Misplaced Pages

Well-formed formula: Difference between revisions

Article snapshot taken from Wikipedia with creative commons attribution-sharealike license. Give it a read and then ask your questions in the chat. We can research this topic together.
Browse history interactively← Previous editContent deleted Content addedVisualWikitext
Revision as of 21:21, 19 August 2007 editDessources (talk | contribs)Extended confirmed users1,277 edits Trivia: Fixed reference format← Previous edit Latest revision as of 08:24, 27 August 2024 edit undoCitation bot (talk | contribs)Bots5,429,495 edits Altered url. URLs might have been anonymized. Add: authors 1-1. Removed URL that duplicated identifier. Removed parameters. Some additions/deletions were parameter name changes. | Use this bot. Report bugs. | #UCB_CommandLine 
(293 intermediate revisions by more than 100 users not shown)
Line 1: Line 1:
{{Short description|Syntactically correct logical formula}}
{{dablink|For the ] government policy, see ].}}
{{broader|Mathematical formula}}
{{Formal languages}}


In ], ] and ], a '''well-formed formula''', abbreviated '''WFF''' or '''wff''', often simply '''formula''', is a finite ] of ] from a given ] that is part of a ].<ref>Formulas are a standard topic in introductory logic, and are covered by all introductory textbooks, including Enderton (2001), Gamut (1990), and Kleene (1967)</ref>
In ], '''WFF''' (pronounced "wiff") is an abbreviation for '''well-formed formula'''. Given a ], a WFF is any string that is generated by that grammar.


The abbreviation '''wff''' is pronounced "woof", or sometimes "wiff", "weff", or "whiff". {{refn|
In formal logic, ]s are sequences of WFFs with certain properties, and the final WFF in the sequence is what is proven.
* "woof"<ref>{{Cite book |last=Gensler |first=Harry |url=https://books.google.com/books?id=YjuCAgAAQBAJ |title=Introduction to Logic |date=2002-09-11 |publisher=Routledge |isbn=978-1-134-58880-0 |pages=35 |language=en}}</ref><ref>{{Cite book |last1=Hall |first1=Cordelia |url=https://books.google.com/books?id=QZgKCAAAQBAJ |title=Discrete Mathematics Using a Computer |last2=O'Donnell |first2=John |date=2013-04-17 |publisher=Springer Science & Business Media |isbn=978-1-4471-3657-6 |pages=44 |language=en}}</ref><ref>{{Cite book |last=Agler |first=David W. |url=https://books.google.com/books?id=nhQHlwV5NSIC |title=Symbolic Logic: Syntax, Semantics, and Proof |date=2013 |publisher=Rowman & Littlefield |isbn=978-1-4422-1742-3 |pages=41 |language=en}}</ref><ref>{{Cite book |last=Simpson |first=R. L. |url=https://books.google.com/books?id=w2doAwAAQBAJ |title=Essentials of Symbolic Logic - Third Edition |date=2008-03-17 |publisher=Broadview Press |isbn=978-1-77048-495-5 |pages=14 |language=en}}</ref>
* "wiff"<ref>{{Cite book |last=Laderoute |first=Karl |title=A Pocket Guide to Formal Logic |date=2022-10-24 |publisher=Broadview Press |isbn=978-1-77048-868-7 |pages=59 |language=en}}</ref><ref>{{Cite book |last1=Maurer |first1=Stephen B. |url=https://books.google.com/books?id=SWds5v8UUc4C |title=Discrete Algorithmic Mathematics, Third Edition |last2=Ralston |first2=Anthony |date=2005-01-21 |publisher=CRC Press |isbn=978-1-56881-166-6 |pages=625 |language=en}}</ref><ref>{{Cite book |last=Martin |first=Robert M. |url=https://books.google.com/books?id=0sOpx5-90d4C |title=The Philosopher's Dictionary - Third Edition |date=2002-05-06 |publisher=Broadview Press |isbn=978-1-77048-215-9 |pages=323 |language=en}}</ref>
* "weff"<ref>{{Cite book |last=Date |first=Christopher |url=https://books.google.com/books?id=HMIay77Pkv0C |title=The Relational Database Dictionary, Extended Edition |date=2008-10-14 |publisher=Apress |isbn=978-1-4302-1042-9 |pages=211 |language=en}}</ref><ref>{{Cite book |last=Date |first=C. J. |url=https://books.google.com/books?id=TB5UCwAAQBAJ |title=The New Relational Database Dictionary: Terms, Concepts, and Examples |date=2015-12-21 |publisher="O'Reilly Media, Inc." |isbn=978-1-4919-5171-2 |pages=241 |language=en}}</ref>
* "whiff"<ref>{{Cite book |last=Simpson |first=R. L. |url=https://books.google.com/books?id=exeO4UNCJ8cC |title=Essentials of Symbolic Logic |date=1998-12-10 |publisher=Broadview Press |isbn=978-1-55111-250-3 |pages=12 |language=en}}</ref>
All sources supported "woof". The sources cited for "wiff", "weff", and "whiff" gave these pronunciations as alternatives to "woof". The Gensler source gives "wood" and "woofer" as examples of how to pronounce the vowel in "woof".}}


A formal language can be identified with the set of formulas in the language. A formula is a ] object that can be given a semantic ] by means of an ]. Two key uses of formulas are in propositional logic and predicate logic.
==Example==


==Introduction==
The well-formed formulae of the ] <math>\mathcal{L}</math> are defined by the following formal grammar, written in ]:
A key use of formulas is in ] and ] such as ]. In those contexts, a formula is a string of symbols φ for which it makes sense to ask "is &phi; true?", once any ]s in φ have been instantiated. In formal logic, ]s can be represented by sequences of formulas with certain properties, and the final formula in the sequence is what is proven.


Although the term "formula" may be used for written marks (for instance, on a piece of paper or chalkboard), it is more precisely understood as the sequence of symbols being expressed, with the marks being a ] instance of formula. This distinction between the vague notion of "property" and the inductively-defined notion of well-formed formula has roots in Weyl's 1910 paper "Uber die Definitionen der mathematischen Grundbegriffe".<ref>W. Dean, S. Walsh, The Prehistory of the Subsystems of Second-order Arithmetic (2016), p.6</ref> Thus the same formula may be written more than once, and a formula might in principle be so long that it cannot be written at all within the physical universe.
:<alpha set> ::= p | q | r | s | t | u | ... (a finite set of ])
:<wff> ::= <alpha set> | <math>\neg</math><wff> | (<wff><math>\wedge</math><wff>) | (<wff><math>\vee</math><wff>) | (<wff><math>\rightarrow</math><wff>) | (<wff><math>\leftrightarrow</math><wff>)


Formulas themselves are syntactic objects. They are given meanings by interpretations. For example, in a propositional formula, each propositional variable may be interpreted as a concrete proposition, so that the overall formula expresses a relationship between these propositions. A formula need not be interpreted, however, to be considered solely as a formula.
The sequence of symbols


==Propositional calculus==
:(((''p'' <math>\rightarrow</math> ''q'') <math>\wedge</math> (''r'' <math>\rightarrow</math> ''s'')) <math>\wedge</math> (<math>\neg</math>''q'' <math>\vee</math> <math>\neg</math>''s''))
{{Main|Propositional calculus}}
The formulas of ], also called ]s,<ref>First-order logic and automated theorem proving, Melvin Fitting, Springer, 1996 </ref> are expressions such as <math>(A \land (B \lor C))</math>. Their definition begins with the arbitrary choice of a set ''V'' of ]s. The alphabet consists of the letters in ''V'' along with the symbols for the ]s and parentheses "(" and ")", all of which are assumed to not be in ''V''. The formulas will be certain expressions (that is, strings of symbols) over this alphabet.


The formulas are ] defined as follows:
is a WFF because it is grammatically correct. The sequence of symbols
* Each propositional variable is, on its own, a formula.
* If φ is a formula, then &not;φ is a formula.
* If φ and ψ are formulas, and • is any binary connective, then ( φ • ψ) is a formula. Here • could be (but is not limited to) the usual operators ∨, ∧, →, or ↔.


This definition can also be written as a ] in ], provided the set of variables is finite:
:((''p'' <math>\rightarrow</math> ''q'')<math>\rightarrow</math>(''qq''))''p''))
{{#tag:syntaxhighlight|<alpha set> ::= p {{!}} q {{!}} r {{!}} s {{!}} t {{!}} u {{!}} ... (the arbitrary finite set of propositional variables)
<form> ::= <alpha set> {{!}} ¬<form> {{!}} (<form>∧<form>) {{!}} (<form>∨<form>) {{!}} (<form>→<form>) {{!}} (<form>↔<form>)|lang="bnf"}}
Using this grammar, the sequence of symbols
:(((''p'' &rarr; ''q'') &and; (''r'' &rarr; ''s'')) &or; (&not;''q'' &and; &not;''s''))
is a formula, because it is grammatically correct. The sequence of symbols
:((''p'' &rarr; ''q'')&rarr;(''qq''))''p''))
is not a formula, because it does not conform to the grammar.


A complex formula may be difficult to read, owing to, for example, the proliferation of parentheses. To alleviate this last phenomenon, precedence rules (akin to the ]) are assumed among the operators, making some operators more binding than others. For example, assuming the precedence (from most binding to least binding) 1. &not; &nbsp; 2. &rarr;&nbsp; 3. &and;&nbsp; 4. &or;. Then the formula
is not a WFF, because it does not conform to the grammar of <math>\mathcal{L}</math>.
:(((''p'' &rarr; ''q'') &and; (''r'' &rarr; ''s'')) &or; (&not;''q'' &and; &not;''s''))
may be abbreviated as
:''p'' &rarr; ''q'' &and; ''r'' &rarr; ''s'' &or; &not;''q'' &and; &not;''s''
This is, however, only a convention used to simplify the written representation of a formula. If the precedence was assumed, for example, to be left-right associative, in following order: 1. &not; &nbsp; 2. &and;&nbsp; 3. &or;&nbsp; 4. &rarr;, then the same formula above (without parentheses) would be rewritten as
:(''p'' &rarr; (''q'' &and; ''r'')) &rarr; (''s'' &or; (&not;''q'' &and; &not;''s''))


==Trivia== ==Predicate logic==
The definition of a formula in ] <math>\mathcal{QS}</math> is relative to the ] of the theory at hand. This signature specifies the constant symbols, predicate symbols, and function symbols of the theory at hand, along with the ] of the function and predicate symbols.
''WFF'' is the basis for an esoteric pun used in the name of a game product: "WFF 'N PROOF: The Game of Modern Logic," by Layman Allen<ref>{{cite news | first=Rachel | last=Ehrenberg | coauthors= | title=He's Positively Logical | date=Spring 2002 | publisher=University of Michigan | url=http://www.umich.edu/~newsinfo/MT/02/Spr02/mt9s02.html | work=Michigan Today | pages= | accessdate=2007-08-19 | language = }}</ref>, developed while he was at ] (he was later a professor at the ]). The suite of games is designed to teach the principles of symbolic logic to children (in ])<ref>More technically, ] using the ].</ref>. Its name is an accepted pun on '']'', a nonsense word used as a ] at ] made popular in ''The Whiffenpoof Song'' and ].


The definition of a formula comes in several parts. First, the set of ''']''' is defined recursively. Terms, informally, are expressions that represent objects from the ].
==Notes==
#Any variable is a term.
<references/>
#Any constant symbol from the signature is a term
#an expression of the form ''f''(''t''<sub>1</sub>,...,''t''<sub>''n''</sub>), where ''f'' is an ''n''-ary function symbol, and ''t''<sub>1</sub>,...,''t''<sub>''n''</sub> are terms, is again a term.

The next step is to define the ]s.
#If ''t''<sub>1</sub> and ''t''<sub>2</sub> are terms then ''t''<sub>1</sub>=''t''<sub>2</sub> is an atomic formula
#If ''R'' is an ''n''-ary predicate symbol, and ''t''<sub>1</sub>,...,''t''<sub>''n''</sub> are terms, then ''R''(''t''<sub>1</sub>,...,''t''<sub>''n''</sub>) is an atomic formula

Finally, the set of formulas is defined to be the smallest set containing the set of atomic formulas such that the following holds:
#<math>\neg\phi</math> is a formula when <math>\phi</math> is a formula
#<math>(\phi \land \psi)</math> and <math>(\phi \lor \psi)</math> are formulas when <math>\phi</math> and <math>\psi</math> are formulas;
#<math>\exists x\, \phi</math> is a formula when <math>x</math> is a variable and <math>\phi</math> is a formula;
#<math>\forall x\, \phi</math> is a formula when <math>x</math> is a variable and <math>\phi</math> is a formula (alternatively, <math>\forall x\, \phi</math> could be defined as an abbreviation for <math>\neg\exists x\, \neg\phi</math>).

If a formula has no occurrences of <math>\exists x</math> or <math>\forall x</math>, for any variable <math>x</math>, then it is called {{Anchor|Quantifier-free formula}}'''quantifier-free'''. An ''existential formula'' is a formula starting with a sequence of ] followed by a quantifier-free formula.

==Atomic and open formulas==
{{Main|Atomic formula}}

An ''atomic formula'' is a formula that contains no ]s nor ], or equivalently a formula that has no strict subformulas.
The precise form of atomic formulas depends on the formal system under consideration; for ], for example, the atomic formulas are the ]s. For ], the atoms are predicate symbols together with their arguments, each argument being a ].

According to some terminology, an ''open formula'' is formed by combining atomic formulas using only logical connectives, to the exclusion of quantifiers.<ref>Handbook of the history of logic, (Vol 5, Logic from Russell to Church), Tarski's logic by Keith Simmons, D. Gabbay and J. Woods Eds, p568 .</ref> This is not to be confused with a formula which is not closed.

==Closed formulas==
{{Main|Sentence (logic)}}

A ''closed formula'', also ''] formula'' or ''sentence'', is a formula in which there are no ] of any ]. If '''A''' is a formula of a first-order language in which the variables {{math|''v''<sub>1</sub>, …, ''v<sub>n</sub>''}} have free occurrences, then '''A''' preceded by {{math|&forall;''v''<sub>1</sub> ⋯ &forall;''v<sub>n</sub>''}} is a ''universal closure'' of '''A'''.

==Properties applicable to formulas==

* A formula '''A''' in a language <math>\mathcal{Q}</math> is '']'' if it is true for every ] of <math>\mathcal{Q}</math>.
* A formula '''A''' in a language <math>\mathcal{Q}</math> is '']'' if it is true for some ] of <math>\mathcal{Q}</math>.
* A formula '''A''' of the language of ] is ''decidable'' if it represents a ], i.e. if there is an ] which, given a ] of the free variables of '''A''', says that either the resulting instance of '''A''' is provable or its negation is.

==Usage of the terminology==
In earlier works on mathematical logic (e.g. by ]<ref>Alonzo Church, (1944), Introduction to mathematical logic, page 49</ref>), formulas referred to any strings of symbols and among these strings, well-formed formulas were the strings that followed the formation rules of (correct) formulas.

Several authors simply say formula.<ref>]; ] (1950) , Principles of Mathematical Logic, New York: Chelsea</ref><ref>Hodges, Wilfrid (1997), A shorter model theory, Cambridge University Press, {{isbn|978-0-521-58713-6}}</ref><ref>], ed. (1982), Handbook of Mathematical Logic, Studies in Logic and the Foundations of Mathematics, Amsterdam: North-Holland, {{isbn|978-0-444-86388-1}}</ref><ref>Cori, Rene; Lascar, Daniel (2000), Mathematical Logic: A Course with Exercises, Oxford University Press, {{isbn|978-0-19-850048-3}}</ref> Modern usages (especially in the context of computer science with mathematical software such as ], ]s, ]) tend to retain of the notion of formula only the algebraic concept and to leave the question of ], i.e. of the concrete string representation of formulas (using this or that symbol for connectives and quantifiers, using this or that ], using ] or ] notation, etc.) as a mere notational problem.

The expression "well-formed formulas" (WFF) also crept into popular culture. ''WFF'' is part of an esoteric pun used in the name of the academic game "]: The Game of Modern Logic", by Layman Allen,<ref>Ehrenburg 2002</ref> developed while he was at ] (he was later a professor at the ]). The suite of games is designed to teach the principles of symbolic logic to children (in ]).<ref>More technically, ] using the ].</ref> Its name is an echo of '']'', a ] used as a ] at ] made popular in ''The Whiffenpoof Song'' and ].<ref>Allen (1965) acknowledges the pun.</ref>


==See also== ==See also==
{{Portal|Philosophy}}
*]
* ]
*] (acronym WFF)
* ]
* ]
* ]
* ]

==Notes==
{{Reflist}}

==References==
*{{citation
|first1=Layman E.
|last1= Allen
|title=Toward Autotelic Learning of Mathematical Logic by the WFF 'N PROOF Games
| journal= Mathematical Learning: Report of a Conference Sponsored by the Committee on Intellective Processes Research of the Social Science Research Council
|series= Monographs of the Society for Research in Child Development
|volume=30
|issue=1
|year=1965
|pages=29–41
}}
* {{Citation
| last1=Boolos
| first1=George
| author1-link=George Boolos
| last2=Burgess
| first2=John
| last3=Jeffrey
| first3=Richard
| author3-link=Richard Jeffrey
| title=Computability and Logic
| publisher=]
| edition=4th
| isbn=978-0-521-00758-0
| year=2002}}
* {{cite news
| first=Rachel
| last=Ehrenberg
| title=He's Positively Logical
| date=Spring 2002
| publisher=University of Michigan
| url=http://www.umich.edu/~newsinfo/MT/02/Spr02/mt9s02.html
| work=Michigan Today
| access-date=2007-08-19
| archive-url=https://web.archive.org/web/20090208141433/http://umich.edu/~newsinfo/MT/02/Spr02/mt9s02.html
| archive-date=2009-02-08
| url-status=dead
}}
* {{Citation
| last1=Enderton
| first1=Herbert
| title=A mathematical introduction to logic
| publisher=]
| location=Boston, MA
| edition=2nd
| isbn=978-0-12-238452-3
| year=2001
}}
* {{Citation
| last1=Gamut
| first1=L.T.F.
| title=Logic, Language, and Meaning, Volume 1: Introduction to Logic
|publisher= University Of Chicago Press
| year= 1990
| isbn=0-226-28085-3
}}
*{{Citation
| last=Hodges
| first=Wilfrid
| section=Classical Logic I: First-Order Logic
| editor1-last=Goble
| editor1-first=Lou
| title=The Blackwell Guide to Philosophical Logic
| publisher=Blackwell
| isbn=978-0-631-20692-7
| year=2001
| url-access=registration
| url=https://archive.org/details/blackwellguideto0000unse_q4c2
}}
*{{Citation
| last1=Hofstadter
| first1=Douglas
| author1-link=Douglas Hofstadter
| title=Gödel, Escher, Bach: An Eternal Golden Braid
| publisher=]
| isbn=978-0-14-005579-5
| year=1980
}}
* {{Citation
| last1=Kleene
| first1=Stephen Cole
| author1-link=Stephen Kleene
| title=Mathematical logic
| orig-year=1967
| publisher=]
| location=New York
| isbn=978-0-486-42533-7
| mr=1950307
| year=2002
}}
* {{Citation|last=Rautenberg|first=Wolfgang|author-link=Wolfgang Rautenberg|doi=10.1007/978-1-4419-1221-3|title=A Concise Introduction to Mathematical Logic|publisher=]|location=New York|edition=3rd|isbn=978-1-4419-1220-6|year=2010}}


==External links== ==External links==
Line 36: Line 200:
* *


{{Mathematical logic}}
{{portalpar|Logic}}
]


{{DEFAULTSORT:Well-Formed Formula}}
]
]
]
]
]
]
]
]
]
]

Latest revision as of 08:24, 27 August 2024

Syntactically correct logical formula For broader coverage of this topic, see Mathematical formula.
Part of a series on
Formal languages
Key concepts
Applications

In mathematical logic, propositional logic and predicate logic, a well-formed formula, abbreviated WFF or wff, often simply formula, is a finite sequence of symbols from a given alphabet that is part of a formal language.

The abbreviation wff is pronounced "woof", or sometimes "wiff", "weff", or "whiff".

A formal language can be identified with the set of formulas in the language. A formula is a syntactic object that can be given a semantic meaning by means of an interpretation. Two key uses of formulas are in propositional logic and predicate logic.

Introduction

A key use of formulas is in propositional logic and predicate logic such as first-order logic. In those contexts, a formula is a string of symbols φ for which it makes sense to ask "is φ true?", once any free variables in φ have been instantiated. In formal logic, proofs can be represented by sequences of formulas with certain properties, and the final formula in the sequence is what is proven.

Although the term "formula" may be used for written marks (for instance, on a piece of paper or chalkboard), it is more precisely understood as the sequence of symbols being expressed, with the marks being a token instance of formula. This distinction between the vague notion of "property" and the inductively-defined notion of well-formed formula has roots in Weyl's 1910 paper "Uber die Definitionen der mathematischen Grundbegriffe". Thus the same formula may be written more than once, and a formula might in principle be so long that it cannot be written at all within the physical universe.

Formulas themselves are syntactic objects. They are given meanings by interpretations. For example, in a propositional formula, each propositional variable may be interpreted as a concrete proposition, so that the overall formula expresses a relationship between these propositions. A formula need not be interpreted, however, to be considered solely as a formula.

Propositional calculus

Main article: Propositional calculus

The formulas of propositional calculus, also called propositional formulas, are expressions such as ( A ( B C ) ) {\displaystyle (A\land (B\lor C))} . Their definition begins with the arbitrary choice of a set V of propositional variables. The alphabet consists of the letters in V along with the symbols for the propositional connectives and parentheses "(" and ")", all of which are assumed to not be in V. The formulas will be certain expressions (that is, strings of symbols) over this alphabet.

The formulas are inductively defined as follows:

  • Each propositional variable is, on its own, a formula.
  • If φ is a formula, then ¬φ is a formula.
  • If φ and ψ are formulas, and • is any binary connective, then ( φ • ψ) is a formula. Here • could be (but is not limited to) the usual operators ∨, ∧, →, or ↔.

This definition can also be written as a formal grammar in Backus–Naur form, provided the set of variables is finite:

<alpha set> ::= p | q | r | s | t | u | ... (the arbitrary finite set of propositional variables)
<form> ::= <alpha set> | ¬<form> | (<form>∧<form>) | (<form>∨<form>) | (<form>→<form>) | (<form>↔<form>)

Using this grammar, the sequence of symbols

(((pq) ∧ (rs)) ∨ (¬q ∧ ¬s))

is a formula, because it is grammatically correct. The sequence of symbols

((pq)→(qq))p))

is not a formula, because it does not conform to the grammar.

A complex formula may be difficult to read, owing to, for example, the proliferation of parentheses. To alleviate this last phenomenon, precedence rules (akin to the standard mathematical order of operations) are assumed among the operators, making some operators more binding than others. For example, assuming the precedence (from most binding to least binding) 1. ¬   2. →  3. ∧  4. ∨. Then the formula

(((pq) ∧ (rs)) ∨ (¬q ∧ ¬s))

may be abbreviated as

pqrs ∨ ¬q ∧ ¬s

This is, however, only a convention used to simplify the written representation of a formula. If the precedence was assumed, for example, to be left-right associative, in following order: 1. ¬   2. ∧  3. ∨  4. →, then the same formula above (without parentheses) would be rewritten as

(p → (qr)) → (s ∨ (¬q ∧ ¬s))

Predicate logic

The definition of a formula in first-order logic Q S {\displaystyle {\mathcal {QS}}} is relative to the signature of the theory at hand. This signature specifies the constant symbols, predicate symbols, and function symbols of the theory at hand, along with the arities of the function and predicate symbols.

The definition of a formula comes in several parts. First, the set of terms is defined recursively. Terms, informally, are expressions that represent objects from the domain of discourse.

  1. Any variable is a term.
  2. Any constant symbol from the signature is a term
  3. an expression of the form f(t1,...,tn), where f is an n-ary function symbol, and t1,...,tn are terms, is again a term.

The next step is to define the atomic formulas.

  1. If t1 and t2 are terms then t1=t2 is an atomic formula
  2. If R is an n-ary predicate symbol, and t1,...,tn are terms, then R(t1,...,tn) is an atomic formula

Finally, the set of formulas is defined to be the smallest set containing the set of atomic formulas such that the following holds:

  1. ¬ ϕ {\displaystyle \neg \phi } is a formula when ϕ {\displaystyle \phi } is a formula
  2. ( ϕ ψ ) {\displaystyle (\phi \land \psi )} and ( ϕ ψ ) {\displaystyle (\phi \lor \psi )} are formulas when ϕ {\displaystyle \phi } and ψ {\displaystyle \psi } are formulas;
  3. x ϕ {\displaystyle \exists x\,\phi } is a formula when x {\displaystyle x} is a variable and ϕ {\displaystyle \phi } is a formula;
  4. x ϕ {\displaystyle \forall x\,\phi } is a formula when x {\displaystyle x} is a variable and ϕ {\displaystyle \phi } is a formula (alternatively, x ϕ {\displaystyle \forall x\,\phi } could be defined as an abbreviation for ¬ x ¬ ϕ {\displaystyle \neg \exists x\,\neg \phi } ).

If a formula has no occurrences of x {\displaystyle \exists x} or x {\displaystyle \forall x} , for any variable x {\displaystyle x} , then it is called quantifier-free. An existential formula is a formula starting with a sequence of existential quantification followed by a quantifier-free formula.

Atomic and open formulas

Main article: Atomic formula

An atomic formula is a formula that contains no logical connectives nor quantifiers, or equivalently a formula that has no strict subformulas. The precise form of atomic formulas depends on the formal system under consideration; for propositional logic, for example, the atomic formulas are the propositional variables. For predicate logic, the atoms are predicate symbols together with their arguments, each argument being a term.

According to some terminology, an open formula is formed by combining atomic formulas using only logical connectives, to the exclusion of quantifiers. This is not to be confused with a formula which is not closed.

Closed formulas

Main article: Sentence (logic)

A closed formula, also ground formula or sentence, is a formula in which there are no free occurrences of any variable. If A is a formula of a first-order language in which the variables v1, …, vn have free occurrences, then A preceded by ∀v1 ⋯ ∀vn is a universal closure of A.

Properties applicable to formulas

  • A formula A in a language Q {\displaystyle {\mathcal {Q}}} is valid if it is true for every interpretation of Q {\displaystyle {\mathcal {Q}}} .
  • A formula A in a language Q {\displaystyle {\mathcal {Q}}} is satisfiable if it is true for some interpretation of Q {\displaystyle {\mathcal {Q}}} .
  • A formula A of the language of arithmetic is decidable if it represents a decidable set, i.e. if there is an effective method which, given a substitution of the free variables of A, says that either the resulting instance of A is provable or its negation is.

Usage of the terminology

In earlier works on mathematical logic (e.g. by Church), formulas referred to any strings of symbols and among these strings, well-formed formulas were the strings that followed the formation rules of (correct) formulas.

Several authors simply say formula. Modern usages (especially in the context of computer science with mathematical software such as model checkers, automated theorem provers, interactive theorem provers) tend to retain of the notion of formula only the algebraic concept and to leave the question of well-formedness, i.e. of the concrete string representation of formulas (using this or that symbol for connectives and quantifiers, using this or that parenthesizing convention, using Polish or infix notation, etc.) as a mere notational problem.

The expression "well-formed formulas" (WFF) also crept into popular culture. WFF is part of an esoteric pun used in the name of the academic game "WFF 'N PROOF: The Game of Modern Logic", by Layman Allen, developed while he was at Yale Law School (he was later a professor at the University of Michigan). The suite of games is designed to teach the principles of symbolic logic to children (in Polish notation). Its name is an echo of whiffenpoof, a nonsense word used as a cheer at Yale University made popular in The Whiffenpoof Song and The Whiffenpoofs.

See also

Notes

  1. Formulas are a standard topic in introductory logic, and are covered by all introductory textbooks, including Enderton (2001), Gamut (1990), and Kleene (1967)
  2. Gensler, Harry (2002-09-11). Introduction to Logic. Routledge. p. 35. ISBN 978-1-134-58880-0.
  3. Hall, Cordelia; O'Donnell, John (2013-04-17). Discrete Mathematics Using a Computer. Springer Science & Business Media. p. 44. ISBN 978-1-4471-3657-6.
  4. Agler, David W. (2013). Symbolic Logic: Syntax, Semantics, and Proof. Rowman & Littlefield. p. 41. ISBN 978-1-4422-1742-3.
  5. Simpson, R. L. (2008-03-17). Essentials of Symbolic Logic - Third Edition. Broadview Press. p. 14. ISBN 978-1-77048-495-5.
  6. Laderoute, Karl (2022-10-24). A Pocket Guide to Formal Logic. Broadview Press. p. 59. ISBN 978-1-77048-868-7.
  7. Maurer, Stephen B.; Ralston, Anthony (2005-01-21). Discrete Algorithmic Mathematics, Third Edition. CRC Press. p. 625. ISBN 978-1-56881-166-6.
  8. Martin, Robert M. (2002-05-06). The Philosopher's Dictionary - Third Edition. Broadview Press. p. 323. ISBN 978-1-77048-215-9.
  9. Date, Christopher (2008-10-14). The Relational Database Dictionary, Extended Edition. Apress. p. 211. ISBN 978-1-4302-1042-9.
  10. Date, C. J. (2015-12-21). The New Relational Database Dictionary: Terms, Concepts, and Examples. "O'Reilly Media, Inc.". p. 241. ISBN 978-1-4919-5171-2.
  11. Simpson, R. L. (1998-12-10). Essentials of Symbolic Logic. Broadview Press. p. 12. ISBN 978-1-55111-250-3.
    • "woof"
    • "wiff"
    • "weff"
    • "whiff"
    All sources supported "woof". The sources cited for "wiff", "weff", and "whiff" gave these pronunciations as alternatives to "woof". The Gensler source gives "wood" and "woofer" as examples of how to pronounce the vowel in "woof".
  12. W. Dean, S. Walsh, The Prehistory of the Subsystems of Second-order Arithmetic (2016), p.6
  13. First-order logic and automated theorem proving, Melvin Fitting, Springer, 1996
  14. Handbook of the history of logic, (Vol 5, Logic from Russell to Church), Tarski's logic by Keith Simmons, D. Gabbay and J. Woods Eds, p568 .
  15. Alonzo Church, (1944), Introduction to mathematical logic, page 49
  16. Hilbert, David; Ackermann, Wilhelm (1950) , Principles of Mathematical Logic, New York: Chelsea
  17. Hodges, Wilfrid (1997), A shorter model theory, Cambridge University Press, ISBN 978-0-521-58713-6
  18. Barwise, Jon, ed. (1982), Handbook of Mathematical Logic, Studies in Logic and the Foundations of Mathematics, Amsterdam: North-Holland, ISBN 978-0-444-86388-1
  19. Cori, Rene; Lascar, Daniel (2000), Mathematical Logic: A Course with Exercises, Oxford University Press, ISBN 978-0-19-850048-3
  20. Ehrenburg 2002
  21. More technically, propositional logic using the Fitch-style calculus.
  22. Allen (1965) acknowledges the pun.

References

External links

Mathematical logic
General
Theorems (list)
 and paradoxes
Logics
Traditional
Propositional
Predicate
Set theory
Types of sets
Maps and cardinality
Set theories
Formal systems (list),
language and syntax
Example axiomatic
systems
 (list)
Proof theory
Model theory
Computability theory
Related
icon Mathematics portal
Categories: