, Lunisolar calendar, and Metonic cycle
The Venus of Laussel (c. 25,000 BP) holding a crescent shaped horn. The 13 notches on the horn may symbolize the average number of days from menstruation to an ovulation, or the approximate number of full menstrual cycles and lunar cycles per year (although these two phenomena are unrelated).

Since pre-historic times people have taken note of the Moon's phases and its waxing and waning cycle and used it to keep record of time. Tally sticks, notched bones dating as far back as 20–30,000 years ago, are believed by some to mark the phases of the Moon. The counting of the days between the Moon's phases gave eventually rise to generalized time periods of lunar cycles as months, and possibly of its phases as weeks.

The words for the month in a range of different languages carry this relation between the period of the month and the Moon etymologically. The English month as well as moon, and its cognates in other Indo-European languages (e.g. the Latin mensis and Ancient Greek μείς (meis) or μήν (mēn), meaning "month") stem from the Proto-Indo-European (PIE) root of moon, *méh1nōt, derived from the PIE verbal root *meh1-, "to measure", "indicat a functional conception of the Moon, i.e. marker of the month" (cf. the English words measure and menstrual). To give another example from a different language family, the Chinese language uses the same word () for moon as well as for month, which furthermore can be found in the symbols for the word week (星期).

This lunar timekeeping gave rise to the historically dominant, but varied, lunisolar calendars. The 7th-century Islamic calendar is an example of a purely lunar calendar, where months are traditionally determined by the visual sighting of the hilal, or earliest crescent moon, over the horizon.

Of particular significance has been the occasion of full moon, highlighted and celebrated in a range of calendars and cultures, an example being the Buddhist Vesak. The full moon around the southern or northern autumnal equinox is often called the harvest moon and is celebrated with festivities such as the Harvest Moon Festival of the Chinese lunar calendar, its second most important celebration after the Chinese lunisolar Lunar New Year.

Furthermore, association of time with the Moon can also be found in religion, such as the ancient Egyptian temporal and lunar deity Khonsu.

Cultural representation

Further information: Cultural astronomy, Archaeoastronomy, Lunar deity, Selene, Luna (goddess), Crescent, and Man in the Moon See also: Nocturne (painting) and Moon magic Recurring lunar aspects of lunar deitiesSumerian cylinder seal and impression, dated c. 2100 BC, of Ḫašḫamer, ensi (governor) of Iškun-Sin c. 2100 BC. The seated figure is probably king Ur-Nammu, bestowing the governorship on Ḫašḫamer, who is led before him by Lamma (protective goddess).The crescent of Nanna/Sîn, c. 2100 BCLuna on the Parabiago plate (2nd–5th century), featuring the crescent crown, chariot and velificatio as lunar aspect found in different cultures.Crescent headgear, chariot and velificatio of Luna, 2nd–5th centuryRabbits are in a range of cultures identified with the Moon, from China to the Indigenous peoples of the Americas, as with the rabbit (on the left) of the Maya moon goddess (6th–9th century).A Moon rabbit of the Mayan moon goddess, 6th–9th century

Since prehistoric times humans have depicted and later described their perception of the Moon and its importance for them and their cosmologies. It has been characterized and associated in many different ways, from having a spirit or being a deity, and an aspect thereof or an aspect in astrology.

Crescent

For the representation of the Moon, especially its lunar phases, the crescent (🌙) has been a recurring symbol in a range of cultures since at least 3,000 BCE or possibly earlier with bull horns dating to the earliest cave paintings at 40,000 BP. In writing systems such as Chinese the crescent has developed into the symbol , the word for Moon, and in ancient Egyptian it was the symbol 𓇹, meaning Moon and spelled like the ancient Egyptian lunar deity Iah, which the other ancient Egyptian lunar deities Khonsu and Thoth were associated with.

Iconographically the crescent was used in Mesopotamia as the primary symbol of Nanna/Sîn, the ancient Sumerian lunar deity, who was the father of Inanna/Ishtar, the goddess of the planet Venus (symbolized as the eight pointed Star of Ishtar), and Utu/Shamash, the god of the Sun (symbolized as a disc, optionally with eight rays), all three often depicted next to each other. Nanna/Sîn is, like some other lunar deities, for example Iah and Khonsu of ancient Egypt, Mene/Selene of ancient Greece and Luna of ancient Rome, depicted as a horned deity, featuring crescent shaped headgears or crowns.

The particular arrangement of the crescent with a star known as the star and crescent (☪️) goes back to the Bronze Age, representing either the Sun and Moon, or the Moon and the planet Venus, in combination. It came to represent the selene goddess Artemis, and via the patronage of Hecate, which as triple deity under the epithet trimorphos/trivia included aspects of Artemis/Diana, came to be used as a symbol of Byzantium, with Virgin Mary (Queen of Heaven) later taking her place, becoming depicted in Marian veneration on a crescent and adorned with stars. Since then the heraldric use of the star and crescent proliferated, Byzantium's symbolism possibly influencing the development of the Ottoman flag, specifically the combination of the Turkish crescent with a star, and becoming a popular symbol for Islam (as the hilal of the Islamic calendar) and for a range of nations.

Other association

The features of the Moon, the contrasting brighter highlands and darker maria, have been seen by different cultures forming abstract shapes. Such shapes are among others the Man in the Moon (e.g. Coyolxāuhqui) or the Moon Rabbit (e.g. the Chinese Tu'er Ye or in Indigenous American mythologies the aspect of the Mayan Moon goddess, from which possibly Awilix is derived, or of Metztli/Tēcciztēcatl).

Occasionally some lunar deities have been also depicted driving a chariot across the sky, such as the Hindu Chandra/Soma, the Greek Artemis, which is associated with Selene, or Luna, Selene's ancient Roman equivalent.

Color and material wise the Moon has been associated in Western alchemy with silver, while gold is associated with the Sun.

Through a miracle, the so-called splitting of the Moon (Arabic: انشقاق القمر) in Islam, association with the Moon applies also to Muhammad.

Modern culture representation

See also: Moon in science fiction and List of appearances of the Moon in fiction The Moon is prominently featured in Vincent van Gogh's 1889 painting, The Starry Night.An iconic image of the Man in the Moon from the first science-fiction film set in space, A Trip to the Moon (1902, Georges Méliès), inspired by a history of literature about going to the Moon.

The perception of the Moon in modern times has been informed by telescope enabled modern astronomy and later by spaceflight enabled actual human activity at the Moon, particularly the culturally impactful lunar landings. These new insights inspired cultural references, connecting romantic reflections about the Moon and speculative fiction such as science-fiction dealing with the Moon.

Contemporarily the Moon has been seen as a place for economic expansion into space, with missions prospecting for lunar resources. This has been accompanied with renewed public and critical reflection on humanity's cultural and legal relation to the celestial body, especially regarding colonialism, as in the 1970 poem "Whitey on the Moon". In this light the Moon's nature has been invoked, particularly for lunar conservation and as a common.

In 2021 20 July, the date of the first crewed Moon landing, became the annual International Moon Day.

Lunar effect

Main article: Lunar effect

The lunar effect is a purported unproven correlation between specific stages of the roughly 29.5-day lunar cycle and behavior and physiological changes in living beings on Earth, including humans. The Moon has long been associated with insanity and irrationality; the words lunacy and lunatic are derived from the Latin name for the Moon, Luna. Philosophers Aristotle and Pliny the Elder argued that the full moon induced insanity in susceptible individuals, believing that the brain, which is mostly water, must be affected by the Moon and its power over the tides, but the Moon's gravity is too slight to affect any single person. Even today, people who believe in a lunar effect claim that admissions to psychiatric hospitals, traffic accidents, homicides or suicides increase during a full moon, but dozens of studies invalidate these claims.

See also

Explanatory notes

  1. Between 18.29° and 28.58° to Earth's equator
  2. There are a number of near-Earth asteroids, including 3753 Cruithne, that are co-orbital with Earth: their orbits bring them close to Earth for periods of time but then alter in the long term (Morais et al, 2002). These are quasi-satellites – they are not moons as they do not orbit Earth. For more information, see Other moons of Earth.
  3. The maximum value is given based on scaling of the brightness from the value of −12.74 given for an equator to Moon-centre distance of 378 000 km in the NASA factsheet reference to the minimum Earth–Moon distance given there, after the latter is corrected for Earth's equatorial radius of 6 378 km, giving 350 600 km. The minimum value (for a distant new moon) is based on a similar scaling using the maximum Earth–Moon distance of 407 000 km (given in the factsheet) and by calculating the brightness of the earthshine onto such a new moon. The brightness of the earthshine is relative to the direct solar illumination that occurs for a full moon. (Earth albedo = 0.367; Earth radius = (polar radius × equatorial radius) = 6 367 km.)
  4. The range of angular size values given are based on simple scaling of the following values given in the fact sheet reference: at an Earth-equator to Moon-centre distance of 378 000 km, the angular size is 1896 arcseconds. The same fact sheet gives extreme Earth–Moon distances of 407 000 km and 357 000 km. For the maximum angular size, the minimum distance has to be corrected for Earth's equatorial radius of 6 378 km, giving 350 600 km.
  5. Lucey et al. (2006) give 10 particles cm by day and 10 particles cm by night. Along with equatorial surface temperatures of 390 K by day and 100 K by night, the ideal gas law yields the pressures given in the infobox (rounded to the nearest order of magnitude): 10 Pa by day and 10 Pa by night.
  6. With 27% the diameter and 60% the density of Earth, the Moon has 1.23% of the mass of Earth. The moon Charon is larger relative to its primary Pluto, but Earth and the Moon are different since Pluto is considered a dwarf planet and not a planet, unlike Earth.
  7. There is no strong correlation between the sizes of planets and the sizes of their satellites. Larger planets tend to have more satellites, both large and small, than smaller planets.
  8. More accurately, the Moon's mean sidereal period (fixed star to fixed star) is 27.321661 days (27 d 07 h 43 min 11.5 s), and its mean tropical orbital period (from equinox to equinox) is 27.321582 days (27 d 07 h 43 min 04.7 s) (Explanatory Supplement to the Astronomical Ephemeris, 1961, at p.107).
  9. More accurately, the Moon's mean synodic period (between mean solar conjunctions) is 29.530589 days (29 d 12 h 44 min 02.9 s) (Explanatory Supplement to the Astronomical Ephemeris, 1961, at p.107).
  10. The Sun's apparent magnitude is −26.7, while the full moon's apparent magnitude is −12.7.
  11. See graph in Sun#Life phases. At present, the diameter of the Sun is increasing at a rate of about five percent per billion years. This is very similar to the rate at which the apparent angular diameter of the Moon is decreasing as it recedes from Earth.
  12. On average, the Moon covers an area of 0.21078 square degrees on the night sky.

References

  1. ^ Wieczorek, Mark A.; Jolliff, Bradley L.; Khan, Amir; Pritchard, Matthew E.; Weiss, Benjamin P.; Williams, James G.; Hood, Lon L.; Righter, Kevin; Neal, Clive R.; Shearer, Charles K.; McCallum, I. Stewart; Tompkins, Stephanie; Hawke, B. Ray; Peterson, Chris; Gillis, Jeffrey J.; Bussey, Ben (2006). "The constitution and structure of the lunar interior". Reviews in Mineralogy and Geochemistry. 60 (1): 221–364. Bibcode:2006RvMG...60..221W. doi:10.2138/rmg.2006.60.3. S2CID 130734866.
  2. ^ Lang, Kenneth R. (2011). The Cambridge Guide to the Solar System (2nd ed.). Cambridge University Press. ISBN 978-1139494175. Archived from the original on January 1, 2016.
  3. Morais, M. H. M.; Morbidelli, A. (2002). "The Population of Near-Earth Asteroids in Coorbital Motion with the Earth". Icarus. 160 (1): 1–9. Bibcode:2002Icar..160....1M. doi:10.1006/icar.2002.6937. hdl:10316/4391. S2CID 55214551.
  4. ^ Williams, David R. (February 2, 2006). "Moon Fact Sheet". NASA/National Space Science Data Center. Archived from the original on March 23, 2010. Retrieved December 31, 2008.
  5. Smith, David E.; Zuber, Maria T.; Neumann, Gregory A.; Lemoine, Frank G. (January 1, 1997). "Topography of the Moon from the Clementine lidar". Journal of Geophysical Research. 102 (E1): 1601. Bibcode:1997JGR...102.1591S. doi:10.1029/96JE02940. hdl:2060/19980018849. ISSN 0148-0227. S2CID 17475023.
  6. Terry, Paul (2013). Top 10 of Everything. Octopus Publishing Group Ltd. p. 226. ISBN 978-0-600-62887-3.
  7. Williams, James G.; Newhall, XX; Dickey, Jean O. (1996). "Lunar moments, tides, orientation, and coordinate frames". Planetary and Space Science. 44 (10): 1077–1080. Bibcode:1996P&SS...44.1077W. doi:10.1016/0032-0633(95)00154-9.
  8. ^ Hamilton, Calvin J.; Hamilton, Rosanna L., The Moon, Views of the Solar System Archived February 4, 2016, at the Wayback Machine, 1995–2011.
  9. Makemson, Maud W. (1971). "Determination of selenographic positions". The Moon. 2 (3): 293–308. Bibcode:1971Moon....2..293M. doi:10.1007/BF00561882. S2CID 119603394.
  10. ^ Archinal, Brent A.; A'Hearn, Michael F.; Bowell, Edward G.; Conrad, Albert R.; Consolmagno, Guy J.; Courtin, Régis; Fukushima, Toshio; Hestroffer, Daniel; Hilton, James L.; Krasinsky, George A.; Neumann, Gregory A.; Oberst, Jürgen; Seidelmann, P. Kenneth; Stooke, Philip J.; Tholen, David J.; Thomas, Paul C.; Williams, Iwan P. (2010). "Report of the IAU Working Group on Cartographic Coordinates and Rotational Elements: 2009" (PDF). Celestial Mechanics and Dynamical Astronomy. 109 (2): 101–135. Bibcode:2011CeMDA.109..101A. doi:10.1007/s10569-010-9320-4. S2CID 189842666. Archived from the original (PDF) on March 4, 2016. Retrieved September 24, 2018. also available "via usgs.gov" (PDF). Archived (PDF) from the original on April 27, 2019. Retrieved September 26, 2018.
  11. Matthews, Grant (2008). "Celestial body irradiance determination from an underfilled satellite radiometer: application to albedo and thermal emission measurements of the Moon using CERES". Applied Optics. 47 (27): 4981–4993. Bibcode:2008ApOpt..47.4981M. doi:10.1364/AO.47.004981. PMID 18806861.
  12. ^ Bugby, D. C.; Farmer, J. T.; O’Connor, B. F.; Wirzburger, M. J.; C. J. Stouffer, E. D. Abel (January 2010). Two-Phase Thermal Switching System for a Small, Extended Duration Lunar Surface Science Platform. AIP Conference Proceedings. Vol. 1208. pp. 76–83. Bibcode:2010AIPC.1208...76B. doi:10.1063/1.3326291. hdl:2060/20100009810.
  13. Vasavada, A. R.; Paige, D. A.; Wood, S. E. (1999). "Near-Surface Temperatures on Mercury and the Moon and the Stability of Polar Ice Deposits". Icarus. 141 (2): 179–193. Bibcode:1999Icar..141..179V. doi:10.1006/icar.1999.6175. S2CID 37706412.
  14. ^ Zhang S, Wimmer-Schweingruber RF, Yu J, Wang C, Fu Q, Zou Y, et al. (2020). "First measurements of the radiation dose on the lunar surface". Science Advances. 6 (39). Bibcode:2020SciA....6.1334Z. doi:10.1126/sciadv.aaz1334. PMC 7518862. PMID 32978156. We measured an average total absorbed dose rate in silicon of 13.2 ± 1 μGy/hour ... LND measured an average dose equivalent of 1369 μSv/day on the surface of the Moon
  15. "Encyclopedia - the brightest bodies". IMCCE. Archived from the original on March 21, 2023. Retrieved June 1, 2023.
  16. ^ Lucey, Paul; Korotev, Randy L.; Gillis, Jeffrey J.; Taylor, Larry A.; Lawrence, David; Campbell, Bruce A.; Elphic, Rick; Feldman, Bill; Hood, Lon L.; Hunten, Donald; Mendillo, Michael; Noble, Sarah; Papike, James J.; Reedy, Robert C.; Lawson, Stefanie; Prettyman, Tom; Gasnault, Olivier; Maurice, Sylvestre (2006). "Understanding the lunar surface and space-Moon interactions". Reviews in Mineralogy and Geochemistry. 60 (1): 83–219. Bibcode:2006RvMG...60...83L. doi:10.2138/rmg.2006.60.2.
  17. ^ Metzger, Philip; Grundy, Will; Sykes, Mark; Stern, Alan; Bell, James; Detelich, Charlene; Runyon, Kirby; Summers, Michael (2021). "Moons are planets: Scientific usefulness versus cultural teleology in the taxonomy of planetary science". Icarus. 374: 114768. arXiv:2110.15285. Bibcode:2022Icar..37414768M. doi:10.1016/j.icarus.2021.114768. S2CID 240071005.
  18. "Is the 'full moon' merely a fallacy?". NBC News. February 28, 2004. Archived from the original on June 1, 2023. Retrieved May 30, 2023.
  19. "Naming Astronomical Objects: Spelling of Names". International Astronomical Union. Archived from the original on December 16, 2008. Retrieved April 6, 2020.
  20. "Gazetteer of Planetary Nomenclature: Planetary Nomenclature FAQ". USGS Astrogeology Research Program. Archived from the original on May 27, 2010. Retrieved April 6, 2020.
  21. Orel, Vladimir (2003). A Handbook of Germanic Etymology. Brill. Archived from the original on June 17, 2020. Retrieved March 5, 2020.
  22. López-Menchero, Fernando (May 22, 2020). "Late Proto-Indo-European Etymological Lexicon". Archived from the original on May 22, 2020. Retrieved July 30, 2022.
  23. Barnhart, Robert K. (1995). The Barnhart Concise Dictionary of Etymology. HarperCollins. p. 487. ISBN 978-0-06-270084-1.
  24. E.g.: Hall III, James A. (2016). Moons of the Solar System. Springer International. ISBN 978-3-319-20636-3.
  25. "Luna". Oxford English Dictionary (Online ed.). Oxford University Press. (Subscription or participating institution membership required.)
  26. "Cynthia". Oxford English Dictionary (Online ed.). Oxford University Press. (Subscription or participating institution membership required.)
  27. "selenian". Merriam-Webster.com Dictionary. Merriam-Webster.
  28. "selenian". Oxford English Dictionary (Online ed.). Oxford University Press. (Subscription or participating institution membership required.)
  29. "selenic". Oxford English Dictionary (Online ed.). Oxford University Press. (Subscription or participating institution membership required.)
  30. "selenic". Merriam-Webster.com Dictionary. Merriam-Webster.
  31. "Oxford English Dictionary: lunar, a. and n." Oxford English Dictionary: Second Edition 1989. Oxford University Press. Archived from the original on August 19, 2020. Retrieved March 23, 2010.
  32. σελήνη. Liddell, Henry George; Scott, Robert; A Greek–English Lexicon at the Perseus Project.
  33. Pannen, Imke (2010). When the Bad Bleeds: Mantic Elements in English Renaissance Revenge Tragedy. V&R unipress GmbH. pp. 96–. ISBN 978-3-89971-640-5. Archived from the original on September 4, 2016.
  34. "The two-faced Moon". The Planetary Society. March 14, 2022. Archived from the original on April 28, 2023. Retrieved April 28, 2023.
  35. "Exploring the Planets: Chapter 4. The Moon". explanet.info. Archived from the original on April 28, 2023. Retrieved April 28, 2023.
  36. Thiemens, Maxwell M.; Sprung, Peter; Fonseca, Raúl O. C.; Leitzke, Felipe P.; Münker, Carsten (July 2019). "Early Moon formation inferred from hafnium-tungsten systematics". Nature Geoscience. 12 (9): 696–700. Bibcode:2019NatGe..12..696T. doi:10.1038/s41561-019-0398-3. PMC 7617097. PMID 39649009. S2CID 198997377.
  37. "The Moon is older than scientists thought". Universe Today. Archived from the original on August 3, 2019. Retrieved August 3, 2019.
  38. Barboni, M.; Boehnke, P.; Keller, C.B.; Kohl, I.E.; Schoene, B.; Young, E.D.; McKeegan, K.D. (2017). "Early formation of the Moon 4.51 billion years ago". Science Advances. 3 (1): e1602365. Bibcode:2017SciA....3E2365B. doi:10.1126/sciadv.1602365. PMC 5226643. PMID 28097222.
  39. Binder, A. B. (1974). "On the origin of the Moon by rotational fission". The Moon. 11 (2): 53–76. Bibcode:1974Moon...11...53B. doi:10.1007/BF01877794. S2CID 122622374.
  40. ^ Stroud, Rick (2009). The Book of the Moon. Walken and Company. pp. 24–27. ISBN 978-0-8027-1734-4. Archived from the original on June 17, 2020. Retrieved November 11, 2019.
  41. Mitler, H. E. (1975). "Formation of an iron-poor moon by partial capture, or: Yet another exotic theory of lunar origin". Icarus. 24 (2): 256–268. Bibcode:1975Icar...24..256M. doi:10.1016/0019-1035(75)90102-5.
  42. Stevenson, D.J. (1987). "Origin of the moon–The collision hypothesis". Annual Review of Earth and Planetary Sciences. 15 (1): 271–315. Bibcode:1987AREPS..15..271S. doi:10.1146/annurev.ea.15.050187.001415. S2CID 53516498.
  43. Taylor, G. Jeffrey (December 31, 1998). "Origin of the Earth and Moon". Planetary Science Research Discoveries. Hawai'i Institute of Geophysics and Planetology. Archived from the original on June 10, 2010. Retrieved April 7, 2010.
  44. "Asteroids Bear Scars of Moon's Violent Formation". April 16, 2015. Archived from the original on October 8, 2016.
  45. van Putten, Maurice H. P. M. (July 2017). "Scaling in global tidal dissipation of the Earth-Moon system". New Astronomy. 54: 115–121. arXiv:1609.07474. Bibcode:2017NewA...54..115V. doi:10.1016/j.newast.2017.01.012. S2CID 119285032.
  46. Canup, R.; Asphaug, E. (2001). "Origin of the Moon in a giant impact near the end of Earth's formation". Nature. 412 (6848): 708–712. Bibcode:2001Natur.412..708C. doi:10.1038/35089010. PMID 11507633. S2CID 4413525.
  47. "Earth-Asteroid Collision Formed Moon Later Than Thought". National Geographic. October 28, 2010. Archived from the original on April 18, 2009. Retrieved May 7, 2012.
  48. Kleine, Thorsten (2008). "2008 Pellas-Ryder Award for Mathieu Touboul" (PDF). Meteoritics and Planetary Science. 43 (S7): A11 – A12. Bibcode:2008M&PS...43...11K. doi:10.1111/j.1945-5100.2008.tb00709.x. S2CID 128609987. Archived from the original (PDF) on July 27, 2018. Retrieved April 8, 2020.
  49. Touboul, M.; Kleine, T.; Bourdon, B.; Palme, H.; Wieler, R. (2007). "Late formation and prolonged differentiation of the Moon inferred from W isotopes in lunar metals". Nature. 450 (7173): 1206–1209. Bibcode:2007Natur.450.1206T. doi:10.1038/nature06428. PMID 18097403. S2CID 4416259.
  50. "Flying Oceans of Magma Help Demystify the Moon's Creation". National Geographic. April 8, 2015. Archived from the original on April 9, 2015.
  51. Pahlevan, Kaveh; Stevenson, David J. (2007). "Equilibration in the aftermath of the lunar-forming giant impact". Earth and Planetary Science Letters. 262 (3–4): 438–449. arXiv:1012.5323. Bibcode:2007E&PSL.262..438P. doi:10.1016/j.epsl.2007.07.055. S2CID 53064179.
  52. Nield, Ted (2009). "Moonwalk (summary of meeting at Meteoritical Society's 72nd Annual Meeting, Nancy, France)". Geoscientist. Vol. 19. p. 8. Archived from the original on September 27, 2012.
  53. ^ Warren, P. H. (1985). "The magma ocean concept and lunar evolution". Annual Review of Earth and Planetary Sciences. 13 (1): 201–240. Bibcode:1985AREPS..13..201W. doi:10.1146/annurev.ea.13.050185.001221.
  54. Tonks, W. Brian; Melosh, H. Jay (1993). "Magma ocean formation due to giant impacts". Journal of Geophysical Research. 98 (E3): 5319–5333. Bibcode:1993JGR....98.5319T. doi:10.1029/92JE02726.
  55. Daniel Clery (October 11, 2013). "Impact Theory Gets Whacked". Science. 342 (6155): 183–185. Bibcode:2013Sci...342..183C. doi:10.1126/science.342.6155.183. PMID 24115419.
  56. Akram, W.; Schönbächler, M. (September 1, 2016). "Zirconium isotope constraints on the composition of Theia and current Moon-forming theories". Earth and Planetary Science Letters. 449: 302–310. Bibcode:2016E&PSL.449..302A. doi:10.1016/j.epsl.2016.05.022. hdl:20.500.11850/117905.
  57. Kegerreis, J.A.; et al. (October 4, 2022). "Immediate Origin of the Moon as a Post-impact Satellite". The Astrophysical Journal Letters. 937 (L40): L40. arXiv:2210.01814. Bibcode:2022ApJ...937L..40K. doi:10.3847/2041-8213/ac8d96. S2CID 249267497.
  58. Chang, Kenneth (November 1, 2023). "A 'Big Whack' Formed the Moon and Left Traces Deep in Earth, a Study Suggests - Two enormous blobs deep inside Earth could be remnants of the birth of the moon". The New York Times. Archived from the original on November 1, 2023. Retrieved November 2, 2023.
  59. Yuan, Qian; et al. (November 1, 2023). "Moon-forming impactor as a source of Earth's basal mantle anomalies". Nature. 623 (7985): 95–99. Bibcode:2023Natur.623...95Y. doi:10.1038/s41586-023-06589-1. PMID 37914947. S2CID 264869152. Archived from the original on November 2, 2023. Retrieved November 2, 2023.
  60. ^ "Earth-Moon Dynamics". Lunar and Planetary Institute. Archived from the original on September 7, 2015. Retrieved September 2, 2022.
  61. Wisdom, Jack; Tian, ZhenLiang (August 2015). "Early evolution of the Earth-Moon system with a fast-spinning Earth". Icarus. 256: 138–146. Bibcode:2015Icar..256..138W. doi:10.1016/j.icarus.2015.02.025.
  62. ^ John, Tara (October 9, 2017). "NASA: The Moon Once Had an Atmosphere That Faded Away". Time. Archived from the original on May 14, 2023. Retrieved May 16, 2023.
  63. ^ Hiesinger, H.; Head, J. W.; Wolf, U.; Jaumann, R.; Neukum, G. (2003). "Ages and stratigraphy of mare basalts in Oceanus Procellarum, Mare Numbium, Mare Cognitum, and Mare Insularum". Journal of Geophysical Research. 108 (E7): 1029. Bibcode:2003JGRE..108.5065H. doi:10.1029/2002JE001985. S2CID 9570915.
  64. ^ Papike, J.; Ryder, G.; Shearer, C. (1998). "Lunar Samples". Reviews in Mineralogy and Geochemistry. 36: 5.1 – 5.234.
  65. "Lunar Far Side Highlands". ESA Science & Technology. July 14, 2006. Archived from the original on September 2, 2022. Retrieved September 2, 2022.
  66. Garrick-Bethell, Ian; Perera, Viranga; Nimmo, Francis; Zuber, Maria T. (2014). "The tidal-rotational shape of the Moon and evidence for polar wander" (PDF). Nature. 512 (7513): 181–184. Bibcode:2014Natur.512..181G. doi:10.1038/nature13639. PMID 25079322. S2CID 4452886. Archived (PDF) from the original on August 4, 2020. Retrieved April 12, 2020.
  67. "Space Topics: Pluto and Charon". The Planetary Society. Archived from the original on February 18, 2012. Retrieved April 6, 2010.
  68. Horner, Jonti (July 18, 2019). "How big is the Moon?". Archived from the original on November 7, 2020. Retrieved November 15, 2020.
  69. Dyches, Preston (July 28, 2021). "Five Things to Know about the Moon – NASA Solar System Exploration". NASA Solar System Exploration. Archived from the original on July 18, 2023. Retrieved September 24, 2023.
  70. Parks, Jake (September 7, 2023). "Everything you need to know about the Moon". Astronomy Magazine. Retrieved September 9, 2024.
  71. "Global Island Explorer". rmgsc.cr.usgs.gov. Retrieved September 9, 2024.
  72. ^ Spudis, P. D. (2004). "Moon". World Book Online Reference Center, NASA. Archived from the original on July 3, 2013. Retrieved April 12, 2007.
  73. Runcorn, Stanley Keith (March 31, 1977). "Interpretation of lunar potential fields". Philosophical Transactions of the Royal Society of London. Series A, Mathematical and Physical Sciences. 285 (1327): 507–516. Bibcode:1977RSPTA.285..507R. doi:10.1098/rsta.1977.0094. S2CID 124703189.
  74. Brown, D.; Anderson, J. (January 6, 2011). "NASA Research Team Reveals Moon Has Earth-Like Core". NASA. Archived from the original on January 11, 2012.
  75. Weber, R.C.; Lin, P.-Y.; Garnero, E.J.; Williams, Q.; Lognonne, P. (January 21, 2011). "Seismic Detection of the Lunar Core" (PDF). Science. 331 (6015): 309–312. Bibcode:2011Sci...331..309W. doi:10.1126/science.1199375. PMID 21212323. S2CID 206530647. Archived from the original (PDF) on October 15, 2015. Retrieved April 10, 2017.
  76. Nemchin, A.; Timms, N.; Pidgeon, R.; Geisler, T.; Reddy, S.; Meyer, C. (2009). "Timing of crystallization of the lunar magma ocean constrained by the oldest zircon". Nature Geoscience. 2 (2): 133–136. Bibcode:2009NatGe...2..133N. doi:10.1038/ngeo417. hdl:20.500.11937/44375.
  77. ^ Shearer, Charles K.; Hess, Paul C.; Wieczorek, Mark A.; Pritchard, Matt E.; Parmentier, E. Mark; Borg, Lars E.; Longhi, John; Elkins-Tanton, Linda T.; Neal, Clive R.; Antonenko, Irene; Canup, Robin M.; Halliday, Alex N.; Grove, Tim L.; Hager, Bradford H.; Lee, D.-C.; Wiechert, Uwe (2006). "Thermal and magmatic evolution of the Moon". Reviews in Mineralogy and Geochemistry. 60 (1): 365–518. Bibcode:2006RvMG...60..365S. doi:10.2138/rmg.2006.60.4. S2CID 129184748.
  78. Schubert, J. (2004). "Interior composition, structure, and dynamics of the Galilean satellites.". In F. Bagenal; et al. (eds.). Jupiter: The Planet, Satellites, and Magnetosphere. Cambridge University Press. pp. 281–306. ISBN 978-0-521-81808-7.
  79. Williams, J.G.; Turyshev, S.G.; Boggs, D.H.; Ratcliff, J.T. (2006). "Lunar laser ranging science: Gravitational physics and lunar interior and geodesy". Advances in Space Research. 37 (1): 67–71. arXiv:gr-qc/0412049. Bibcode:2006AdSpR..37...67W. doi:10.1016/j.asr.2005.05.013. S2CID 14801321.
  80. Evans, Alexander J.; Tikoo, Sonia M.; Jeffrey C., Andrews-Hanna (January 2018). "The Case Against an Early Lunar Dynamo Powered by Core Convection". Geophysical Research Letters. 45 (1): 98–107. Bibcode:2018GeoRL..45...98E. doi:10.1002/2017GL075441.
  81. Kluger, Jeffrey (October 12, 2018). "How Neil Armstrong's Moon Spacesuit Was Preserved for Centuries to Come". Time. Archived from the original on December 3, 2023. Retrieved November 29, 2023.
  82. "How Do You Pick Up Something on the Moon?". WIRED. December 9, 2013. Archived from the original on December 3, 2023. Retrieved November 29, 2023.
  83. Muller, P.; Sjogren, W. (1968). "Mascons: lunar mass concentrations". Science. 161 (3842): 680–684. Bibcode:1968Sci...161..680M. doi:10.1126/science.161.3842.680. PMID 17801458. S2CID 40110502.
  84. Richard A. Kerr (April 12, 2013). "The Mystery of Our Moon's Gravitational Bumps Solved?". Science. 340 (6129): 138–139. doi:10.1126/science.340.6129.138-a. PMID 23580504.
  85. Konopliv, A.; Asmar, S.; Carranza, E.; Sjogren, W.; Yuan, D. (2001). "Recent gravity models as a result of the Lunar Prospector mission" (PDF). Icarus. 50 (1): 1–18. Bibcode:2001Icar..150....1K. CiteSeerX 10.1.1.18.1930. doi:10.1006/icar.2000.6573. Archived from the original (PDF) on November 13, 2004.
  86. ^ Mighani, S.; Wang, H.; Shuster, D.L.; Borlina, C.S.; Nichols, C.I.O.; Weiss, B.P. (2020). "The end of the lunar dynamo". Science Advances. 6 (1): eaax0883. Bibcode:2020SciA....6..883M. doi:10.1126/sciadv.aax0883. PMC 6938704. PMID 31911941.
  87. Garrick-Bethell, Ian; Weiss, iBenjamin P.; Shuster, David L.; Buz, Jennifer (2009). "Early Lunar Magnetism". Science. 323 (5912): 356–359. Bibcode:2009Sci...323..356G. doi:10.1126/science.1166804. PMID 19150839. S2CID 23227936.
  88. "Magnetometer / Electron Reflectometer Results". Lunar Prospector (NASA). 2001. Archived from the original on May 27, 2010. Retrieved March 17, 2010.
  89. Hood, L.L.; Huang, Z. (1991). "Formation of magnetic anomalies antipodal to lunar impact basins: Two-dimensional model calculations". Journal of Geophysical Research. 96 (B6): 9837–9846. Bibcode:1991JGR....96.9837H. doi:10.1029/91JB00308.
  90. "Lunar horizon glow from Surveyor 7". The Planetary Society. May 6, 2016. Archived from the original on August 8, 2022. Retrieved August 8, 2022.
  91. "NASA Mission To Study Mysterious Lunar Twilight Rays". Science Mission Directorate. September 3, 2013. Archived from the original on July 3, 2022. Retrieved August 8, 2022.
  92. Colwell, Joshua E.; Robertson, Scott R.; Horányi, Mihály; Wang, Xu; Poppe, Andrew; Wheeler, Patrick (January 1, 2009). "Lunar Dust Levitation". Journal of Aerospace Engineering. 22 (1): 2–9. doi:10.1061/(ASCE)0893-1321(2009)22:1(2). Archived from the original on August 8, 2022. Retrieved August 8, 2022.
  93. Deborah Byrd (April 24, 2014). "The zodiacal light, seen from the moon". EarthSky. Archived from the original on August 8, 2022. Retrieved August 8, 2022.
  94. Globus, Ruth (1977). "Chapter 5, Appendix J: Impact Upon Lunar Atmosphere". In Richard D. Johnson & Charles Holbrow (ed.). Space Settlements: A Design Study. NASA. Archived from the original on May 31, 2010. Retrieved March 17, 2010.
  95. Crotts, Arlin P.S. (2008). "Lunar Outgassing, Transient Phenomena and The Return to The Moon, I: Existing Data" (PDF). The Astrophysical Journal. 687 (1): 692–705. arXiv:0706.3949. Bibcode:2008ApJ...687..692C. doi:10.1086/591634. S2CID 16821394. Archived from the original (PDF) on February 20, 2009. Retrieved September 29, 2009.
  96. Steigerwald, William (August 17, 2015). "NASA's LADEE Spacecraft Finds Neon in Lunar Atmosphere". NASA. Archived from the original on August 19, 2015. Retrieved August 18, 2015.
  97. ^ Stern, S.A. (1999). "The Lunar atmosphere: History, status, current problems, and context". Reviews of Geophysics. 37 (4): 453–491. Bibcode:1999RvGeo..37..453S. CiteSeerX 10.1.1.21.9994. doi:10.1029/1999RG900005. S2CID 10406165.
  98. Lawson, S.; Feldman, W.; Lawrence, D.; Moore, K.; Elphic, R.; Belian, R. (2005). "Recent outgassing from the lunar surface: the Lunar Prospector alpha particle spectrometer". Journal of Geophysical Research. 110 (E9): 1029. Bibcode:2005JGRE..110.9009L. doi:10.1029/2005JE002433.
  99. R. Sridharan; S.M. Ahmed; Tirtha Pratim Dasa; P. Sreelathaa; P. Pradeepkumara; Neha Naika; Gogulapati Supriya (2010). "'Direct' evidence for water (H2O) in the sunlit lunar ambience from CHACE on MIP of Chandrayaan I". Planetary and Space Science. 58 (6): 947–950. Bibcode:2010P&SS...58..947S. doi:10.1016/j.pss.2010.02.013.
  100. Drake, Nadia (June 17, 2015). "Lopsided Cloud of Dust Discovered Around the Moon". National Geographic News. Archived from the original on June 19, 2015. Retrieved June 20, 2015.
  101. Horányi, M.; Szalay, J.R.; Kempf, S.; Schmidt, J.; Grün, E.; Srama, R.; Sternovsky, Z. (June 18, 2015). "A permanent, asymmetric dust cloud around the Moon". Nature. 522 (7556): 324–326. Bibcode:2015Natur.522..324H. doi:10.1038/nature14479. PMID 26085272. S2CID 4453018.
  102. James, John; Kahn-Mayberry, Noreen (January 2009). "Risk of Adverse Health Effects from Lunar Dust Exposure" (PDF). Archived (PDF) from the original on December 4, 2021. Retrieved December 8, 2022.
  103. "Radioactive Moon". Science Mission Directorate. September 8, 2005. Archived from the original on November 2, 2019. Retrieved July 28, 2022.
  104. "We Finally Know How Much Radiation There Is on The Moon, And It's Not Great News". ScienceAlert. September 26, 2020. Archived from the original on July 28, 2022. Retrieved July 28, 2022.
  105. Paris, Antonio; Davies, Evan; Tognetti, Laurence; Zahniser, Carly (April 27, 2020). "Prospective Lava Tubes at Hellas Planitia". arXiv:2004.13156v1 .
  106. Wall, Mike (December 9, 2013). "Radiation on Mars 'Manageable' for Manned Mission, Curiosity Rover Reveals". Space.com. Archived from the original on December 15, 2020. Retrieved August 7, 2022.
  107. "The toxic side of the Moon". ESA. Retrieved January 7, 2025.
  108. Rambaux, N.; Williams, J. G. (2011). "The Moon's physical librations and determination of their free modes". Celestial Mechanics and Dynamical Astronomy. 109 (1): 85–100. Bibcode:2011CeMDA.109...85R. doi:10.1007/s10569-010-9314-2. S2CID 45209988. Archived from the original on July 30, 2022. Retrieved July 30, 2022.
  109. Rocheleau, Jake (May 21, 2012). "Temperature on the Moon – Surface Temperature of the Moon". PlanetFacts.org. Archived from the original on May 27, 2015.
  110. ^ Amos, Jonathan (December 16, 2009). "'Coldest place' found on the Moon". BBC News. Archived from the original on August 11, 2017. Retrieved March 20, 2010.
  111. ^ Martel, L. M. V. (June 4, 2003). "The Moon's Dark, Icy Poles". Planetary Science Research Discoveries: 73. Bibcode:2003psrd.reptE..73M. Archived from the original on March 1, 2012. Retrieved April 12, 2007.
  112. "Diviner News". UCLA. September 17, 2009. Archived from the original on March 7, 2010. Retrieved March 17, 2010.
  113. "The Smell of Moondust". NASA. January 30, 2006. Archived from the original on March 8, 2010. Retrieved March 15, 2010.
  114. Heiken, G. (1991). Vaniman, D.; French, B. (eds.). Lunar Sourcebook, a user's guide to the Moon. New York: Cambridge University Press. p. 286. ISBN 978-0-521-33444-0. Archived from the original on June 17, 2020. Retrieved December 17, 2019.
  115. Rasmussen, K.L.; Warren, P.H. (1985). "Megaregolith thickness, heat flow, and the bulk composition of the Moon". Nature. 313 (5998): 121–124. Bibcode:1985Natur.313..121R. doi:10.1038/313121a0. S2CID 4245137.
  116. Schuerger, Andrew C.; Moores, John E.; Smith, David J.; Reitz, Günther (June 2019). "A Lunar Microbial Survival Model for Predicting the Forward Contamination of the Moon". Astrobiology. 19 (6): 730–756. Bibcode:2019AsBio..19..730S. doi:10.1089/ast.2018.1952. PMID 30810338. S2CID 73491587.
  117. Spudis, Paul D.; Cook, A.; Robinson, M.; Bussey, B.; Fessler, B. (January 1998). "Topography of the South Polar Region from Clementine Stereo Imaging". Workshop on New Views of the Moon: Integrated Remotely Sensed, Geophysical, and Sample Datasets: 69. Bibcode:1998nvmi.conf...69S.
  118. ^ Spudis, Paul D.; Reisse, Robert A.; Gillis, Jeffrey J. (1994). "Ancient Multiring Basins on the Moon Revealed by Clementine Laser Altimetry". Science. 266 (5192): 1848–1851. Bibcode:1994Sci...266.1848S. doi:10.1126/science.266.5192.1848. PMID 17737079. S2CID 41861312.
  119. Pieters, C. M.; Tompkins, S.; Head, J. W.; Hess, P. C. (1997). "Mineralogy of the Mafic Anomaly in the South Pole-Aitken Basin: Implications for excavation of the lunar mantle". Geophysical Research Letters. 24 (15): 1903–1906. Bibcode:1997GeoRL..24.1903P. doi:10.1029/97GL01718. hdl:2060/19980018038. S2CID 128767066.
  120. Taylor, G. J. (July 17, 1998). "The Biggest Hole in the Solar System". Planetary Science Research Discoveries: 20. Bibcode:1998psrd.reptE..20T. Archived from the original on August 20, 2007. Retrieved April 12, 2007.
  121. Schultz, P.H. (March 1997). "Forming the south-pole Aitken basin – The extreme games". Conference Paper, 28th Annual Lunar and Planetary Science Conference. 28: 1259. Bibcode:1997LPI....28.1259S.
  122. "NASA's LRO Reveals 'Incredible Shrinking Moon'". NASA. August 19, 2010. Archived from the original on August 21, 2010.
  123. Watters, Thomas R.; Weber, Renee C.; Collins, Geoffrey C.; Howley, Ian J.; Schmerr, Nicholas C.; Johnson, Catherine L. (June 2019). "Shallow seismic activity and young thrust faults on the Moon". Nature Geoscience. 12 (6) (published May 13, 2019): 411–417. Bibcode:2019NatGe..12..411W. doi:10.1038/s41561-019-0362-2. ISSN 1752-0894. S2CID 182137223.
  124. "Cave on the Moon: What this discovery means for space exploration". The Indian Express. July 18, 2024. Retrieved July 19, 2024.
  125. Wlasuk, Peter (2000). Observing the Moon. Springer. p. 19. ISBN 978-1-85233-193-1.
  126. Norman, M. (April 21, 2004). "The Oldest Moon Rocks". Planetary Science Research Discoveries. Hawai'i Institute of Geophysics and Planetology. Archived from the original on April 18, 2007. Retrieved April 12, 2007.
  127. Friedman, R.C.; Blewett, D. T.; Taylor, G.J.; Lucey, P. G. (1996). "FeO and TiO2 Variations in Mare Imbrium". Lunar and Planetary Science. 27: 383. Bibcode:1996LPI....27..383F.
  128. Izquierdo, Kristel; Sori, M. M.; Checketts, B.; Hampton, I.; Johnson, B.C.; Soderblom, J.M. (2024). "Global Distribution and Volume of Cryptomare and Visible Mare on the Moon From Gravity and Dark Halo Craters". Journal of Geophysical Research: Planets. 129 (2). Bibcode:2024JGRE..12907867I. doi:10.1029/2023JE007867.
  129. Spudis, Paul (2016). "Mapping Melts on the Moon". Smithsonian Air and Space Magazine.
  130. Wilson, Lionel; Head, James W. (2003). "Lunar Gruithuisen and Mairan domes: Rheology and mode of emplacement". Journal of Geophysical Research. 108 (E2): 5012. Bibcode:2003JGRE..108.5012W. CiteSeerX 10.1.1.654.9619. doi:10.1029/2002JE001909. S2CID 14917901. Archived from the original on March 12, 2007. Retrieved April 12, 2007.
  131. Gillis, J. J.; Spudis, P. D. (1996). "The Composition and Geologic Setting of Lunar Far Side Maria". Lunar and Planetary Science. 27: 413. Bibcode:1996LPI....27..413G.
  132. Lawrence, D. J.; Feldman, W. C.; Barraclough, B. L.; Binder, A. B.; Elphic, R. C.; Maurice, S.; Thomsen, D. R. (August 11, 1998). "Global Elemental Maps of the Moon: The Lunar Prospector Gamma-Ray Spectrometer". Science. 281 (5382): 1484–1489. Bibcode:1998Sci...281.1484L. doi:10.1126/science.281.5382.1484. PMID 9727970.
  133. Taylor, G. J. (August 31, 2000). "A New Moon for the Twenty-First Century". Planetary Science Research Discoveries: 41. Bibcode:2000psrd.reptE..41T. Archived from the original on March 1, 2012. Retrieved April 12, 2007.
  134. ^ Phil Berardelli (November 9, 2006). "Long Live the Moon!". Science. Archived from the original on October 18, 2014. Retrieved October 14, 2014.
  135. Jason Major (October 14, 2014). "Volcanoes Erupted 'Recently' on the Moon". Discovery News. Archived from the original on October 16, 2014.
  136. "NASA Mission Finds Widespread Evidence of Young Lunar Volcanism". NASA. October 12, 2014. Archived from the original on January 3, 2015.
  137. Eric Hand (October 12, 2014). "Recent volcanic eruptions on the moon". Science. Archived from the original on October 14, 2014.
  138. Braden, S.E.; Stopar, J.D.; Robinson, M.S.; Lawrence, S.J.; van der Bogert, C.H.; Hiesinger, H. (2014). "Evidence for basaltic volcanism on the Moon within the past 100 million years". Nature Geoscience. 7 (11): 787–791. Bibcode:2014NatGe...7..787B. doi:10.1038/ngeo2252.
  139. Srivastava, N.; Gupta, R.P. (2013). "Young viscous flows in the Lowell crater of Orientale basin, Moon: Impact melts or volcanic eruptions?". Planetary and Space Science. 87: 37–45. Bibcode:2013P&SS...87...37S. doi:10.1016/j.pss.2013.09.001.
  140. Gupta, R.P.; Srivastava, N.; Tiwari, R.K. (2014). "Evidences of relatively new volcanic flows on the Moon". Current Science. 107 (3): 454–460. JSTOR 24103498.
  141. Whitten, Jennifer; Head, James W.; Staid, Matthew; Pieters, Carle M.; Mustard, John; Clark, Roger; Nettles, Jeff; Klima, Rachel L.; Taylor, Larry (2011). "Lunar mare deposits associated with the Orientale impact basin: New insights into mineralogy, history, mode of emplacement, and relation to Orientale Basin evolution from Moon Mineralogy Mapper (M3) data from Chandrayaan-1". Journal of Geophysical Research. 116: E00G09. Bibcode:2011JGRE..116.0G09W. doi:10.1029/2010JE003736. S2CID 7234547.
  142. Cho, Y.; et al. (2012). "Young mare volcanism in the Orientale region contemporary with the Procellarum KREEP Terrane (PKT) volcanism peak period 2 b.y. ago". Geophysical Research Letters. 39 (11): L11203. Bibcode:2012GeoRL..3911203C. doi:10.1029/2012GL051838. S2CID 134074700.
  143. Munsell, K. (December 4, 2006). "Majestic Mountains". Solar System Exploration. NASA. Archived from the original on September 17, 2008. Retrieved April 12, 2007.
  144. Richard Lovett (2011). "Early Earth may have had two moons : Nature News". Nature. doi:10.1038/news.2011.456. Archived from the original on November 3, 2012. Retrieved November 1, 2012.
  145. "Was our two-faced moon in a small collision?". Theconversation.edu.au. Archived from the original on January 30, 2013. Retrieved November 1, 2012.
  146. Quillen, Alice C.; Martini, Larkin; Nakajima, Miki (September 2019). "Near/far side asymmetry in the tidally heated Moon". Icarus. 329: 182–196. arXiv:1810.10676. Bibcode:2019Icar..329..182Q. doi:10.1016/j.icarus.2019.04.010. PMC 7489467. PMID 32934397.
  147. Melosh, H. J. (1989). Impact cratering: A geologic process. Oxford University Press. ISBN 978-0-19-504284-9.
  148. "Moon Facts". SMART-1. European Space Agency. 2010. Archived from the original on March 17, 2012. Retrieved May 12, 2010.
  149. Impact Cratering Notes (LPI)
  150. Herrick, R.R.; Forsberg-Taylor, N. K. (2003). "The shape and appearance of craters formed by oblique impact on the Moon and Venus". Meteoritics & Planetary Science. 38 (11): 1551–1578. Bibcode:2003M&PS...38.1551H. doi:10.1111/j.1945-5100.2003.tb00001.x.
  151. ^ Wilhelms, Don (1987). "Relative Ages" (PDF). Geologic History of the Moon. U.S. Geological Survey. Archived from the original (PDF) on June 11, 2010. Retrieved April 4, 2010.
  152. Xiao, Z.; Strom, R.G. (2012). "Problems determining relative and absolute ages using the small crater population" (PDF). Icarus. 220 (1): 254–267. Bibcode:2012Icar..220..254X. doi:10.1016/j.icarus.2012.05.012.
  153. Hartmann, William K.; Quantin, Cathy; Mangold, Nicolas (2007). "Possible long-term decline in impact rates: 2. Lunar impact-melt data regarding impact history". Icarus. 186 (1): 11–23. Bibcode:2007Icar..186...11H. doi:10.1016/j.icarus.2006.09.009.
  154. Boyle, Rebecca. "The moon has hundreds more craters than we thought". Archived from the original on October 13, 2016.
  155. Speyerer, Emerson J.; Povilaitis, Reinhold Z.; Robinson, Mark S.; Thomas, Peter C.; Wagner, Robert V. (October 13, 2016). "Quantifying crater production and regolith overturn on the Moon with temporal imaging". Nature. 538 (7624): 215–218. Bibcode:2016Natur.538..215S. doi:10.1038/nature19829. PMID 27734864. S2CID 4443574.
  156. "Earth's Moon Hit by Surprising Number of Meteoroids". NASA. October 13, 2016. Archived from the original on July 2, 2022. Retrieved May 21, 2021.
  157. Chrbolková, Kateřina; Kohout, Tomáš; Ďurech, Josef (November 2019). "Reflectance spectra of seven lunar swirls examined by statistical methods: A space weathering study". Icarus. 333: 516–527. Bibcode:2019Icar..333..516C. doi:10.1016/j.icarus.2019.05.024.
  158. Margot, J. L.; Campbell, D. B.; Jurgens, R. F.; Slade, M. A. (June 4, 1999). "Topography of the Lunar Poles from Radar Interferometry: A Survey of Cold Trap Locations" (PDF). Science. 284 (5420): 1658–1660. Bibcode:1999Sci...284.1658M. CiteSeerX 10.1.1.485.312. doi:10.1126/science.284.5420.1658. PMID 10356393. Archived (PDF) from the original on August 11, 2017. Retrieved October 25, 2017.
  159. Ward, William R. (August 1, 1975). "Past Orientation of the Lunar Spin Axis". Science. 189 (4200): 377–379. Bibcode:1975Sci...189..377W. doi:10.1126/science.189.4200.377. PMID 17840827. S2CID 21185695.
  160. Seedhouse, Erik (2009). Lunar Outpost: The Challenges of Establishing a Human Settlement on the Moon. Springer-Praxis Books in Space Exploration. Germany: Springer Praxis. p. 136. ISBN 978-0-387-09746-6. Archived from the original on November 26, 2020. Retrieved August 22, 2020.
  161. Coulter, Dauna (March 18, 2010). "The Multiplying Mystery of Moonwater". NASA. Archived from the original on December 13, 2012. Retrieved March 28, 2010.
  162. Spudis, P. (November 6, 2006). "Ice on the Moon". The Space Review. Archived from the original on February 22, 2007. Retrieved April 12, 2007.
  163. Feldman, W. C.; Maurice, S.; Binder, A. B.; Barraclough, B. L.; R.C. Elphic; D.J. Lawrence (1998). "Fluxes of Fast and Epithermal Neutrons from Lunar Prospector: Evidence for Water Ice at the Lunar Poles". Science. 281 (5382): 1496–1500. Bibcode:1998Sci...281.1496F. doi:10.1126/science.281.5382.1496. PMID 9727973. S2CID 9005608.
  164. Saal, Alberto E.; Hauri, Erik H.; Cascio, Mauro L.; van Orman, James A.; Rutherford, Malcolm C.; Cooper, Reid F. (2008). "Volatile content of lunar volcanic glasses and the presence of water in the Moon's interior". Nature. 454 (7201): 192–195. Bibcode:2008Natur.454..192S. doi:10.1038/nature07047. PMID 18615079. S2CID 4394004.
  165. Pieters, C. M.; Goswami, J. N.; Clark, R. N.; Annadurai, M.; Boardman, J.; Buratti, B.; Combe, J.-P.; Dyar, M. D.; Green, R.; Head, J. W.; Hibbitts, C.; Hicks, M.; Isaacson, P.; Klima, R.; Kramer, G.; Kumar, S.; Livo, E.; Lundeen, S.; Malaret, E.; McCord, T.; Mustard, J.; Nettles, J.; Petro, N.; Runyon, C.; Staid, M.; Sunshine, J.; Taylor, L.A.; Tompkins, S.; Varanasi, P. (2009). "Character and Spatial Distribution of OH/H2O on the Surface of the Moon Seen by M3 on Chandrayaan-1". Science. 326 (5952): 568–572. Bibcode:2009Sci...326..568P. doi:10.1126/science.1178658. PMID 19779151. S2CID 447133.
  166. Li, Shuai; Lucey, Paul G.; Milliken, Ralph E.; Hayne, Paul O.; Fisher, Elizabeth; Williams, Jean-Pierre; Hurley, Dana M.; Elphic, Richard C. (August 2018). "Direct evidence of surface exposed water ice in the lunar polar regions". Proceedings of the National Academy of Sciences. 115 (36): 8907–8912. Bibcode:2018PNAS..115.8907L. doi:10.1073/pnas.1802345115. PMC 6130389. PMID 30126996.
  167. Lakdawalla, Emily (November 13, 2009). "LCROSS Lunar Impactor Mission: "Yes, We Found Water!"". The Planetary Society. Archived from the original on January 22, 2010. Retrieved April 13, 2010.
  168. Colaprete, A.; Ennico, K.; Wooden, D.; Shirley, M.; Heldmann, J.; Marshall, W.; Sollitt, L.; Asphaug, E.; Korycansky, D.; Schultz, P.; Hermalyn, B.; Galal, K.; Bart, G.D.; Goldstein, D.; Summy, D. (March 1–5, 2010). "Water and More: An Overview of LCROSS Impact Results". 41st Lunar and Planetary Science Conference. 41 (1533): 2335. Bibcode:2010LPI....41.2335C.
  169. Colaprete, Anthony; Schultz, Peter; Heldmann, Jennifer; Wooden, Diane; Shirley, Mark; Ennico, Kimberly; Hermalyn, Brendan; Marshall, William; Ricco, Antonio; Elphic, Richard C.; Goldstein, David; Summy, Dustin; Bart, Gwendolyn D.; Asphaug, Erik; Korycansky, Don; Landis, David; Sollitt, Luke (October 22, 2010). "Detection of Water in the LCROSS Ejecta Plume". Science. 330 (6003): 463–468. Bibcode:2010Sci...330..463C. doi:10.1126/science.1186986. PMID 20966242. S2CID 206525375.
  170. Hauri, Erik; Thomas Weinreich; Albert E. Saal; Malcolm C. Rutherford; James A. Van Orman (May 26, 2011). "High Pre-Eruptive Water Contents Preserved in Lunar Melt Inclusions". Science Express. 10 (1126): 213–215. Bibcode:2011Sci...333..213H. doi:10.1126/science.1204626. PMID 21617039. S2CID 44437587.
  171. ^ Rincon, Paul (August 21, 2018). "Water ice 'detected on Moon's surface'". BBC News. Archived from the original on August 21, 2018. Retrieved August 21, 2018.
  172. David, Leonard. "Beyond the Shadow of a Doubt, Water Ice Exists on the Moon". Scientific American. Archived from the original on August 21, 2018. Retrieved August 21, 2018.
  173. ^ "Water Ice Confirmed on the Surface of the Moon for the 1st Time!". Space.com. Archived from the original on August 21, 2018. Retrieved August 21, 2018.
  174. Honniball, C.I.; et al. (October 26, 2020). "Molecular water detected on the sunlit Moon by SOFIA". Nature Astronomy. 5 (2): 121–127. Bibcode:2021NatAs...5..121H. doi:10.1038/s41550-020-01222-x. S2CID 228954129. Archived from the original on October 27, 2020. Retrieved October 26, 2020.
  175. Hayne, P.O.; et al. (October 26, 2020). "Micro cold traps on the Moon". Nature Astronomy. 5 (2): 169–175. arXiv:2005.05369. Bibcode:2021NatAs...5..169H. doi:10.1038/s41550-020-1198-9. S2CID 218595642. Archived from the original on October 27, 2020. Retrieved October 26, 2020.
  176. Guarino, Ben; Achenbach, Joel (October 26, 2020). "Pair of studies confirm there is water on the moon – New research confirms what scientists had theorized for years — the moon is wet". The Washington Post. Archived from the original on October 26, 2020. Retrieved October 26, 2020.
  177. Chang, Kenneth (October 26, 2020). "There's Water and Ice on the Moon, and in More Places Than NASA Once Thought – Future astronauts seeking water on the moon may not need to go into the most treacherous craters in its polar regions to find it". The New York Times. Archived from the original on October 26, 2020. Retrieved October 26, 2020.
  178. The Aerospace Corporation (July 20, 2023). "It's International Moon Day! Let's talk about Cislunar Space". Medium. Archived from the original on November 8, 2023. Retrieved November 7, 2023.
  179. Matt Williams (July 10, 2017). "How Long is a Day on the Moon?". Universe Today. Archived from the original on November 29, 2020. Retrieved December 5, 2020.
  180. Stern, David (March 30, 2014). "Libration of the Moon". NASA. Archived from the original on May 22, 2020. Retrieved February 11, 2020.
  181. Haigh, I. D.; Eliot, M.; Pattiaratchi, C. (2011). "Global influences of the 18.61 year nodal cycle and 8.85 year cycle of lunar perigee on high tidal levels" (PDF). J. Geophys. Res. 116 (C6): C06025. Bibcode:2011JGRC..116.6025H. doi:10.1029/2010JC006645. Archived (PDF) from the original on December 12, 2019. Retrieved September 24, 2019.
  182. V V Belet︠s︡kiĭ (2001). Essays on the Motion of Celestial Bodies. Birkhäuser. p. 183. ISBN 978-3-7643-5866-2. Archived from the original on March 23, 2018. Retrieved August 22, 2020.
  183. ^ Touma, Jihad; Wisdom, Jack (1994). "Evolution of the Earth-Moon system". The Astronomical Journal. 108 (5): 1943–1961. Bibcode:1994AJ....108.1943T. doi:10.1086/117209.
  184. Iain Todd (March 31, 2018). "Is the Moon maintaining Earth's magnetism?". BBC Sky at Night Magazine. Archived from the original on September 22, 2020. Retrieved November 16, 2020.
  185. Latham, Gary; Ewing, Maurice; Dorman, James; Lammlein, David; Press, Frank; Toksőz, Naft; Sutton, George; Duennebier, Fred; Nakamura, Yosio (1972). "Moonquakes and lunar tectonism". Earth, Moon, and Planets. 4 (3–4): 373–382. Bibcode:1972Moon....4..373L. doi:10.1007/BF00562004. S2CID 120692155.
  186. ^ Lambeck, K. (1977). "Tidal Dissipation in the Oceans: Astronomical, Geophysical and Oceanographic Consequences". Philosophical Transactions of the Royal Society A. 287 (1347): 545–594. Bibcode:1977RSPTA.287..545L. doi:10.1098/rsta.1977.0159. S2CID 122853694.
  187. Feynman, Richard (October 24, 2020). "Feynman's Lectures on Physics - The Law of Gravitation". YouTube. Retrieved December 5, 2024.
  188. Le Provost, C.; Bennett, A.F.; Cartwright, D.E. (1995). "Ocean Tides for and from TOPEX/POSEIDON". Science. 267 (5198): 639–642. Bibcode:1995Sci...267..639L. doi:10.1126/science.267.5198.639. PMID 17745840. S2CID 13584636.
  189. Chapront, J.; Chapront-Touzé, M.; Francou, G. (2002). "A new determination of lunar orbital parameters, precession constant and tidal acceleration from LLR measurements". Astronomy and Astrophysics. 387 (2): 700–709. Bibcode:2002A&A...387..700C. doi:10.1051/0004-6361:20020420. S2CID 55131241.
  190. "Why the Moon is getting further away from Earth". BBC News. February 1, 2011. Archived from the original on September 25, 2015. Retrieved September 18, 2015.
  191. Williams, James G.; Boggs, Dale H. (2016). "Secular tidal changes in lunar orbit and Earth rotation". Celestial Mechanics and Dynamical Astronomy. 126 (1): 89–129. Bibcode:2016CeMDA.126...89W. doi:10.1007/s10569-016-9702-3. ISSN 1572-9478. S2CID 124256137. Archived from the original on July 30, 2022. Retrieved July 30, 2022.
  192. Ray, R. (May 15, 2001). "Ocean Tides and the Earth's Rotation". IERS Special Bureau for Tides. Archived from the original on March 27, 2010. Retrieved March 17, 2010.
  193. Stephenson, F. R.; Morrison, L. V.; Hohenkerk, C. Y. (2016). "Measurement of the Earth's rotation: 720 BC to AD 2015". Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences. 472 (2196): 20160404. Bibcode:2016RSPSA.47260404S. doi:10.1098/rspa.2016.0404. PMC 5247521. PMID 28119545.
  194. Morrison, L. V.; Stephenson, F. R.; Hohenkerk, C. Y.; Zawilski, M. (2021). "Addendum 2020 to 'Measurement of the Earth's rotation: 720 BC to AD 2015'". Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences. 477 (2246): 20200776. Bibcode:2021RSPSA.47700776M. doi:10.1098/rspa.2020.0776. S2CID 231938488.
  195. "When Will Earth Lock to the Moon?". Universe Today. April 12, 2016. Archived from the original on May 28, 2022. Retrieved January 5, 2022.
  196. Murray, C.D.; Dermott, Stanley F. (1999). Solar System Dynamics. Cambridge University Press. p. 184. ISBN 978-0-521-57295-8.
  197. Dickinson, Terence (1993). From the Big Bang to Planet X. Camden East, Ontario: Camden House. pp. 79–81. ISBN 978-0-921820-71-0.
  198. Powell, David (January 22, 2007). "Earth's Moon Destined to Disintegrate". Space.com. Tech Media Network. Archived from the original on September 6, 2008. Retrieved June 1, 2010.
  199. "Moonlight helps plankton escape predators during Arctic winters". New Scientist. January 16, 2016. Archived from the original on January 30, 2016.
  200. Howells, Kate (September 25, 2020). "Can the Moon be upside down?". The Planetary Society. Archived from the original on January 2, 2022. Retrieved January 2, 2022.
  201. Spekkens, K. (October 18, 2002). "Is the Moon seen as a crescent (and not a "boat") all over the world?". Curious About Astronomy. Archived from the original on October 16, 2015. Retrieved September 28, 2015.
  202. ^ Tony Phillips (March 16, 2011). "Super Full Moon". NASA. Archived from the original on May 7, 2012. Retrieved March 19, 2011.
  203. ^ Richard K. De Atley (March 18, 2011). "Full moon tonight is as close as it gets". The Press-Enterprise. Archived from the original on March 22, 2011. Retrieved March 19, 2011.
  204. Hershenson, Maurice (1989). The Moon illusion. Routledge. p. 5. ISBN 978-0-8058-0121-7.
  205. Phil Plait. "Dark Side of the Moon". Bad Astronomy: Misconceptions. Archived from the original on April 12, 2010. Retrieved February 15, 2010.
  206. Alexander, M.E. (1973). "The Weak Friction Approximation and Tidal Evolution in Close Binary Systems". Astrophysics and Space Science. 23 (2): 459–508. Bibcode:1973Ap&SS..23..459A. doi:10.1007/BF00645172. S2CID 122918899.
  207. "Moon used to spin 'on different axis'". BBC News. March 23, 2016. Archived from the original on March 23, 2016. Retrieved March 23, 2016.
  208. "Supermoon November 2016". Space.com. November 13, 2016. Archived from the original on November 14, 2016. Retrieved November 14, 2016.
  209. "'Super moon' to reach closest point for almost 20 years". The Guardian. March 19, 2011. Archived from the original on December 25, 2013. Retrieved March 19, 2011.
  210. Taylor, G. J. (November 8, 2006). "Recent Gas Escape from the Moon". Planetary Science Research Discoveries: 110. Bibcode:2006psrd.reptE.110T. Archived from the original on March 4, 2007. Retrieved April 4, 2007.
  211. Schultz, P. H.; Staid, M. I.; Pieters, C. M. (2006). "Lunar activity from recent gas release". Nature. 444 (7116): 184–186. Bibcode:2006Natur.444..184S. doi:10.1038/nature05303. PMID 17093445. S2CID 7679109.
  212. Luciuk, Mike. "How Bright is the Moon?". Amateur Astronomers. Archived from the original on March 12, 2010. Retrieved March 16, 2010.
  213. ^ "Colors of the Moon". Science Mission Directorate. November 11, 2020. Archived from the original on April 9, 2022. Retrieved April 9, 2022.
  214. Gibbs, Philip (May 1997). "Why is the sky blue?". math.ucr.edu. Archived from the original on November 2, 2015. Retrieved November 4, 2015. ... may cause the moon to have a blue tinge since the red light has been scattered out.
  215. Espenak, F. (2000). "Solar Eclipses for Beginners". MrEclip. Archived from the original on May 24, 2015. Retrieved March 17, 2010.
  216. Walker, John (July 10, 2004). "Moon near Perigee, Earth near Aphelion". Fourmilab. Archived from the original on December 8, 2013. Retrieved December 25, 2013.
  217. Thieman, J.; Keating, S. (May 2, 2006). "Eclipse 99, Frequently Asked Questions". NASA. Archived from the original on February 11, 2007. Retrieved April 12, 2007.
  218. Espenak, F. "Saros Cycle". NASA. Archived from the original on October 30, 2007. Retrieved March 17, 2010.
  219. Guthrie, D.V. (1947). "The Square Degree as a Unit of Celestial Area". Popular Astronomy. Vol. 55. pp. 200–203. Bibcode:1947PA.....55..200G.
  220. "Total Lunar Occultations". Royal Astronomical Society of New Zealand. Archived from the original on February 23, 2010. Retrieved March 17, 2010.
  221. ^ Boyle, Rebecca (July 9, 2019). "Ancient humans used the moon as a calendar in the sky". Science News. Archived from the original on November 4, 2021. Retrieved May 26, 2024.
  222. ^ Burton, David M. (2011). The History of Mathematics: An Introduction. Mcgraw-Hill. p. 3. ISBN 978-0077419219.
  223. "Lunar maps". Archived from the original on June 1, 2019. Retrieved September 18, 2019.
  224. "Carved and Drawn Prehistoric Maps of the Cosmos". Space Today. 2006. Archived from the original on March 5, 2012. Retrieved April 12, 2007.
  225. ^ Black, Jeremy; Green, Anthony (1992). Gods, Demons and Symbols of Ancient Mesopotamia: An Illustrated Dictionary. The British Museum Press. pp. 54, 135. ISBN 978-0-7141-1705-8. Archived from the original on August 19, 2020. Retrieved October 28, 2017.
  226. "Nebra Sky Disc". State Museum of Prehistory. Retrieved September 27, 2024.
  227. ^ Simonova, Michaela (January 2, 2022). "Under the Moonlight: Depictions of the Moon in Art". TheCollector. Retrieved May 26, 2024.
  228. Meller, Harald (2021). "The Nebra Sky Disc – astronomy and time determination as a source of power". Time is power. Who makes time?: 13th Archaeological Conference of Central Germany. Landesmuseum für Vorgeschichte Halle (Saale). ISBN 978-3-948618-22-3.
  229. Concepts of cosmos in the world of Stonehenge. British Museum. 2022.
  230. Bohan, Elise; Dinwiddie, Robert; Challoner, Jack; Stuart, Colin; Harvey, Derek; Wragg-Sykes, Rebecca; Chrisp, Peter; Hubbard, Ben; Parker, Phillip; et al. (Writers) (February 2016). Big History. Foreword by David Christian (1st American ed.). New York: DK. p. 20. ISBN 978-1-4654-5443-0. OCLC 940282526.
  231. O'Connor, J.J.; Robertson, E.F. (February 1999). "Anaxagoras of Clazomenae". University of St Andrews. Archived from the original on January 12, 2012. Retrieved April 12, 2007.
  232. ^ Needham, Joseph (1986). Science and Civilization in China, Volume III: Mathematics and the Sciences of the Heavens and Earth. Taipei: Caves Books. ISBN 978-0-521-05801-8. Archived from the original on June 22, 2019. Retrieved August 22, 2020.
  233. Aaboe, A.; Britton, J.P.; Henderson, J.A.; Neugebauer, Otto; Sachs, A.J. (1991). "Saros Cycle Dates and Related Babylonian Astronomical Texts". Transactions of the American Philosophical Society. 81 (6): 1–75. doi:10.2307/1006543. JSTOR 1006543. One comprises what we have called "Saros Cycle Texts", which give the months of eclipse possibilities arranged in consistent cycles of 223 months (or 18 years).
  234. Sarma, K.V. (2008). "Astronomy in India". In Helaine Selin (ed.). Encyclopaedia of the History of Science, Technology, and Medicine in Non-Western Cultures (2 ed.). Springer. pp. 317–321. Bibcode:2008ehst.book.....S. ISBN 978-1-4020-4559-2.
  235. Lewis, C.S. (1964). The Discarded Image. Cambridge: Cambridge University Press. p. 108. ISBN 978-0-521-47735-2. Archived from the original on June 17, 2020. Retrieved November 11, 2019.
  236. "Discovering How Greeks Computed in 100 B.C." The New York Times. July 31, 2008. Archived from the original on December 4, 2013. Retrieved March 9, 2014.
  237. van der Waerden, Bartel Leendert (1987). "The Heliocentric System in Greek, Persian and Hindu Astronomy". Annals of the New York Academy of Sciences. 500 (1): 1–569. Bibcode:1987NYASA.500....1A. doi:10.1111/j.1749-6632.1987.tb37193.x. PMID 3296915. S2CID 84491987.
  238. Evans, James (1998). The History and Practice of Ancient Astronomy. Oxford & New York: Oxford University Press. pp. 71, 386. ISBN 978-0-19-509539-5.
  239. Hayashi (2008), "Aryabhata I", Encyclopædia Britannica.
  240. Gola, 5; p. 64 in The Aryabhatiya of Aryabhata: An Ancient Indian Work on Mathematics and Astronomy, translated by Walter Eugene Clark (University of Chicago Press, 1930; reprinted by Kessinger Publishing, 2006). "Half of the spheres of the Earth, the planets, and the asterisms is darkened by their shadows, and half, being turned toward the Sun, is light (being small or large) according to their size."
  241. A.I. Sabra (2008). "Ibn Al-Haytham, Abū ʿAlī Al-Ḥasan Ibn Al-Ḥasan". Dictionary of Scientific Biography. Detroit: Charles Scribner's Sons. pp. 189–210, at 195.
  242. Van Helden, A. (1995). "The Moon". Galileo Project. Archived from the original on June 23, 2004. Retrieved April 12, 2007.
  243. Consolmagno, Guy J. (1996). "Astronomy, Science Fiction and Popular Culture: 1277 to 2001 (And beyond)". Leonardo. 29 (2): 127–132. doi:10.2307/1576348. JSTOR 1576348. S2CID 41861791.
  244. Hall, R. Cargill (1977). "Appendix A: Lunar Theory Before 1964". NASA History Series. Lunar Impact: A History of Project Ranger. Washington, DC: Scientific and Technical Information Office, NASA. Archived from the original on April 10, 2010. Retrieved April 13, 2010.
  245. Zak, Anatoly (2009). "Russia's unmanned missions toward the Moon". Archived from the original on April 14, 2010. Retrieved April 20, 2010.
  246. "Record of Lunar Events, 24 July 1969". Apollo 11 30th anniversary. NASA. Archived from the original on April 8, 2010. Retrieved April 13, 2010.
  247. Coren, M. (July 26, 2004). "'Giant leap' opens world of possibility". CNN. Archived from the original on January 20, 2012. Retrieved March 16, 2010.
  248. "Manned Space Chronology: Apollo_11". Spaceline.org. Archived from the original on February 14, 2008. Retrieved February 6, 2008.
  249. "Apollo Anniversary: Moon Landing "Inspired World"". National Geographic. Archived from the original on February 9, 2008. Retrieved February 6, 2008.
  250. Orloff, Richard W. (September 2004) . "Extravehicular Activity". NASA History Division, Office of Policy and Plans - Apollo by the Numbers: A Statistical Reference. The NASA History Series. Washington, DC: NASA. ISBN 978-0-16-050631-4. LCCN 00061677. NASA SP-2000-4029. Archived from the original on June 6, 2013. Retrieved August 1, 2013.
  251. "NASA news release 77-47 page 242" (PDF) (Press release). September 1, 1977. Archived (PDF) from the original on June 4, 2011. Retrieved March 16, 2010.
  252. Appleton, James; Radley, Charles; Deans, John; Harvey, Simon; Burt, Paul; Haxell, Michael; Adams, Roy; Spooner N.; Brieske, Wayne (1977). "NASA Turns A Deaf Ear To The Moon". OASI Newsletters Archive. Archived from the original on December 10, 2007. Retrieved August 29, 2007.
  253. Dickey, J.; Bender, P. L.; Faller, J. E.; Newhall, X. X.; Ricklefs, R. L.; Ries, J. G.; Shelus, P. J.; Veillet, C.; Whipple, A. L. (1994). "Lunar laser ranging: a continuing legacy of the Apollo program". Science. 265 (5171): 482–490. Bibcode:1994Sci...265..482D. doi:10.1126/science.265.5171.482. PMID 17781305. S2CID 10157934.
  254. "Rocks and Soils from the Moon". NASA. Archived from the original on May 27, 2010. Retrieved April 6, 2010.
  255. "Hiten-Hagomoro". NASA. Archived from the original on June 14, 2011. Retrieved March 29, 2010.
  256. "Clementine information". NASA. 1994. Archived from the original on September 25, 2010. Retrieved March 29, 2010.
  257. "Lunar Prospector: Neutron Spectrometer". NASA. 2001. Archived from the original on May 27, 2010. Retrieved March 29, 2010.
  258. "SMART-1 factsheet". European Space Agency. February 26, 2007. Archived from the original on March 23, 2010. Retrieved March 29, 2010.
  259. "Chang'e 1". NASA. 2019. Archived from the original on November 22, 2021. Retrieved October 3, 2021.
  260. "Mission Sequence". Indian Space Research Organisation. November 17, 2008. Archived from the original on July 6, 2010. Retrieved April 13, 2010.
  261. "Lunar CRater Observation and Sensing Satellite (LCROSS): Strategy & Astronomer Observation Campaign". NASA. October 2009. Archived from the original on January 1, 2012. Retrieved April 13, 2010.
  262. David, Leonard (March 17, 2015). "China Outlines New Rockets, Space Station and Moon Plans". Space.com. Archived from the original on July 1, 2016. Retrieved June 29, 2016.
  263. "China's Chang'e-5 brought 1,731 grams of samples from the moon". The Hindu. December 20, 2020. Archived from the original on October 29, 2021. Retrieved October 15, 2021.
  264. "President Bush Offers New Vision For NASA" (Press release). NASA. December 14, 2004. Archived from the original on May 10, 2007. Retrieved April 12, 2007.
  265. Mann, Adam (July 2019). "NASA's Artemis Program". Space.com. Archived from the original on April 17, 2021. Retrieved April 19, 2021.
  266. ^ "The Space Review: The Artemis Accords: repeating the mistakes of the Age of Exploration". The Space Review. June 29, 2020. Archived from the original on January 25, 2022. Retrieved February 1, 2022.
  267. ^ "Australia Between the Moon Agreement and the Artemis Accords". Australian Institute of International Affairs. June 2, 2021. Archived from the original on February 1, 2022. Retrieved February 1, 2022.
  268. ^ "The Space Treaty Institute – Dedicated to Peace and Sustainability in Outer Space. Our Mission: To give people Hope and Inspiration by helping the nations of Earth to build a Common Future". The Space Treaty Institute – Dedicated to Peace and Sustainability in Outer Space. Our Mission. Archived from the original on February 1, 2022. Retrieved February 1, 2022.
  269. "Japan makes contact with 'Moon Sniper' on lunar surface". BBC News. January 19, 2024. Archived from the original on January 19, 2024. Retrieved January 19, 2024.
  270. Robert Lea (April 24, 2024). "Japan's SLIM moon lander defies death to survive 3rd frigid lunar night (image)". Space.com. Archived from the original on April 30, 2024. Retrieved May 1, 2024.
  271. "Intuitive Machines' 'Odysseus' becomes first commercial lander to reach the Moon – Spaceflight Now". Archived from the original on June 15, 2024. Retrieved April 15, 2024.
  272. Andrew Jones (April 25, 2023). "China's Chang'e-6 sample return mission (a first ever lunar far side sample-return) is scheduled to launch in May 2024, and expected to take 53 days from launch to return module touchdown. Targeting southern area of Apollo basin (~43º S, 154º W)" (Tweet) – via Twitter.
  273. Jones, Andrew (May 6, 2024). "China's Chang'e-6 is carrying a surprise rover to the moon". SpaceNews. Archived from the original on May 8, 2024. Retrieved May 8, 2024.
  274. Jones, Andrew (January 10, 2024). "China's Chang'e-6 probe arrives at spaceport for first-ever lunar far side sample mission". SpaceNews. Archived from the original on May 3, 2024. Retrieved January 10, 2024.
  275. "NASA plans to send first woman on Moon by 2024". The Asian Age. May 15, 2019. Archived from the original on April 14, 2020. Retrieved May 15, 2019.
  276. "Russia, China agree on joint Moon exploration". TASS. September 17, 2019. Archived from the original on July 22, 2023. Retrieved April 16, 2024.
  277. Covault, C. (June 4, 2006). "Russia Plans Ambitious Robotic Lunar Mission". Aviation Week. Archived from the original on June 12, 2006. Retrieved April 12, 2007.
  278. Bantock, Jack (April 24, 2024). "Streaming and texting on the Moon: Nokia and NASA are taking 4G into space | CNN Business". CNN. Archived from the original on April 27, 2024. Retrieved April 27, 2024.
  279. Meredith Garofalo (December 8, 2023). "DARPA moon tech study selects 14 companies to develop a lunar economy". Space.com. Archived from the original on June 15, 2024. Retrieved April 27, 2024.
  280. Williams, Matt (May 14, 2022). "A CubeSat is Flying to the Moon to Make Sure Lunar Gateway's Orbit is Actually Stable". Universe Today. Archived from the original on December 17, 2022. Retrieved December 17, 2022.
  281. "Queqiao: The bridge between Earth and the far side of the moon". Phys.org. June 11, 2021. Archived from the original on December 17, 2022. Retrieved December 17, 2022.
  282. ^ Garber, Megan (December 19, 2012). "The Trash We've Left on the Moon". The Atlantic. Archived from the original on April 9, 2022. Retrieved April 11, 2022.
  283. Vidaurri, Monica (October 24, 2019). "Will people go to space—and then colonize it?". Quartz. Archived from the original on November 9, 2021. Retrieved November 9, 2021.
  284. David, Leonard (August 21, 2020). "Cold as (lunar) ice: Protecting the moon's polar regions from contamination". Space.com. Archived from the original on February 4, 2022. Retrieved February 3, 2022.
  285. Gorman, Alice (July 1, 2022). "#SpaceWatchGL Opinion: An ecofeminist approach to the sustainable use of the Moon". SpaceWatch.Global. Archived from the original on July 4, 2022. Retrieved July 3, 2022. Note: see Val Plumwood which Alice Gorman cites regarding co-participation.
  286. ^ Alvarez, Tamara (January 1, 2020). The Eighth Continent: An Ethnography of Twenty-First Century Euro-American Plans to Settle the Moon (Thesis). p. 109-115, 164–167, 176. Archived from the original on February 5, 2022. Retrieved November 1, 2021.
  287. Carter, Jamie (February 27, 2022). "As Chinese Rocket Strikes Moon This Week We Need To Act Now To Prevent New Space Junk Around The Moon Say Scientists". Forbes. Archived from the original on April 9, 2022. Retrieved April 9, 2022.
  288. ^ "Space: The Final Frontier of Environmental Disasters?". Wired. July 15, 2013. Archived from the original on July 14, 2021. Retrieved April 9, 2022.
  289. Pino, Paolo; Salmeri, Antonino; Hugo, Adam; Hume, Shayna (August 27, 2021). "Waste Management for Lunar Resources Activities: Toward a Circular Lunar Economy". New Space. 10 (3). Mary Ann Liebert Inc: 274–283. doi:10.1089/space.2021.0012. ISSN 2168-0256. S2CID 233335692.
  290. Briggs, Randall; Sacco, Albert (1985). "1985lbsa.conf..423B Page 423". Lunar Bases and Space Activities of the 21st Century (in Finnish): 423. Bibcode:1985lbsa.conf..423B. Archived from the original on May 26, 2022. Retrieved May 26, 2022.
  291. Magazine, Smithsonian; Sullivan, Will (January 5, 2024). "Navajo Nation President Asks for Delay of Moon Mission Carrying Human Remains". Smithsonian Magazine. Archived from the original on January 6, 2024. Retrieved January 7, 2024.
  292. "Celestis Memorial Spaceflights". August 8, 2011. Archived from the original on March 14, 2014. Retrieved January 7, 2024.
  293. Andrew Jones (September 23, 2020). "China's Chang'e 3 lunar lander still going strong after 7 years on the moon". Space.com. Archived from the original on November 25, 2020. Retrieved November 16, 2020.
  294. Gorkavyi, Nick; Krotkov, Nickolay; Marshak, Alexander (March 24, 2023). "Earth observations from the Moon's surface: dependence on lunar libration". Atmospheric Measurement Techniques. 16 (6). Copernicus GmbH: 1527–1537. Bibcode:2023AMT....16.1527G. doi:10.5194/amt-16-1527-2023. ISSN 1867-8548. S2CID 257753776.
  295. Betz, Eric (June 3, 2020). "The History and Future of Telescopes on the Moon". Astronomy Magazine. Retrieved October 22, 2024.
  296. "Remembering the First Moon-Based Telescope". NASA. July 15, 2019. Retrieved October 22, 2024.
  297. "Far Ultraviolet Camera/Spectrograph". Lpi.usra.edu. Archived from the original on December 3, 2013. Retrieved October 3, 2013.
  298. Takahashi, Yuki (September 1999). "Mission Design for Setting up an Optical Telescope on the Moon". California Institute of Technology. Archived from the original on November 6, 2015. Retrieved March 27, 2011.
  299. Chandler, David (February 15, 2008). "MIT to lead development of new telescopes on moon". MIT News. Archived from the original on March 4, 2009. Retrieved March 27, 2011.
  300. Naeye, Robert (April 6, 2008). "NASA Scientists Pioneer Method for Making Giant Lunar Telescopes". Goddard Space Flight Center. Archived from the original on December 22, 2010. Retrieved March 27, 2011.
  301. Bell, Trudy (October 9, 2008). "Liquid Mirror Telescopes on the Moon". Science News. NASA. Archived from the original on March 23, 2011. Retrieved March 27, 2011.
  302. "Mission Report: Apollo 17 – The Most Productive Lunar Expedition" (PDF). NASA. Archived from the original (PDF) on September 30, 2006. Retrieved February 10, 2021.
  303. ^ David, Leonard (October 21, 2019). "Moon Dust Could Be a Problem for Future Lunar Explorers". Space.com. Archived from the original on December 1, 2020. Retrieved November 26, 2020.
  304. Zheng, William (January 15, 2019). "Chinese lunar lander's cotton seeds spring to life on far side of the moon". South China Morning Post. Archived from the original on January 16, 2019. Retrieved November 26, 2020.
  305. ^ "Can any State claim a part of outer space as its own?". United Nations Office for Outer Space Affairs. Archived from the original on April 21, 2010. Retrieved March 28, 2010.
  306. "The treaties control space-related activities of States. What about non-governmental entities active in outer space, like companies and even individuals?". United Nations Office for Outer Space Affairs. Archived from the original on April 21, 2010. Retrieved March 28, 2010.
  307. "Statement by the Board of Directors of the IISL On Claims to Property Rights Regarding The Moon and Other Celestial Bodies (2004)" (PDF). International Institute of Space Law. 2004. Archived from the original on December 22, 2009. Retrieved March 28, 2010.
  308. "Further Statement by the Board of Directors of the IISL On Claims to Lunar Property Rights (2009)" (PDF). International Institute of Space Law. March 22, 2009. Archived from the original on December 22, 2009. Retrieved March 28, 2010.
  309. "Do the five international treaties regulate military activities in outer space?". United Nations Office for Outer Space Affairs. Archived from the original on April 21, 2010. Retrieved March 28, 2010.
  310. "How many States have signed and ratified the five international treaties governing outer space?". United Nations Office for Outer Space Affairs. January 1, 2006. Archived from the original on April 21, 2010. Retrieved March 28, 2010.
  311. ^ "The Space Review: Is outer space a de jure common-pool resource?". The Space Review. October 25, 2021. Archived from the original on November 2, 2021. Retrieved April 9, 2022.
  312. "Agreement Governing the Activities of States on the Moon and Other Celestial Bodies". United Nations Office for Outer Space Affairs. Archived from the original on August 9, 2010. Retrieved March 28, 2010.
  313. Vazhapully, Kiran (July 22, 2020). "Space Law at the Crossroads: Contextualizing the Artemis Accords and the Space Resources Executive Order". OpinioJuris. Archived from the original on May 10, 2021. Retrieved May 10, 2021.
  314. "Administration Statement on Executive Order on Encouraging International Support for the Recovery and Use of Space Resources" (Press release). White House. April 6, 2020. Archived from the original on February 1, 2024. Retrieved June 17, 2020 – via SpaceRef.
  315. "'One Small Step' Act Encourages Protection of Human Heritage in Space". HowStuffWorks. January 12, 2021. Archived from the original on November 1, 2021. Retrieved November 1, 2021.
  316. "Moonkind – Human Heritage in Outer Space". For All Moonkind. Archived from the original on November 1, 2021. Retrieved November 1, 2021.
  317. ^ "Declaration of the Rights of the Moon". Australian Earth Laws Alliance. February 11, 2021. Archived from the original on April 23, 2021. Retrieved May 10, 2021.
  318. Tepper, Eytan; Whitehead, Christopher (December 1, 2018). "Moon, Inc.: The New Zealand Model of Granting Legal Personality to Natural Resources Applied to Space". New Space. 6 (4): 288–298. Bibcode:2018NewSp...6..288T. doi:10.1089/space.2018.0025. ISSN 2168-0256. S2CID 158616075. Archived from the original on June 28, 2021. Retrieved July 30, 2022.
  319. ^ Evans, Kate (July 20, 2021). "Hear Ye! Hear Ye! A Declaration of the Rights of the Moon". Eos. Archived from the original on February 6, 2022. Retrieved April 9, 2022.
  320. Thompson, William Irwin. (1981). The time falling bodies take to light : mythology, sexuality, and the origins of culture. New York: St. Martin's Press. p. 105. ISBN 0-312-80510-1. OCLC 6890108. Archived from the original on October 3, 2021. Retrieved July 30, 2022.
  321. Boyle, Rebecca (July 9, 2019). "Ancient humans used the moon as a calendar in the sky". Science News. Archived from the original on November 4, 2021. Retrieved November 4, 2021.
  322. Brooks, A. S.; Smith, C. C. (1987). "Ishango revisited: new age determinations and cultural interpretations". The African Archaeological Review. 5 (1): 65–78. doi:10.1007/BF01117083. JSTOR 25130482. S2CID 129091602.
  323. Duncan, David Ewing (1998). The Calendar. Fourth Estate Ltd. pp. 10–11. ISBN 978-1-85702-721-1.
  324. Zerubavel, E. (1989). The Seven Day Circle: The History and Meaning of the Week. University of Chicago Press. p. 9. ISBN 978-0-226-98165-9. Archived from the original on July 25, 2022. Retrieved February 25, 2022.
  325. Smith, William George (1849). Dictionary of Greek and Roman Biography and Mythology: Oarses-Zygia. Vol. 3. J. Walton. p. 768. Archived from the original on November 26, 2020. Retrieved March 29, 2010.
  326. Estienne, Henri (1846). Thesaurus graecae linguae. Vol. 5. Didot. p. 1001. Archived from the original on July 28, 2020. Retrieved March 29, 2010.
  327. mensis. Charlton T. Lewis and Charles Short. A Latin Dictionary on Perseus Project.
  328. μείς in Liddell and Scott.
  329. Mallory, J.P.; Adams, D.Q. (2006). The Oxford Introduction to Proto-Indo-European and the Proto-Indo-European World. Oxford Linguistics. Oxford University Press. pp. 98, 128, 317. ISBN 978-0-19-928791-8.
  330. Harper, Douglas. "measure". Online Etymology Dictionary.
  331. Harper, Douglas. "menstrual". Online Etymology Dictionary.
  332. Ilyas, Mohammad (March 1994). "Lunar Crescent Visibility Criterion and Islamic Calendar". Quarterly Journal of the Royal Astronomical Society. 35: 425. Bibcode:1994QJRAS..35..425I.
  333. "Mid-Autumn Festival Celebration". Confucius Institute for Scotland. August 30, 2022. Archived from the original on November 22, 2022. Retrieved November 22, 2022.
  334. ^ "Cylinder vase". Collections Search – Museum of Fine Arts, Boston. May 20, 1987. Archived from the original on November 11, 2021. Retrieved November 11, 2021.
  335. Hart, G. (2005). The Routledge Dictionary of Egyptian Gods and Goddesses. Routledge Dictionaries. Taylor & Francis. p. 77. ISBN 978-1-134-28424-5. Archived from the original on July 25, 2022. Retrieved February 23, 2022.
  336. ^ Nemet-Nejat, Karen Rhea (1998). Daily Life in Ancient Mesopotamia. Greenwood. p. 203. ISBN 978-0-313-29497-6. Archived from the original on June 16, 2020. Retrieved June 11, 2019.
  337. Zschietzschmann, W. (2006). Hellas and Rome: The Classical World in Pictures. Whitefish, Montana: Kessinger Publishing. p. 23. ISBN 978-1-4286-5544-7.
  338. Cohen, Beth (2006). "Outline as a Special Technique in Black- and Red-figure Vase-painting". The Colors of Clay: Special Techniques in Athenian Vases. Los Angeles: Getty Publications. pp. 178–179. ISBN 978-0-89236-942-3. Archived from the original on August 19, 2020. Retrieved April 28, 2020.
  339. "It seems possible, though not certain, that after the conquest Mehmed took over the crescent and star as an emblem of sovereignty from the Byzantines. The half-moon alone on a blood red flag, allegedly conferred on the Janissaries by Emir Orhan, was much older, as is demonstrated by numerous references to it dating from before 1453. But since these flags lack the star, which along with the half-moon is to be found on Sassanid and Byzantine municipal coins, it may be regarded as an innovation of Mehmed. It seems certain that in the interior of Asia tribes of Turkish nomads had been using the half-moon alone as an emblem for some time past, but it is equally certain that crescent and star together are attested only for a much later period. There is good reason to believe that old Turkish and Byzantine traditions were combined in the emblem of Ottoman and, much later, present-day Republican Turkish sovereignty." Franz Babinger (William C. Hickman Ed., Ralph Manheim Trans.), Mehmed the Conqueror and His Time, Princeton University Press, 1992, p 108
  340. Kadoi, Yuka (October 1, 2014). "Crescent (symbol of Islam)". Brill Encyclopedia of Islam Online. Archived from the original on April 8, 2022. Retrieved April 8, 2022.
  341. Abbri, Ferdinando (August 30, 2019). "Gold and silver: perfection of metals in medieval and early modern alchemy". Substantia: 39–44. doi:10.13128/Substantia-603. ISSN 2532-3997. Archived from the original on June 17, 2022. Retrieved April 8, 2022.
  342. "Muhammad." Encyclopædia Britannica. 2007. Encyclopædia Britannica Online, p.13
  343. ^ "Imagining the Moon". The New York Times. July 9, 2019. Archived from the original on July 9, 2019. Retrieved November 4, 2021.
  344. "The Moon of Science or the Moon of Lovers?". The MIT Press Reader. September 29, 2020. Archived from the original on November 1, 2021. Retrieved November 1, 2021.
  345. Seed, David (July 9, 2019). "Moon on the mind: two millennia of lunar literature". Nature. 571 (7764): 172–173. Bibcode:2019Natur.571..172S. doi:10.1038/d41586-019-02090-w. S2CID 195847287.
  346. "Polycentricity for Governance of the Moon as a Commons". Open Lunar Foundation. March 22, 2022. Archived from the original on April 20, 2022. Retrieved April 9, 2022.
  347. Nations, United (October 10, 1967). "International Moon Day". United Nations. Archived from the original on June 27, 2023. Retrieved November 8, 2023.
  348. ^ Lilienfeld, Scott O.; Arkowitz, Hal (2009). "Lunacy and the Full Moon". Scientific American. Archived from the original on October 16, 2009. Retrieved April 13, 2010.
  349. Rotton, James; Kelly, I.W. (1985). "Much ado about the full moon: A meta-analysis of lunar-lunacy research". Psychological Bulletin. 97 (2): 286–306. doi:10.1037/0033-2909.97.2.286. PMID 3885282.
  350. Martens, R.; Kelly, I.W.; Saklofske, D.H. (1988). "Lunar Phase and Birthrate: A 50-year Critical Review". Psychological Reports. 63 (3): 923–934. doi:10.2466/pr0.1988.63.3.923. PMID 3070616. S2CID 34184527.
  351. Kelly, Ivan; Rotton, James; Culver, Roger (1986). "The Moon Was Full and Nothing Happened: A Review of Studies on the Moon and Human Behavior". Skeptical Inquirer. 10 (2): 129–143. Reprinted in The Hundredth Monkey – and other paradigms of the paranormal, edited by Kendrick Frazier, Prometheus Books. Revised and updated in The Outer Edge: Classic Investigations of the Paranormal, edited by Joe Nickell, Barry Karr, and Tom Genoni, 1996, CSICOP.
  352. Foster, Russell G.; Roenneberg, Till (2008). "Human Responses to the Geophysical Daily, Annual and Lunar Cycles". Current Biology. 18 (17): R784 – R794. Bibcode:2008CBio...18.R784F. doi:10.1016/j.cub.2008.07.003. PMID 18786384. S2CID 15429616.

Further reading

External links

Cartographic resources

Moon
Outline
Physical
properties
A full moon
Orbit
Surface and
features
Science
Exploration
Time-telling
and navigation
Phases and
names
Daily phenomena
Related
Earth
Atmosphere
Climate
Continents
Culture and society
Environment
Geodesy
Geophysics
Geology
Oceans
Planetary science
Natural satellites of the Solar System
Planetary
satellites
of


Dwarf planet
satellites
of
Minor-planet
moons
Near-Earth
Florence
Didymos
Dimorphos
Moshup
Squannit
1994 CC
2001 SN263
Main belt
Kalliope
Linus
Euphrosyne
Daphne
Peneius
Eugenia
Petit-Prince
Sylvia
Romulus
Remus
Minerva
Aegis
Gorgoneion
Camilla
Elektra
Kleopatra
Alexhelios
Cleoselene
Ida
Dactyl
Roxane
Olympias
Pulcova
Balam
Dinkinesh (Selam)
Jupiter trojans
Patroclus
Menoetius
Hektor
Skamandrios
Eurybates
Queta
TNOs
Lempo
Hiisi
Paha
2002 UX25
Sila–Nunam
Salacia
Actaea
Varda
Ilmarë
Gǃkúnǁʼhòmdímà
Gǃòʼé ǃHú
2013 FY27
Ranked
by size
Solar System
The Sun, the planets, their moons, and several trans-Neptunian objectsThe SunMercuryVenusThe MoonEarthMarsPhobos and DeimosCeresThe main asteroid beltJupiterMoons of JupiterRings of JupiterSaturnMoons of SaturnRings of SaturnUranusMoons of UranusRings of UranusNeptuneMoons of NeptuneRings of NeptunePlutoMoons of PlutoHaumeaMoons of HaumeaMakemakeS/2015 (136472) 1The Kuiper BeltErisDysnomiaThe Scattered DiscThe Hills CloudThe Oort Cloud
Planets,
dwarfs,
minors
Moons
Formation,
evolution
,
contents,
and
History
Rings
Hypothetical
objects
Exploration
(outline)
Small
Solar
System
bodies
Lists
Related

Solar System → Local Interstellar Cloud → Local Bubble → Gould Belt → Orion Arm → Milky Way → Milky Way subgroup → Local GroupLocal SheetVirgo SuperclusterLaniakea Supercluster → Local Hole → Observable universe → Universe
Each arrow (→) may be read as "within" or "part of".

Portals: Categories: