Misplaced Pages

Ariel (moon): Difference between revisions

Article snapshot taken from Wikipedia with creative commons attribution-sharealike license. Give it a read and then ask your questions in the chat. We can research this topic together.
Browse history interactively← Previous editNext edit →Content deleted Content addedVisualWikitext
Revision as of 00:10, 28 June 2011 editArzel (talk | contribs)Pending changes reviewers12,013 edits Orbit: make consistent with lead. Second furthest doesn't make a whole lot of sense if it is the second closest.← Previous edit Revision as of 00:55, 28 June 2011 edit undoWolfmanSF (talk | contribs)Autopatrolled, Extended confirmed users, Pending changes reviewers156,372 edits wording; more explanation of orientation; add linkNext edit →
Line 39: Line 39:
| note=no | note=no
}} }}
'''Ariel''' ({{pron-en|ˈɛəriəl}}<ref name=trans group=note/>) is the brightest and fourth-largest of the 27 known ]s of ]. Discovered on 24 October 1851 by ], it is named for a ] in ]'s '']'' and ]'s '']''. Like its parent planet, Ariel orbits on its side, granting it an extreme seasonal cycle. As of 2011, almost all knowledge of Ariel derives from a single ] of Uranus performed by the spacecraft '']'' in 1986, which managed to image only 35% of the moon's surface. There are no plans at present to return to study the moon in more detail. '''Ariel''' ({{pron-en|ˈɛəriəl}}<ref name=trans group=note/>) is the brightest and fourth-largest of the 27 known ]s of ]. Discovered on 24 October 1851 by ], it is named for a ] in ]'s '']'' and ]'s '']''. Ariel orbits and rotates in the equatorial plane of Uranus, which is almost perpendicular to the orbit of Uranus, granting it an extreme seasonal cycle. As of 2011, almost all knowledge of Ariel derives from a single ] of Uranus performed by the spacecraft '']'' in 1986, which managed to image only 35% of the moon's surface. There are no plans at present to return to study the moon in more detail.


After ], Ariel is the second-smallest of Uranus's five round satellites, and the second-closest to its ]. Among the smaller of the Solar System's 19 known spherical moons (it ranks 14th among them in diameter), it is believed to be composed of roughly equal parts ice and rocky material. Like all of Uranus's moons, Ariel probably formed from an ] that surrounded the planet shortly after its formation, and, like other large moons, it is likely ], with an inner core of rock surrounded by a ] of ice. Ariel has a complex surface comprising extensive cratered terrain cross-cut by a system of ]s, ]s and ridges. The surface shows signs of more recent geological activity than other Uranian moons, most likely due to ]. After ], Ariel is the second-smallest of Uranus's five round satellites, and the second-closest to its ]. Among the smaller of the Solar System's 19 known spherical moons (it ranks 14th among them in diameter), it is believed to be composed of roughly equal parts ice and rocky material. Like all of Uranus's moons, Ariel probably formed from an ] that surrounded the planet shortly after its formation, and, like other large moons, it is likely ], with an inner core of rock surrounded by a ] of ice. Ariel has a complex surface comprising extensive cratered terrain cross-cut by a system of ]s, ]s and ridges. The surface shows signs of more recent geological activity than other Uranian moons, most likely due to ].
Line 51: Line 51:
Among Uranus's ], Ariel is the second closest to the planet, orbiting at the distance of about 190,000&nbsp;km.{{#tag:ref|The five major moons are ], Ariel, ], Titania and Oberon.|group=note}} Its orbit has a small ] and is ] very little relative to the ] of Uranus.<ref name=orbit/> Its ] is around 2.5&nbsp;Earth days, coincident with its ]. This means that one side of the moon always faces the planet; a condition known as ].<ref name=Smith1986/> Ariel's orbit lies completely inside the ].<ref name=Grundy2006/> The trailing ] (those facing away from their directions of orbit) of airless satellites orbiting inside a magnetosphere (like Ariel) are struck by magnetospheric ] co-rotating with the planet.<ref name=Ness1986/> This bombardment may lead to the darkening of the trailing hemispheres observed for all Uranian moons except Oberon (see below).<ref name=Grundy2006/> Ariel also captures magnetospheric charged particles, producing a pronounced dip in energetic particle count near the moon's orbit observed by ''Voyager 2'' in 1986.<ref name=Krimigis1986/> Among Uranus's ], Ariel is the second closest to the planet, orbiting at the distance of about 190,000&nbsp;km.{{#tag:ref|The five major moons are ], Ariel, ], Titania and Oberon.|group=note}} Its orbit has a small ] and is ] very little relative to the ] of Uranus.<ref name=orbit/> Its ] is around 2.5&nbsp;Earth days, coincident with its ]. This means that one side of the moon always faces the planet; a condition known as ].<ref name=Smith1986/> Ariel's orbit lies completely inside the ].<ref name=Grundy2006/> The trailing ] (those facing away from their directions of orbit) of airless satellites orbiting inside a magnetosphere (like Ariel) are struck by magnetospheric ] co-rotating with the planet.<ref name=Ness1986/> This bombardment may lead to the darkening of the trailing hemispheres observed for all Uranian moons except Oberon (see below).<ref name=Grundy2006/> Ariel also captures magnetospheric charged particles, producing a pronounced dip in energetic particle count near the moon's orbit observed by ''Voyager 2'' in 1986.<ref name=Krimigis1986/>


Because Ariel, like Uranus, orbits the ] almost on its side relative to its rotation, its northern and southern hemispheres face either directly towards or directly away from the Sun at the ]s. This means it is subject to an extreme seasonal cycle; just as Earth's poles see ] or ] around the solstices, so Ariel's poles see permanent night or daylight for half a Uranian year (42 Earth years), with the Sun rising close to the ] over one of the poles at each solstice.<ref name=Grundy2006/> The ''Voyager 2'' flyby coincided with the southern hemisphere's 1986 summer solstice, when nearly the entire northern hemisphere was unilluminated. Once every 42 years, when Uranus has an ] and its equatorial plane intersects the Earth, mutual ]s of Uranus's moons become possible. A number of such events occurred in 2007–2008, including an occultation of Ariel by Umbriel on 19 August 2007.<ref name=occultations/> Because Ariel, like Uranus, orbits the ] ] relative to its rotation, its northern and southern hemispheres face either directly towards or directly away from the Sun at the ]s. This means it is subject to an extreme seasonal cycle; just as Earth's poles see ] or ] around the solstices, so Ariel's poles see permanent night or daylight for half a Uranian year (42 Earth years), with the Sun rising close to the ] over one of the poles at each solstice.<ref name=Grundy2006/> The ''Voyager 2'' flyby coincided with the southern hemisphere's 1986 summer solstice, when nearly the entire northern hemisphere was unilluminated. Once every 42 years, when Uranus has an ] and its equatorial plane intersects the Earth, mutual ]s of Uranus's moons become possible. A number of such events occurred in 2007–2008, including an occultation of Ariel by Umbriel on 19 August 2007.<ref name=occultations/>


Currently Ariel is not involved in any ] with other Uranian satellites. In the past, however, it may have been in a 5:3 resonance with ], which could have been partially responsible for the heating of that moon (although the maximum heating attributable to a former 1:3 resonance of Umbriel with Miranda was likely about three times greater).<ref name=Tittemore1990/> Ariel may have once been locked in the 4:1 resonance with Titania, which it has later escaped.<ref name=Tittemore1990b/> Escape from a mean motion resonance is much easier for the moons of Uranus than for those of ] or ], due to Uranus's lesser degree of ]ness.<ref name=Tittemore1990b/> This resonance, which was likely encountered about 3.8 billion years ago, would have increased Ariel's ], resulting in tidal friction due to time-varying ]s from Uranus. This would have caused warming of the moon's interior by as much as 20&nbsp;].<ref name=Tittemore1990b/> Currently Ariel is not involved in any ] with other Uranian satellites. In the past, however, it may have been in a 5:3 resonance with ], which could have been partially responsible for the heating of that moon (although the maximum heating attributable to a former 1:3 resonance of Umbriel with Miranda was likely about three times greater).<ref name=Tittemore1990/> Ariel may have once been locked in the 4:1 resonance with Titania, from which it later escaped.<ref name=Tittemore1990b/> Escape from a mean motion resonance is much easier for the moons of Uranus than for those of ] or ], due to Uranus's lesser degree of ]ness.<ref name=Tittemore1990b/> This resonance, which was likely encountered about 3.8 billion years ago, would have increased Ariel's ], resulting in tidal friction due to time-varying ]s from Uranus. This would have caused warming of the moon's interior by as much as 20&nbsp;].<ref name=Tittemore1990b/>


==Composition and internal structure== ==Composition and internal structure==

Revision as of 00:55, 28 June 2011

Ariel
the dark face of Ariel, cut by valleys and marked by craters, appears half in sunlight and half in shadowAriel as seen by Voyager 2 in 1986
Discovery
Discovered byWilliam Lassell
Discovery date24 October 1851
Designations
PronunciationTemplate:Pron-en
Alternative namesUranus I
AdjectivesArielian
Orbital characteristics
Semi-major axis191,020 km
Mean orbit radius190,900 km
Eccentricity0.0012
Orbital period (sidereal)2.520 d
Inclination0.260° (to Uranus's equator)
Satellite ofUranus
Physical characteristics
Dimensions1162.2 × 1155.8 × 1155.4 km
Mean radius578.9 ± 0.6 km (0.0908 Earths)
Surface area4,211,300 km
Volume812,600,000 km
Mass1.353 ± 0.120×10 kg (2.26×10 Earths)
Mean density1.66 ± 0.15 g/cm
Surface gravity0.269 m/s
Escape velocity0.559 km/s
Synodic rotation periodsynchronous
Albedo0.53 (geometrical),
0.23 (Bond)
Surface temp. min mean max
solstice ? ~60 K 84 ± 1 K
Apparent magnitude14.4 (R-band)

Ariel (Template:Pron-en) is the brightest and fourth-largest of the 27 known moons of Uranus. Discovered on 24 October 1851 by William Lassell, it is named for a sky spirit in Alexander Pope's The Rape of the Lock and Shakespeare's The Tempest. Ariel orbits and rotates in the equatorial plane of Uranus, which is almost perpendicular to the orbit of Uranus, granting it an extreme seasonal cycle. As of 2011, almost all knowledge of Ariel derives from a single flyby of Uranus performed by the spacecraft Voyager 2 in 1986, which managed to image only 35% of the moon's surface. There are no plans at present to return to study the moon in more detail.

After Miranda, Ariel is the second-smallest of Uranus's five round satellites, and the second-closest to its planet. Among the smaller of the Solar System's 19 known spherical moons (it ranks 14th among them in diameter), it is believed to be composed of roughly equal parts ice and rocky material. Like all of Uranus's moons, Ariel probably formed from an accretion disk that surrounded the planet shortly after its formation, and, like other large moons, it is likely differentiated, with an inner core of rock surrounded by a mantle of ice. Ariel has a complex surface comprising extensive cratered terrain cross-cut by a system of scarps, canyons and ridges. The surface shows signs of more recent geological activity than other Uranian moons, most likely due to tidal heating.

Discovery and name

Both Ariel and the slightly larger Uranian satellite Umbriel were discovered by William Lassell on 24 October 1851. Although William Herschel, who discovered Uranus's two largest moons Titania and Oberon in 1787, claimed to have observed four additional moons, this was never confirmed and those four objects are now thought to be spurious.

All Uranus's moons are named after characters from the works of William Shakespeare or Alexander Pope's The Rape of the Lock. The names of all four satellites of Uranus then known were suggested by John Herschel in 1852 at the request of Lassell. Ariel is named after the leading sylph in Pope's poem The Rape of the Lock. It is also the name of the spirit who serves Prospero in Shakespeare's The Tempest. The moon is also designated Uranus I.

Orbit

Among Uranus's five major moons, Ariel is the second closest to the planet, orbiting at the distance of about 190,000 km. Its orbit has a small eccentricity and is inclined very little relative to the equator of Uranus. Its orbital period is around 2.5 Earth days, coincident with its rotational period. This means that one side of the moon always faces the planet; a condition known as tidal lock. Ariel's orbit lies completely inside the Uranian magnetosphere. The trailing hemispheres (those facing away from their directions of orbit) of airless satellites orbiting inside a magnetosphere (like Ariel) are struck by magnetospheric plasma co-rotating with the planet. This bombardment may lead to the darkening of the trailing hemispheres observed for all Uranian moons except Oberon (see below). Ariel also captures magnetospheric charged particles, producing a pronounced dip in energetic particle count near the moon's orbit observed by Voyager 2 in 1986.

Because Ariel, like Uranus, orbits the Sun almost on its side relative to its rotation, its northern and southern hemispheres face either directly towards or directly away from the Sun at the solstices. This means it is subject to an extreme seasonal cycle; just as Earth's poles see permanent night or daylight around the solstices, so Ariel's poles see permanent night or daylight for half a Uranian year (42 Earth years), with the Sun rising close to the zenith over one of the poles at each solstice. The Voyager 2 flyby coincided with the southern hemisphere's 1986 summer solstice, when nearly the entire northern hemisphere was unilluminated. Once every 42 years, when Uranus has an equinox and its equatorial plane intersects the Earth, mutual occultations of Uranus's moons become possible. A number of such events occurred in 2007–2008, including an occultation of Ariel by Umbriel on 19 August 2007.

Currently Ariel is not involved in any orbital resonance with other Uranian satellites. In the past, however, it may have been in a 5:3 resonance with Miranda, which could have been partially responsible for the heating of that moon (although the maximum heating attributable to a former 1:3 resonance of Umbriel with Miranda was likely about three times greater). Ariel may have once been locked in the 4:1 resonance with Titania, from which it later escaped. Escape from a mean motion resonance is much easier for the moons of Uranus than for those of Jupiter or Saturn, due to Uranus's lesser degree of oblateness. This resonance, which was likely encountered about 3.8 billion years ago, would have increased Ariel's orbital eccentricity, resulting in tidal friction due to time-varying tidal forces from Uranus. This would have caused warming of the moon's interior by as much as 20 K.

Composition and internal structure

Ariel is the fourth largest of the Uranian moons, and may have the third greatest mass. The moon's density is 1.66 g/cm, which indicates that it consists of roughly equal parts water ice and a dense non-ice component. The latter could consist of rock and carbonaceous material including heavy organic compounds known as tholins. The presence of water ice is supported by infrared spectroscopic observations, which have revealed crystalline water ice on the surface of the moon. Water ice absorption bands are stronger on Ariel's leading hemisphere than on its trailing hemisphere. The cause of this asymmetry is not known, but it may be related to bombardment by charged particles from Uranus's magnetosphere, which is stronger on the trailing hemisphere (due to the plasma's co-rotation). The energetic particles tend to sputter water ice, decompose methane trapped in ice as clathrate hydrate and darken other organics, leaving a dark, carbon-rich residue behind.

Except for water, the only other compound identified on the surface of Ariel by infrared spectroscopy is carbon dioxide (CO2), which is concentrated mainly on its trailing hemisphere. Ariel shows the strongest spectroscopic evidence for CO2 of any Uranian satellite, and was the first Uranian satellite on which this compound was discovered. The origin of the carbon dioxide is not completely clear. It might be produced locally from carbonates or organic materials under the influence of the energetic charged particles coming from Uranus's magnetosphere or solar ultraviolet radiation. This hypothesis would explain the asymmetry in its distribution, as the trailing hemisphere is subject to a more intense magnetospheric influence than the leading hemisphere. Another possible source is the outgassing of primordial CO2 trapped by water ice in Ariel's interior. The escape of CO2 from the interior may be related to past geological activity on this moon.

Given its size, rock/ice composition and the possible presence of salt or ammonia in solution to lower the freezing point of water, Ariel's interior may be differentiated into a rocky core surrounded by an icy mantle. If this is the case, the radius of the core (372 km) is about 64% of the radius of the moon, and its mass is around 56% of the moon’s mass—the parameters are dictated by the moon's composition. The pressure in the center of Ariel is about 0.3 GPa (3 kbar). The current state of the icy mantle is unclear, although the existence of a subsurface ocean is considered unlikely.

Surface

the bottom hemisphere of Ariel is seen, reddish and dark, with cracks and craters lining the edge
The highest-resolution color image of Ariel by Voyager 2. Canyons covered by smooth plains are visible in the bottom-right corner.

Albedo and color

Ariel is the brightest of Uranus's moons. Its surface shows an opposition surge: the reflectivity decreases from 53% at a phase angle of 0° (geometrical albedo) to 35% at an angle of about 1°. The Bond albedo of Ariel is about 23%—the highest among Uranian satellites. The surface of Ariel is generally neutral in color. There may be an asymmetry between the leading and trailing hemispheres; the latter appears to be redder than the former by 2%. Ariel's surface generally does not demonstrate any correlation between albedo and geology on the one hand and color on the other hand. For instance, canyons have the same color as the cratered terrain. However, bright impact deposits around some fresh craters are slightly bluer in color. There are also some slightly blue spots, which do not correspond to any known surface features.

Surface features

See also: List of geological features on Ariel

The observed surface of Ariel can be divided into three terrain types: cratered terrain, ridged terrain and plains. The main surface features are impact craters, canyons, fault scarps, ridges and troughs.

dark, angular features cut by smooth ravines into triangles, cast into high contrast by sunlight
Graben on the surface of Ariel. The floor is covered by the smooth material possibly extruded from beneath.

The cratered terrain, a rolling surface covered by numerous impact craters and centered on Ariel's south pole, is the moon's oldest and most geographically extensive geological unit. It is intersected by a network of scarps, canyons (graben) and narrow ridges mainly occurring in Ariel's mid-southern latitudes. The canyons, known as chasmata, probably represent graben formed by extensional faulting, which resulted from global tensional stresses caused by the freezing of water (or aqueous ammonia) in the moon's interior (see below). They are 15–50 km wide and trend mainly in an east- or northeasterly direction. The floors of many canyons are convex; rising up by 1–2 km. Sometimes the floors are separated from the walls of canyons by grooves (troughs) about 1 km wide. The widest graben have grooves running along the crests of their convex floors, which are called valles. The longest canyon is Kachina Chasma, at about 620 km in length.

The second main terrain type—ridged terrain—comprises bands of ridges and troughs hundreds of kilometers in extent. It bounds the cratered terrain and cuts it into polygons. Within each band, which can be up to 25 to 70 km wide, are individual ridges and troughs up to 200 km long and between 10 and 35 km apart. The bands of ridged terrain often form continuations of canyons, suggesting that they may be a modified form of the graben or the result of a different reaction of the crust to the same extensional stresses, such as brittle failure.

a patch of observed surface is lit in light blue, against a blank disc representing the moon's entire diameter
False color image of Ariel. A crater slightly below and to the left from the center is Yangoor. A part of it was erased by ridged terrain.

The youngest terrain observed on Ariel are the plains: relatively low-lying smooth areas that must have formed over a long period of time, judging by their varying levels of cratering. The plains are found on the floors of canyons and in a few irregular depressions in the middle of the cratered terrain. In the latter case they are separated from the cratered terrain by sharp boundaries, which in some cases have a lobate pattern. The most likely origin for the plains is through volcanic processes; their linear vent geometry, resembling terrestrial shield volcanoes, and distinct topographic margins suggest that the erupted liquid was very viscous, possibly a supercooled water/ammonia solution, with solid ice volcanism also a possibility. The thickness of these hypothetical cryolava flows is estimated at 1–3 km. The canyons must therefore have formed at a time when endogenic resurfacing was still taking place on Ariel.

Ariel appears to be fairly evenly cratered compared to other moons of Uranus; the relative paucity of large craters suggests that its surface does not date to the Solar System's formation, which means that Ariel must have been completely resurfaced at some point of its history. Ariel's past geologic activity is believed to have been driven by tidal heating at a time when its orbit was more eccentric than currently. The largest crater observed on Ariel, Yangoor, is only 78 km across, and shows signs of subsequent deformation. All large craters on Ariel have flat floors and central peaks, and few of the craters are surrounded by bright ejecta deposits. Many craters are polygonal, indicating that their appearance was influenced by the preexisting crustal structure. In the cratered plains there are a few large (about 100 km in diameter) light patches that may be degraded impact craters. If this is the case they would be similar to palimpsests on Jupiter's moon Ganymede. It has been suggested that a circular depression 245 km in diameter located at 10°S 30°E is a large, highly degraded impact structure.

Origin and evolution

Ariel is thought to have formed from an accretion disc or subnebula; a disc of gas and dust that either existed around Uranus for some time after its formation or was created by the giant impact that most likely gave Uranus its large obliquity. The precise composition of the subnebula is not known; however, the higher density of Uranian moons compared to the moons of Saturn indicates that it may have been relatively water-poor. Significant amounts of nitrogen and carbon may have been present in the form of carbon monoxide (CO) and molecular nitrogen (N2) instead of ammonia and methane. The moons that formed in such a subnebula would contain less water ice (with CO and N2 trapped as clathrate) and more rock, explaining the higher density.

The accretion process probably lasted for several thousand years before the moon was fully formed. Models suggest that impacts accompanying accretion caused heating of Ariel's outer layer, reaching a maximum temperature of around 195 K at a depth of about 31 km. After the end of formation, the subsurface layer cooled, while the interior of Ariel heated due to decay of radioactive elements present in its rocks. The cooling near-surface layer contracted, while the interior expanded. This caused strong extensional stresses in the moon's crust reaching estimates of 30 MPa, which may have led to cracking. Some present-day scarps and canyons may be a result of this process, which lasted for about 200 million years.

The initial accretional heating together with continued decay of radioactive elements and likely tidal heating may have led to melting of the ice if an antifreeze like ammonia (in the form of ammonia hydrate) or some salt was present. The melting may have led to the separation of ice from rocks and formation of a rocky core surrounded by an icy mantle. A layer of liquid water (ocean) rich in dissolved ammonia may have formed at the core–mantle boundary. The eutectic temperature of this mixture is 176 K. The ocean, however, is likely to have frozen long ago. The freezing of the water likely led to the expansion of the interior, which may have been responsible for the formation of the canyons and obliteration of the ancient surface. The liquids from the ocean may have been able to erupt to the surface, flooding floors of canyons in the process known as cryovolcanism.

Thermal modeling of Saturn's moon Dione, which is similar to Ariel in size, density and surface temperature, suggests that solid state convection could have lasted in Ariel's interior for billions of years, and that temperatures in excess of 173 K (the melting point of aqueous ammonia) may have persisted near its surface for several hundred million years after formation, and near a billion years closer to the core.

Observation and exploration

Main article: Exploration of Uranus
the planet Uranus is seen through the Hubble telescope, its atmosphere defined by bands of electric blue and green. Ariel appears as a white dot floating above it, casting a dark shadow below
Ariel transiting Uranus, complete with shadow

The apparent magnitude of Ariel is 14.4; similar to that of Pluto near perihelion. However, while Pluto can be seen through a telescope of 30 cm aperture, Ariel, due to its proximity to Uranus's glare, is often not visible to telescopes of 40 cm aperture.

The only close-up images of Ariel have been from the Voyager 2 probe, which photographed the moon during its flyby of Uranus in January 1986. The closest distance between Voyager 2 and Ariel was 127,000 km (79,000 mi)—significantly less than the distances to all other Uranian moons except Miranda. The best images of Ariel have a spatial resolution of about 2 km. They cover about 40% of the surface, but only 35% was photographed with the quality required for geological mapping and crater counting. At the time of the flyby the southern hemisphere of Ariel (like those of the other moons) was pointed towards the Sun, so the northern (dark) hemisphere could not be studied. No other spacecraft has ever visited Uranus (and Ariel), and no mission to Uranus and its moons is planned.

Transits

On 26 July 2006, the Hubble Space Telescope captured a rare transit made by Ariel across the face of Uranus, during which the satellite cast a shadow that could be seen on the Uranian cloud tops. Such events are rare and only occur around equinoxes, as the moon's orbital plane about Uranus is tilted 98° to Uranus's orbital plane about the Sun. Another transit, in 2008, was recorded by the European Southern Observatory.

Notes

  1. ^ In US dictionary transcription, Template:USdict.
  2. Surface area derived from the radius r : 4 π r 2 {\displaystyle 4\pi r^{2}} .
  3. Volume v derived from the radius r : 4 π r 3 / 3 {\displaystyle 4\pi r^{3}/3} .
  4. Surface gravity derived from the mass m, the gravitational constant G and the radius r : G m / r 2 {\displaystyle Gm/r^{2}} .
  5. Escape velocity derived from the mass m, the gravitational constant G and the radius r : √2Gm/r.
  6. The five major moons are Miranda, Ariel, Umbriel, Titania and Oberon.
  7. Due to the current observational error, it is not yet known for certain whether Ariel is more massive than Umbriel.
  8. The color is determined by the ratio of albedos viewed through the green (0.52–0.59 μm) and violet (0.38–0.45 μm) Voyager filters.
  9. The surface density of craters larger than 30 km in diameter ranges from 20 to 70 per million km on Ariel, whereas it is about 1800 for Oberon or Umbriel.
  10. For instance, Tethys, a Saturnian moon, has the density of 0.97 g/cm, which means that it is more than 90% water.

References

  1. "Ariel". Webster's Online. Retrieved 2010-09-21.
  2. ^ "Planetary Satellite Mean Orbital Parameters". Jet Propulsion Laboratory, California Institute of Technology.
  3. ^ Attention: This template ({{cite doi}}) is deprecated. To cite the publication identified by doi:10.1016/0019-1035(88)90054-1, please use {{cite journal}} (if it was published in a bona fide academic journal, otherwise {{cite report}} with |doi=10.1016/0019-1035(88)90054-1 instead.
  4. ^ Attention: This template ({{cite doi}}) is deprecated. To cite the publication identified by doi:10.1086/116211, please use {{cite journal}} (if it was published in a bona fide academic journal, otherwise {{cite report}} with |doi=10.1086/116211 instead.
  5. ^ Attention: This template ({{cite doi}}) is deprecated. To cite the publication identified by doi:10.1006/icar.2001.6596, please use {{cite journal}} (if it was published in a bona fide academic journal, otherwise {{cite report}} with |doi=10.1006/icar.2001.6596 instead.
  6. ^ Attention: This template ({{cite doi}}) is deprecated. To cite the publication identified by doi:10.1016/j.icarus.2006.04.016, please use {{cite journal}} (if it was published in a bona fide academic journal, otherwise {{cite report}} with |doi=10.1016/j.icarus.2006.04.016 instead.
  7. Attention: This template ({{cite doi}}) is deprecated. To cite the publication identified by doi:10.1126/science.233.4759.70, please use {{cite journal}} (if it was published in a bona fide academic journal, otherwise {{cite report}} with |doi=10.1126/science.233.4759.70 instead.
  8. ^ Attention: This template ({{cite doi}}) is deprecated. To cite the publication identified by doi:10.1016/j.pss.2008.02.034, please use {{cite journal}} (if it was published in a bona fide academic journal, otherwise {{cite report}} with |doi=10.1016/j.pss.2008.02.034 instead.
  9. Lassell, W. (1851). "On the interior satellites of Uranus". Monthly Notices of the Royal Astronomical Society. 12: 15–17. Bibcode:1851MNRAS..12...15L.
  10. ^ Attention: This template ({{cite doi}}) is deprecated. To cite the publication identified by doi:10.1086/100198, please use {{cite journal}} (if it was published in a bona fide academic journal, otherwise {{cite report}} with |doi=10.1086/100198 instead.
  11. Herschel, William (1798). "On the Discovery of Four Additional Satellites of the Georgium Sidus; The Retrograde Motion of Its Old Satellites Announced; And the Cause of Their Disappearance at Certain Distances from the Planet Explained". Philosophical Transactions of the Royal Society of London. 88 (0): 47–79. Bibcode:1798RSPT...88...47H. doi:10.1098/rstl.1798.0005.
  12. Struve, O. (1848). "Note on the Satellites of Uranus". Monthly Notices of the Royal Astronomical Society. 8 (3): 44–47. Bibcode:1848MNRAS...8...43.
  13. Holden, E.S. (1874). "On the inner satellites of Uranus". Monthly Notices of the Royal Astronomical Society. 35: 16–22. Bibcode:1874MNRAS..35...16H.
  14. Lassell, W. (1874). "Letter on Prof. Holden's Paper on the inner satellites of Uranus". Monthly Notices of the Royal Astronomical Society. 35: 22–27. Bibcode:1874MNRAS..35...22L.
  15. Lassell, W. (1852). "Beobachtungen der Uranus-Satelliten". Astronomische Nachrichten (in German). 34: 325. Bibcode:1852AN.....34..325.
  16. Attention: This template ({{cite doi}}) is deprecated. To cite the publication identified by doi:10.1086/126146, please use {{cite journal}} (if it was published in a bona fide academic journal, otherwise {{cite report}} with |doi=10.1086/126146 instead.
  17. ^ Attention: This template ({{cite doi}}) is deprecated. To cite the publication identified by doi:10.1126/science.233.4759.43, please use {{cite journal}} (if it was published in a bona fide academic journal, otherwise {{cite report}} with |doi=10.1126/science.233.4759.43 instead. (See pages 58–59, 60–64)
  18. Attention: This template ({{cite doi}}) is deprecated. To cite the publication identified by doi:10.1126/science.233.4759.85, please use {{cite journal}} (if it was published in a bona fide academic journal, otherwise {{cite report}} with |doi=10.1126/science.233.4759.85 instead.
  19. Krimigis, S.M.; Armstrong, T.P.; Axford, W.I.; et al. (1986). "The Magnetosphere of Uranus: Hot Plasma and radiation Environment". Science. 233 (4759): 97–102. Bibcode:1986Sci...233...97K. doi:10.1126/science.233.4759.97. PMID 17812897.
  20. Miller, C. (2009). "Resolving dynamic parameters of the August 2007 Titania and Ariel occultations by Umbriel". Icarus. 200 (1): 343–346. Bibcode:2009Icar..200..343M. doi:10.1016/j.icarus.2008.12.010. {{cite journal}}: Unknown parameter |coauthors= ignored (|author= suggested) (help)
  21. Tittemore, W. C. (1990). "Tidal evolution of the Uranian satellites III. Evolution through the Miranda-Umbriel 3:1, Miranda-Ariel 5:3, and Ariel-Umbriel 2:1 mean-motion commensurabilities". Icarus. 85 (2): 394–443. Bibcode:1990Icar...85..394T. doi:10.1016/0019-1035(90)90125-S. {{cite journal}}: Unknown parameter |coauthors= ignored (|author= suggested) (help)
  22. ^ Attention: This template ({{cite doi}}) is deprecated. To cite the publication identified by doi:10.1016/0019-1035(90)90024-4, please use {{cite journal}} (if it was published in a bona fide academic journal, otherwise {{cite report}} with |doi=10.1016/0019-1035(90)90024-4 instead.
  23. "Planetary Satellite Physical Parameters". Jet Propulsion Laboratory (Solar System Dynamics). Retrieved 2009-05-28.
  24. ^ Attention: This template ({{cite doi}}) is deprecated. To cite the publication identified by doi:10.1016/j.icarus.2006.06.005, please use {{cite journal}} (if it was published in a bona fide academic journal, otherwise {{cite report}} with |doi=10.1016/j.icarus.2006.06.005 instead.
  25. ^ Bell III, J.F. (1991). A search for spectral units on the Uranian satellites using color ratio images (Conference Proceedings). Lunar and Planetary Science Conference, 21st, 12–16 Mar. 1990. Houston, TX, United States: Lunar and Planetary Sciences Institute. pp. 473–489. {{cite conference}}: Unknown parameter |coauthors= ignored (|author= suggested) (help)
  26. ^ Attention: This template ({{cite doi}}) is deprecated. To cite the publication identified by doi:10.1016/0019-1035(91)90064-Z, please use {{cite journal}} (if it was published in a bona fide academic journal, otherwise {{cite report}} with |doi=10.1016/0019-1035(91)90064-Z instead.
  27. ^ Attention: This template ({{cite doi}}) is deprecated. To cite the publication identified by doi:10.1038/327201a0, please use {{cite journal}} (if it was published in a bona fide academic journal, otherwise {{cite report}} with |doi=10.1038/327201a0 instead.
  28. ^ "Nomenclature Search Results: Ariel". Gazetteer of Planetary Nomenclature. USGS Astrogeology. Retrieved 2010-11-29.
  29. ^ Attention: This template ({{cite doi}}) is deprecated. To cite the publication identified by doi:10.1029/90JB01604, please use {{cite journal}} (if it was published in a bona fide academic journal, otherwise {{cite report}} with |doi=10.1029/90JB01604 instead. (See pages 1893–1896)
  30. Plescia, J. B. (1987). "Geology and Cratering History of Ariel". Abstracts of the Lunar and Planetary Science Conference. 18: 788. Bibcode:1987LPI....18..788P.
  31. Attention: This template ({{cite doi}}) is deprecated. To cite the publication identified by doi:10.1016/j.icarus.2004.05.009, please use {{cite journal}} (if it was published in a bona fide academic journal, otherwise {{cite report}} with |doi=10.1016/j.icarus.2004.05.009 instead.
  32. ^ Attention: This template ({{cite doi}}) is deprecated. To cite the publication identified by doi:10.1051/0004-6361:20031515, please use {{cite journal}} (if it was published in a bona fide academic journal, otherwise {{cite report}} with |doi=10.1051/0004-6361:20031515 instead.
  33. ^ Attention: This template ({{cite doi}}) is deprecated. To cite the publication identified by doi:10.1029/JB093iB08p08779, please use {{cite journal}} (if it was published in a bona fide academic journal, otherwise {{cite report}} with |doi=10.1029/JB093iB08p08779 instead.
  34. ^ Attention: This template ({{cite doi}}) is deprecated. To cite the publication identified by doi:10.1029/91JE01401, please use {{cite journal}} (if it was published in a bona fide academic journal, otherwise {{cite report}} with |doi=10.1029/91JE01401 instead.
  35. "This month Pluto's apparent magnitude is m=14.1. Could we see it with an 11" reflector of focal length 3400 mm?". Singapore Science Centre. Archived from the original on 11 November 2005. Retrieved 2007-03-25.
  36. Sinnott, Roger W.; Ashford, Adrian. "The Elusive Moons of Uranus". Sky&Telescope. Retrieved 2011-01-04.{{cite web}}: CS1 maint: multiple names: authors list (link)
  37. Attention: This template ({{cite doi}}) is deprecated. To cite the publication identified by doi:10.1029/JA092iA13p14873, please use {{cite journal}} (if it was published in a bona fide academic journal, otherwise {{cite report}} with |doi=10.1029/JA092iA13p14873 instead.
  38. "Missions to Uranus". NASA Solar System Exploration. 2010. Retrieved 2011-01-11.
  39. "Uranus and Ariel". Hubblesite (News Release 72 of 674). 26 July 2006. Retrieved 2006-12-14.
  40. "Uranus and satellites". European Southern Observatory. 2008. Retrieved 2010-11-27.
Cite error: A list-defined reference with the name "Jacobson1992" has been invoked, but is not defined in the <references> tag (see the help page).

External links

Uranus
Geography
Major moons
Astronomy
Discovery
General
Co-orbitals
Exploration
Past
Future
Proposals
Related
Moons of Uranus
  • Listed in approximately increasing distance from Uranus
Inner
Major (spheroid)
Outer (irregular)
Prograde
Retrograde
Geological features
Natural satellites of the Solar System
Planetary
satellites
of


Dwarf planet
satellites
of
Minor-planet
moons
Near-Earth
Florence
Didymos
Dimorphos
Moshup
Squannit
1994 CC
2001 SN263
Main belt
Kalliope
Linus
Euphrosyne
Daphne
Peneius
Eugenia
Petit-Prince
Sylvia
Romulus
Remus
Minerva
Aegis
Gorgoneion
Camilla
Elektra
Kleopatra
Alexhelios
Cleoselene
Ida
Dactyl
Roxane
Olympias
Pulcova
Balam
Dinkinesh (Selam)
Jupiter trojans
Patroclus
Menoetius
Hektor
Skamandrios
Eurybates
Queta
TNOs
Lempo
Hiisi
Paha
2002 UX25
Sila–Nunam
Salacia
Actaea
Varda
Ilmarë
Gǃkúnǁʼhòmdímà
Gǃòʼé ǃHú
2013 FY27
Ranked
by size

Categories: