Misplaced Pages

HD 189733 b: Difference between revisions

Article snapshot taken from Wikipedia with creative commons attribution-sharealike license. Give it a read and then ask your questions in the chat. We can research this topic together.
Browse history interactively← Previous editNext edit →Content deleted Content addedVisualWikitext
Revision as of 04:44, 8 April 2023 editAverage information enjoyer (talk | contribs)1 editmNo edit summary← Previous edit Revision as of 09:06, 25 June 2023 edit undo2001:8003:335b:3a01:c9e2:234f:f683:d474 (talk) Detection and discoveryTags: Reverted blankingNext edit →
Line 40: Line 40:
|date=July 24, 2014 |work=] |access-date=July 25, 2014}}</ref> |date=July 24, 2014 |work=] |access-date=July 25, 2014}}</ref>


HD 189733 B is a planet that is said to rain glass,altough we do not know who has said it rains glass,we do know that it is actually pretty hot up there on that planet.Now why is it called HD 189733 B?It is called that because nobody has thought of a real name for it yet and scientists discovered that it is actually its colour code that is why they named it that.(Keep in mind this name is only temporary)! Why does it rain glass? Well scientists don't actually know,so I don't know what to tell you,my appoligies. ARTICLE MADE BY VICTORIA INDINA.THANK YOU FOR READING.HAVE A LOVELY DAY OR NIGHT GOODBYE EVERYBODY.
== Detection and discovery ==
=== Transit and Doppler spectroscopy ===
{{multiple image
<!-- Essential parameters -->
| align = left
| direction = vertical
| width = 250

<!-- Image 1 -->
| image1 =
| width1 =
| alt1 =
| caption1 = The radial velocity of HD 189733 over time, caused by the presence of HD 189733 b

<!-- Image 2 -->
| image2 = Ssc2007-04c.jpg
| width2 =
| alt2 =
| caption2 = The infrared spectrum of HD 189733 b

<!-- Image 3 -->
| image3 = Global Temperature Map for Exoplanet HD 189733b.jpg
| width3 =
| alt3 =
| caption3 = A global temperature map of HD 189733 b

<!-- Image 4 -->
| image4 = HD 189733b blue planet.png
| width4 =
| alt4 =
| caption4 = The planet's blue color was revealed using polarimetry.<ref name="Berdyugina2011"/>

<!-- Extra parameters -->
| header =
| header_align = <!-- left/right/center -->
| header_background =
| footer =
| footer_align = <!-- left/right/center -->
| footer_background =
| background color =
}}

On October 6, 2005, a team of astronomers announced the discovery of transiting planet HD 189733 b. The planet was then detected using ]. Real-time ] measurements detected the ] caused by the planet passing in front of its star before photometric measurements confirmed that the planet was transiting.<ref name="Bouchy2005"/> In 2006, a team led by ] announced detection of strong ] ] from the transiting exoplanet planet HD 189733 b, by measuring the flux decrement (decrease of total light) during its prominent secondary ] (when the planet passes behind the star).

The mass of the planet is estimated to be 16% larger than ]'s, with the planet completing an orbit around its host star every 2.2 days and an ] of {{convert|152.5|km/s|mi/h}}.

=== Infrared spectrum ===
On February 21, 2007, ] released news that the ] had measured detailed ] from both HD 189733 b and ].<ref name=spitzer-press-release>{{Cite web|url=http://www.spitzer.caltech.edu/Media/releases/ssc2007-04/release.shtml|archiveurl=https://web.archive.org/web/20070715071155/http://www.spitzer.caltech.edu/Media/releases/ssc2007-04/release.shtml|url-status=dead|title=Press Release: NASA's Spitzer First To Crack Open Light of Faraway Worlds|archivedate=July 15, 2007}}</ref> The release came simultaneously with the public release of a new issue of '']'' containing the first publication on the spectroscopic observation of the other exoplanet, HD 209458 b. A paper was submitted and published by the '']''. The spectroscopic observations of HD 189733 b were led by Carl Grillmair of NASA's ].

=== Visible color ===
In 2008, a team of astrophysicists appeared to have detected and monitored the planet's visible light using ], which would have been the first such success.<ref name="Berdyugina2008"/> This result seemed to be confirmed and refined by the same team in 2011.<ref name="Berdyugina2011"/> They found that the planet ] is significantly larger in blue light than in the red, most probably due to ] and molecular absorption in the red.<ref name="Berdyugina2011"/> The blue color of the planet was subsequently confirmed in 2013,<ref>{{Cite journal|url=https://www.nature.com/articles/nature.2013.13376|title=First distant planet to be seen in colour is blue|first=Devin|last=Powell|date=July 11, 2013|journal=Nature|via=www.nature.com|doi=10.1038/nature.2013.13376|s2cid=130070356 |doi-access=free}}</ref> which would have made HD 189733 the first planet to have its overall color determined by two different techniques. These measurements in polarized light have since been disputed by two separate teams using more sensitive polarimeters,<ref>{{Cite journal|last=Wiktorowicz|first=Sloane J.|date=2009-04-22|title=NONDETECTION OF POLARIZED, SCATTERED LIGHT FROM THE HD 189733b HOT JUPITER|journal=The Astrophysical Journal|language=en|volume=696|issue=2|pages=1116–1124|doi=10.1088/0004-637X/696/2/1116|issn=0004-637X|bibcode=2009ApJ...696.1116W|arxiv=0902.0624|s2cid=11384636 }}</ref><ref>{{Cite journal|last1=Wiktorowicz|first1=Sloane J.|last2=Nofi|first2=Larissa A.|last3=Jontof-Hutter|first3=Daniel|last4=Kopparla|first4=Pushkar|last5=Laughlin|first5=Gregory P.|last6=Hermis|first6=Ninos|last7=Yung|first7=Yuk L.|last8=Swain|first8=Mark R.|date=2015-10-27|title=A GROUND-BASED ALBEDO UPPER LIMIT FOR HD 189733b FROM POLARIMETRY|journal=The Astrophysical Journal|language=en|volume=813|issue=1|pages=48|doi=10.1088/0004-637X/813/1/48|issn=1538-4357|bibcode=2015ApJ...813...48W|arxiv=1507.03588|s2cid=118086125 }}</ref><ref>{{Cite journal|last1=Bott|first1=Kimberly|last2=Bailey|first2=Jeremy|last3=Kedziora-Chudczer|first3=Lucyna|last4=Cotton|first4=Daniel V.|last5=Lucas|first5=P. W.|last6=Marshall|first6=Jonathan P.|last7=Hough|first7=J. H.|date=2016-03-20|title=The polarization of HD 189733|journal=Monthly Notices of the Royal Astronomical Society: Letters|language=en|volume=459|issue=1|pages=L109–L113|doi=10.1093/mnrasl/slw046|issn=1745-3925|bibcode=2016MNRAS.459L.109B|url=http://uhra.herts.ac.uk/bitstream/2299/17649/2/L109.full2.pdf|doi-access=free}}</ref> with upper limits of the polarimetric signal provided therein.

The blueness of the planet may be the result of ]. In mid January 2008, spectral observation during the planet's transit using that model found that if molecular ] exists, it would have an ] of 410 ± 30 ] of 0.1564 solar radii. The Mie approximation model also found that there is a possible condensate in its atmosphere, ] (MgSiO<sub>3</sub>) with a ] of approximately 10<sup>−2</sup> to 10<sup>−1</sup> μm. Using both models, the planet's temperature would be between 1340 and 1540 K.<ref name="Lecavelier des Etangs">{{cite journal |url=http://www.aanda.org/index.php?option=article&access=standard&Itemid=129&url=/articles/aa/abs/2008/14/aa09388-08/aa09388-08.html |title=Rayleigh scattering in the transit spectrum of HD 189733b |journal=] |date=2008 |volume=481 |pages=L83–L86 |access-date=2008-08-08 |author1=A. Lecavelier des Etangs |author2=F. Pont |author3=A. Vidal-Madjar |author4=D. Sing |doi=10.1051/0004-6361:200809388 |bibcode=2008A&A...481L..83L |issue=2|arxiv = 0802.3228 |s2cid=18738916 }}</ref> The Rayleigh effect is confirmed in other models,<ref name=agol>{{cite journal| title =Transits and secondary eclipses of HD 189733 with Spitzer |author= Eric Agol |display-authors= etal |date=2008| doi =10.1017/S1743921308026422| journal =Proceedings of the International Astronomical Union| volume =4| pages =209–215 |arxiv=0807.2434 |s2cid= 15867430 }}</ref> and by the apparent lack of a cooler, shaded ] below its outer atmosphere. In the visible region of the spectrum, thanks to their high absorption cross sections, atomic sodium and potassium can be investigated. For example, using high-resolution ] spectrograph on ], sodium has been detected on this atmosphere and further physical characteristics of the atmosphere such as temperature has been investigated.<ref name="Khd">{{Cite journal|last1=Khalafinejad|first1=S.|last2=Essen|first2=C. von|last3=Hoeijmakers|first3=H. J.|last4=Zhou|first4=G.|last5=Klocová|first5=T.|last6=Schmitt|first6=J. H. M. M.|last7=Dreizler|first7=S.|last8=Lopez-Morales|first8=M.|last9=Husser|first9=T.-O.|date=2017-02-01|title=Exoplanetary atmospheric sodium revealed by orbital motion|journal=Astronomy & Astrophysics|language=en|volume=598|pages=A131|arxiv=1610.01610|bibcode=2017A&A...598A.131K|doi=10.1051/0004-6361/201629473|s2cid=55263138 |issn=0004-6361}}</ref>

=== X-ray spectrum ===
In July 2013, NASA reported the first observations of planet transit studied in the X-ray spectrum. It was found that the planet's atmosphere blocks three times more X-rays than visible light.<ref>{{Cite web|url=http://www.nasa.gov/mission_pages/chandra/news/exoplanet-HD189733b.html|title=NASA's Chandra Sees Eclipsing Planet in X-rays for First Time|first=Brooke|last=Boen|date=May 20, 2015|website=NASA}}</ref>

=== Evaporation ===
]

In March 2010, transit observations using HI Lyman-alpha found that this planet is evaporating at a rate of 1-100 gigagrams per second. This indication was found by detecting the extended ] of atomic hydrogen. HD 189733 b is the second planet after ] for which atmospheric evaporation has been detected.<ref>{{cite journal |title=Evaporation of the planet HD189733b observed in HI Lyman-alpha |author=Lecavelier des Etangs |display-authors=etal |journal=] |date=2010-03-10 |arxiv=1003.2206|bibcode = 2010A&A...514A..72L |volume=1003 |pages=2206 |doi=10.1051/0004-6361/200913347|s2cid=53408874 |url=https://ore.exeter.ac.uk/repository/bitstream/10871/16083/2/Lecavelier.2010.A%26A.HD189733.ACS.Escaping.Atmo.pdf }}</ref>


== Physical characteristics == == Physical characteristics ==

Revision as of 09:06, 25 June 2023

Hot Jupiter exoplanet in the constellation Vulpecula
HD 189733 b
Size comparison of Jupiter with HD 189733 b.
Discovery
Discovered byBouchy et al.
Discovery siteHaute-Provence Observatory
Discovery dateOctober 5, 2005
Detection methodDoppler spectroscopy
Transit
Orbital characteristics
Apastron0.03102 AU (4,641,000 km)
Periastron0.03096 AU (4,632,000 km)
Semi-major axis0.03099 ± 0.0006 AU (4,636,000 ± 90,000 km)
Eccentricity0.0010 ± 0.0002
Orbital period (sidereal)2.2185733 ± 0.00002 d
53.245759 h
Average orbital speed152.5
Inclination85.76 ± 0.29
Semi-amplitude205 ± 6
StarHD 189733
Physical characteristics
Mean radius1.138 ± 0.027 RJ
Mass1.162+0.058
−0.039 MJ
Surface gravity21.2 m/s (70 ft/s)
Albedo0.40 ± 0.12 (290–450 nm)
< 0.12 (450–570 nm)
Temperature1117 ± 42 K

HD 189733 b is an exoplanet approximately 64.5 light-years (19.8 pc) away from the Solar System in the constellation of Vulpecula. Astronomers in France discovered the planet orbiting the star HD 189733 on October 5, 2005, by observing its transit across the star's face. With a mass 16.2% higher than that of Jupiter and a radius 13.8% greater, HD 189733 b orbits its host star once every 2.2 days at an orbital speed of 152.5 kilometers per second (152,500 meters per second; 341,100 miles per hour), making it a hot Jupiter with poor prospects for extraterrestrial life.

The closest transiting hot Jupiter to Earth, HD 189733 b is a subject of extensive atmospheric examination. Accordingly, scientists have extensively studied the exoplanet's atmosphere with high- and low-resolution instruments, both from the ground and space. Researchers have found that the planet has an unusual rain of molten glass. HD 189733 b was also the first exoplanet to have its thermal map constructed (possibly to be detected through polarimetry), its overall color determined (deep blue), transit in the X-ray spectrum, and carbon dioxide confirmed in its atmosphere.

In July 2014, NASA announced finding very dry atmospheres on three exoplanets (HD 189733b, HD 209458b, WASP-12b) orbiting Sun-like stars.

HD 189733 B is a planet that is said to rain glass,altough we do not know who has said it rains glass,we do know that it is actually pretty hot up there on that planet.Now why is it called HD 189733 B?It is called that because nobody has thought of a real name for it yet and scientists discovered that it is actually its colour code that is why they named it that.(Keep in mind this name is only temporary)! Why does it rain glass? Well scientists don't actually know,so I don't know what to tell you,my appoligies. ARTICLE MADE BY VICTORIA INDINA.THANK YOU FOR READING.HAVE A LOVELY DAY OR NIGHT GOODBYE EVERYBODY.

Physical characteristics

This planet exhibits one of the largest photometric transit depth (amount of the parent star's light blocked) of extrasolar planets so far observed, approximately 3%. The apparent longitude of ascending node of its orbit is 16 degrees +/- 8 away from the north–south in our sky. It and HD 209458 b were the first two planets to be directly spectroscopically observed. The parent stars of these two planets are the brightest transiting-planet host stars, so these planets will continue to receive the most attention from astronomers. Like most hot Jupiters, this planet is thought to be tidally locked to its parent star, meaning it has a permanent day and night.

The planet is not oblate, and has neither satellites with greater than 0.8 the radius of Earth nor a ring system like that of Saturn.

The international team under the direction of Svetlana Berdyugina of Zurich University of Technology, using the Swedish 60-centimeter telescope KVA, which is located in Spain, was able to directly see the polarized light reflected from the planet. The polarization indicates that the scattering atmosphere is considerably larger (> 30%) than the opaque body of the planet seen during transits.

The atmosphere was at first predicted "pL class", lacking a temperature-inversion stratosphere; like L dwarfs which lack titanium and vanadium oxides. Follow-up measurements, tested against a stratospheric model, yielded inconclusive results. Atmospheric condensates form a haze 1,000 kilometres (620 mi) above the surface as viewed in the infrared. A sunset viewed from that surface would be red. Sodium and potassium signals were predicted by Tinetti 2007. First obscured by the haze of condensates, sodium was eventually observed at three times the concentration of HD 209458 b's sodium layer. The potassium was also detected in 2020, although in significantly smaller concentrations. HD 189733 is also the first extrasolar planet confirmed to have carbon dioxide in its atmosphere.

Map of the planet

An artist's conception of HD 189733 b following the 2013 confirmation of the planet's blue color by the Hubble Space Telescope. The appearance of HD 189733 b beyond the blue color is unknown.

In 2007, the Spitzer Space Telescope was used to map the planet's temperature emissions. The planet+star system was observed for 33 consecutive hours, starting when only the night side of the planet was in view. Over the course of one-half of the planet's orbit, more and more of the dayside came into view. A temperature range of 973 ± 33 K to 1,212 ± 11 K was discovered, indicating that the absorbed energy from the parent star is distributed fairly evenly through the planet's atmosphere. The region of peak temperature was offset 30 degrees east of the substellar point, as predicted by theoretical models of hot Jupiters taking into account a parameterized day to night redistribution mechanism.

An artist's impression of HD 189733 b showing rapid evaporation of the atmosphere

Scientists at the University of Warwick determined that it has winds of up to 8,700 km/h (5,400 mph) blowing from the day side to the night side. NASA released a brightness map of the surface temperature of HD 189733 b; it is the first map ever published of an extra-solar planet.

Water vapor, oxygen, and organic compounds

On July 11, 2007, a team led by Giovanna Tinetti published the results of their observations using the Spitzer Space Telescope concluding there is solid evidence for significant amounts of water vapor in the planet's atmosphere. Follow-up observations made using the Hubble Space Telescope confirm the presence of water vapor, neutral oxygen and also the organic compound methane. Later, Very Large Telescope observations also detected the presence of carbon monoxide on the day side of the planet. It is currently unknown how the methane originated as the planet's high 700 °C temperature should cause the water and methane to react, replacing the atmosphere with carbon monoxide. Nonetheless, the presence of roughly 0.004% of water vapour fraction by volume in atmosphere of HD 189733 b was confirmed with high-resolution emission spectra taken in 2021.

Weather and rains of molten glass

NASA Exoplanet Exploration Program "horror film poster" for HD 189733 b

The weather on HD 189733b is deadly. The winds, composed of silicate particles, blow up to 8,700 kilometres per hour (5,400 mph). Observations of this planet have also found evidence that it rains molten glass, horizontally.

Evolution

While transiting the system also clearly exhibits the Rossiter–McLaughlin effect, shifting in photospheric spectral lines caused by the planet occulting a part of the rotating stellar surface. Due to its high mass and close orbit, the parent star has a very large semi-amplitude (K), the "wobble" in the star's radial velocity, of 205 m/s.

The Rossiter–McLaughlin effect allows the measurement of the angle between the planet's orbital plane and the equatorial plane of the star. These are well aligned, misalignment equal to -0.5±0.4°. By analogy with HD 149026 b, the formation of the planet was peaceful and probably involved interactions with the protoplanetary disc. A much larger angle would have suggested a violent interplay with other protoplanets.

Comparison of "hot Jupiter" exoplanets (artist concept).
From top left to lower right: WASP-12b, WASP-6b, WASP-31b, WASP-39b, HD 189733b, HAT-P-12b, WASP-17b, WASP-19b, HAT-P-1b and HD 209458b.

Star-planet interaction controversy

In 2008, a team of astronomers first described how as the exoplanet orbiting HD 189733 A reaches a certain place in its orbit, it causes increased stellar flaring. In 2010, a different team found that every time they observe the exoplanet at a certain position in its orbit, they also detected X-ray flares. Theoretical research since 2000 suggested that an exoplanet very near to the star that it orbits may cause increased flaring due to the interaction of their magnetic fields, or because of tidal forces. In 2019, astronomers analyzed data from Arecibo Observatory, MOST, and the Automated Photoelectric Telescope, in addition to historical observations of the star at radio, optical, ultraviolet, and X-ray wavelengths to examine these claims. They found that the previous claims were exaggerated and the host star failed to display many of the brightness and spectral characteristics associated with stellar flaring and solar active regions, including sunspots. Their statistical analysis also found that many stellar flares are seen regardless of the position of the exoplanet, therefore debunking the earlier claims. The magnetic fields of the host star and exoplanet do not interact, and this system is no longer believed to have a "star-planet interaction." Some researchers had also suggested that HD 189733 accretes, or pulls, gas from its orbiting exoplanet at a rate similar to those found around young protostars in T Tauri Star systems. Later analysis demonstrated that very little, if any, gas was accreted from the "hot Jupiter" companion.

See also

References

  1. ^ Bouchy, F.; et al. (2005). "ELODIE metallicity-biased search for transiting Hot Jupiters II. A very hot Jupiter transiting the bright K star HD 189733". Astronomy and Astrophysics. 444 (1): L15 – L19. arXiv:astro-ph/0510119. Bibcode:2005A&A...444L..15B. doi:10.1051/0004-6361:200500201.
  2. ^ de Kok, R. J.; et al. (2013). "Detection of carbon monoxide in the high-resolution day-side spectrum of the exoplanet HD 189733b". Astronomy and Astrophysics. 554. A82. arXiv:1304.4014. Bibcode:2013A&A...554A..82D. doi:10.1051/0004-6361/201321381. S2CID 55266595.
  3. Brown, A. G. A.; et al. (Gaia collaboration) (August 2018). "Gaia Data Release 2: Summary of the contents and survey properties". Astronomy & Astrophysics. 616. A1. arXiv:1804.09365. Bibcode:2018A&A...616A...1G. doi:10.1051/0004-6361/201833051. Gaia DR2 record for this source at VizieR.
  4. Cite error: The named reference Khd was invoked but never defined (see the help page).
  5. ^ Berdyugina, S.V.; Berdyugin, A.V.; Fluri, D.M.; Piirola, V. (2011). "Polarized reflected light from the exoplanet HD189733b: First multicolor observations and confirmation of detection". Astrophysical Journal Letters. 726 (1): L6 – L9. arXiv:1101.0059. Bibcode:2011ApJ...728L...6B. doi:10.1088/2041-8205/728/1/L6. S2CID 59160192.
  6. Kramer, Miriam (11 July 2013). "Strange Blue World: Alien Planet's True Color Revealed, a First". Space.com. TechMediaNetwork. Retrieved 11 July 2013.
  7. Harrington, J.D.; Villard, Ray (July 24, 2014). "RELEASE 14-197 - Hubble Finds Three Surprisingly Dry Exoplanets". NASA. Retrieved July 25, 2014.
  8. Cite error: The named reference spitzer-press-release was invoked but never defined (see the help page).
  9. Frédéric Pont; et al. (2008). "Hubble Space Telescope time-series photometry of the planetary transit of HD189733: no moon, no rings, starspots". Astronomy and Astrophysics. 476 (3): 1347–1355. arXiv:0707.1940. Bibcode:2007A&A...476.1347P. doi:10.1051/0004-6361:20078269. S2CID 18293269.
  10. Polarization technique focuses limelight, 12/26/2007
  11. Fortney, J. J.; Lodders, K.; Marley, M. S.; Freedman, R. S. (2008). "A Unified Theory for the Atmospheres of the Hot and Very Hot Jupiters: Two Classes of Irradiated Atmospheres". Astrophysical Journal. 678 (2): 1419–1435. arXiv:0710.2558. Bibcode:2008ApJ...678.1419F. doi:10.1086/528370. S2CID 17502177.
  12. Ivan Hubeny; Adam Burrows (2008). "Spectrum and atmosphere models of irradiated transiting extrasolar giant planets". Proceedings of the International Astronomical Union. 4: 239–245. arXiv:0807.3588. Bibcode:2009IAUS..253..239H. doi:10.1017/S1743921308026458. S2CID 13978248.
  13. F. Pont; et al. (2008). "Detection of atmospheric haze on an extrasolar planet: The 0.55 – 1.05 micron transmission spectrum of HD189733b with the Hubble Space Telescope". Monthly Notices of the Royal Astronomical Society. 385 (1): 109–118. arXiv:0712.1374. Bibcode:2008MNRAS.385..109P. doi:10.1111/j.1365-2966.2008.12852.x. S2CID 10831981.
  14. Redfield; Endl, Michael; Cochran, William D.; Koesterke, Lars (2008). "Sodium Absorption from the Exoplanetary Atmosphere of HD 189733b Detected in the Optical Transmission Spectrum". The Astrophysical Journal Letters. 673 (1): L87 – L90. arXiv:0712.0761. Bibcode:2008ApJ...673L..87R. doi:10.1086/527475. S2CID 2028887.
  15. Keles, E.; Kitzmann, D.; Mallonn, M.; Alexoudi, X.; Fossati, L.; Pino, L.; Seidel, J. V.; Carroll, T. A.; Steffen, M.; Ilyin, I.; Poppenhäger, K.; Strassmeier, K. G.; Von Essen, C.; Nascimbeni, V.; Turner, J. D. (2020), "Probing the atmosphere of HD189733b with the Na i and K i lines", Monthly Notices of the Royal Astronomical Society, 498: 1023–1033, arXiv:2008.04044, doi:10.1093/mnras/staa2435{{citation}}: CS1 maint: unflagged free DOI (link)
  16. Robert Roy Britt (November 24, 2008). "Carbon Dioxide Detected on Faraway World". Space.com.
  17. Iro, Nicolas; Bruno Bezard; T. Guillot (June 2005). "A time-dependent radiative model of HD 209458b". Astronomy and Astrophysics. 436 (2): 719–727. arXiv:astro-ph/0409468. Bibcode:2005A&A...436..719I. doi:10.1051/0004-6361:20048344. S2CID 14132527.
  18. Klotz, Irene (November 16, 2015). "Exoplanet's Global Winds Let Rip at 5,400 MPH". Space. Retrieved 2015-11-17.
  19. "First Map of Alien World". Spitzer Space Telescope. Jet Propulsion Laboratory. 2007-05-09. Retrieved 2009-09-30.
  20. "Press Release: NASA's Spitzer Finds Water Vapor on Hot, Alien Planet". Archived from the original on 2007-07-15. Retrieved 2007-07-11.
  21. Cite error: The named reference agol was invoked but never defined (see the help page).
  22. ^ Swain, Mark R.; Vasisht, Gautam; Tinetti, Giovanna (2008-03-20). "The presence of methane in the atmosphere of an extrasolar planet". Nature. 452 (7185): 329–331. Bibcode:2008Natur.452..329S. doi:10.1038/nature06823. PMID 18354477. S2CID 205212651. arXiv.org link
  23. Ben-Jaffel, Lotfi; Ballester, Gilda (May 18, 2013). "Hubble Space Telescope detection of oxygen in the atmosphere of exoplanet HD189733b". Astronomy & Astrophysics. 553: A52. arXiv:1303.4232. Bibcode:2013A&A...553A..52B. doi:10.1051/0004-6361/201221014. S2CID 119311496.
  24. Stephen Battersby (2008-02-11). "Organic molecules found on alien world for first time". Retrieved 2008-02-12.
  25. Boucher, Anne; et al. (9 November 2021). "Characterizing Exoplanetary Atmospheres at High Resolution with SPIRou: Detection of Water on HD 189733 b". The Astronomical Journal. 162 (6). 233. arXiv:2108.08390. Bibcode:2021AJ....162..233B. doi:10.3847/1538-3881/ac1f8e.
  26. Loff, Sarah (2016-10-31). "Rains of Terror on Exoplanet HD 189733b". NASA. Retrieved 2019-12-13.
  27. "HD 189733 page". University of Geneva. 2007-03-05. Retrieved 2008-02-18.
  28. Gregory W. Henry; et al. (2008). "The Rotation Period of the Planet-Hosting Star HD 189733". The Astronomical Journal. 135 (1): 68–71. arXiv:0709.2142. Bibcode:2008AJ....135...68H. doi:10.1088/0004-6256/135/1/68. S2CID 15540915.
  29. Albrecht, Simon; Winn, Joshua N.; Johnson, John A.; Howard, Andrew W.; Marcy, Geoffrey W.; Butler, R. Paul; Arriagada, Pamela; Crane, Jeffrey D.; Shectman, Stephen A.; Thompson, Ian B.; Hirano, Teruyuki; Bakos, Gaspar; Hartman, Joel D. (2012), "Obliquities of Hot Jupiter Host Stars: Evidence for Tidal Interactions and Primordial Misalignments", The Astrophysical Journal, 757 (1): 18, arXiv:1206.6105, Bibcode:2012ApJ...757...18A, doi:10.1088/0004-637X/757/1/18, S2CID 17174530
  30. Route, Matthew (February 10, 2019). "The Rise of ROME. I. A Multiwavelength Analysis of the Star-Planet Interaction in the HD 189733 System". The Astrophysical Journal. 872 (1): 79. arXiv:1901.02048. Bibcode:2019ApJ...872...79R. doi:10.3847/1538-4357/aafc25. S2CID 119350145.{{cite journal}}: CS1 maint: unflagged free DOI (link)
  31. Route, Matthew; Looney, Leslie (December 20, 2019). "ROME (Radio Observations of Magnetized Exoplanets). II. HD 189733 Does Not Accrete Significant Material from Its Exoplanet Like a T Tauri Star from a Disk". The Astrophysical Journal. 887 (2): 229. arXiv:1911.08357. Bibcode:2019ApJ...887..229R. doi:10.3847/1538-4357/ab594e. S2CID 208158242.{{cite journal}}: CS1 maint: unflagged free DOI (link)
Cite error: A list-defined reference named "Berdyugina2008" is not used in the content (see the help page).

External links


Constellation of Vulpecula
Stars
Bayer
Flamsteed
Variable
HR
HD
Other
Exoplanets
Star clusters
Nebulae
Galaxies
NGC
Other
Astronomical events
Category
Portals: Categories: