Misplaced Pages

Bernstein–Vazirani algorithm

Article snapshot taken from Wikipedia with creative commons attribution-sharealike license. Give it a read and then ask your questions in the chat. We can research this topic together.
Quantum algorithm

The Bernstein–Vazirani algorithm, which solves the Bernstein–Vazirani problem, is a quantum algorithm invented by Ethan Bernstein and Umesh Vazirani in 1997. It is a restricted version of the Deutsch–Jozsa algorithm where instead of distinguishing between two different classes of functions, it tries to learn a string encoded in a function. The Bernstein–Vazirani algorithm was designed to prove an oracle separation between complexity classes BQP and BPP.

Problem statement

Given an oracle that implements a function f : { 0 , 1 } n { 0 , 1 } {\displaystyle f\colon \{0,1\}^{n}\rightarrow \{0,1\}} in which f ( x ) {\displaystyle f(x)} is promised to be the dot product between x {\displaystyle x} and a secret string s { 0 , 1 } n {\displaystyle s\in \{0,1\}^{n}} modulo 2, f ( x ) = x s = x 1 s 1 x 2 s 2 x n s n {\displaystyle f(x)=x\cdot s=x_{1}s_{1}\oplus x_{2}s_{2}\oplus \cdots \oplus x_{n}s_{n}} , find s {\displaystyle s} .

Algorithm

Classically, the most efficient method to find the secret string is by evaluating the function n {\displaystyle n} times with the input values x = 2 i {\displaystyle x=2^{i}} for all i { 0 , 1 , , n 1 } {\displaystyle i\in \{0,1,\dots ,n-1\}} :

f ( 1000 0 n ) = s 1 f ( 0100 0 n ) = s 2 f ( 0010 0 n ) = s 3 f ( 0000 1 n ) = s n {\displaystyle {\begin{aligned}f(1000\cdots 0_{n})&=s_{1}\\f(0100\cdots 0_{n})&=s_{2}\\f(0010\cdots 0_{n})&=s_{3}\\&\,\,\,\vdots \\f(0000\cdots 1_{n})&=s_{n}\\\end{aligned}}}

In contrast to the classical solution which needs at least n {\displaystyle n} queries of the function to find s {\displaystyle s} , only one query is needed using quantum computing. The quantum algorithm is as follows:

Apply a Hadamard transform to the n {\displaystyle n} qubit state | 0 n {\displaystyle |0\rangle ^{\otimes n}} to get

1 2 n x = 0 2 n 1 | x . {\displaystyle {\frac {1}{\sqrt {2^{n}}}}\sum _{x=0}^{2^{n}-1}|x\rangle .}

Next, apply the oracle U f {\displaystyle U_{f}} which transforms | x ( 1 ) f ( x ) | x {\displaystyle |x\rangle \to (-1)^{f(x)}|x\rangle } . This can be simulated through the standard oracle that transforms | b | x | b f ( x ) | x {\displaystyle |b\rangle |x\rangle \to |b\oplus f(x)\rangle |x\rangle } by applying this oracle to | 0 | 1 2 | x {\displaystyle {\frac {|0\rangle -|1\rangle }{\sqrt {2}}}|x\rangle } . ( {\displaystyle \oplus } denotes addition mod two.) This transforms the superposition into

1 2 n x = 0 2 n 1 ( 1 ) f ( x ) | x . {\displaystyle {\frac {1}{\sqrt {2^{n}}}}\sum _{x=0}^{2^{n}-1}(-1)^{f(x)}|x\rangle .}

Another Hadamard transform is applied to each qubit which makes it so that for qubits where s i = 1 {\displaystyle s_{i}=1} , its state is converted from | {\displaystyle |-\rangle } to | 1 {\displaystyle |1\rangle } and for qubits where s i = 0 {\displaystyle s_{i}=0} , its state is converted from | + {\displaystyle |+\rangle } to | 0 {\displaystyle |0\rangle } . To obtain s {\displaystyle s} , a measurement in the standard basis ( { | 0 , | 1 } {\displaystyle \{|0\rangle ,|1\rangle \}} ) is performed on the qubits.

Graphically, the algorithm may be represented by the following diagram, where H n {\displaystyle H^{\otimes n}} denotes the Hadamard transform on n {\displaystyle n} qubits:

| 0 n H n 1 2 n x { 0 , 1 } n | x U f 1 2 n x { 0 , 1 } n ( 1 ) f ( x ) | x H n 1 2 n x , y { 0 , 1 } n ( 1 ) f ( x ) + x y | y = | s {\displaystyle |0\rangle ^{n}\xrightarrow {H^{\otimes n}} {\frac {1}{\sqrt {2^{n}}}}\sum _{x\in \{0,1\}^{n}}|x\rangle \xrightarrow {U_{f}} {\frac {1}{\sqrt {2^{n}}}}\sum _{x\in \{0,1\}^{n}}(-1)^{f(x)}|x\rangle \xrightarrow {H^{\otimes n}} {\frac {1}{2^{n}}}\sum _{x,y\in \{0,1\}^{n}}(-1)^{f(x)+x\cdot y}|y\rangle =|s\rangle }

The reason that the last state is | s {\displaystyle |s\rangle } is because, for a particular y {\displaystyle y} ,

1 2 n x { 0 , 1 } n ( 1 ) f ( x ) + x y = 1 2 n x { 0 , 1 } n ( 1 ) x s + x y = 1 2 n x { 0 , 1 } n ( 1 ) x ( s y ) = 1  if  s y = 0 , 0  otherwise . {\displaystyle {\frac {1}{2^{n}}}\sum _{x\in \{0,1\}^{n}}(-1)^{f(x)+x\cdot y}={\frac {1}{2^{n}}}\sum _{x\in \{0,1\}^{n}}(-1)^{x\cdot s+x\cdot y}={\frac {1}{2^{n}}}\sum _{x\in \{0,1\}^{n}}(-1)^{x\cdot (s\oplus y)}=1{\text{ if }}s\oplus y={\vec {0}},\,0{\text{ otherwise}}.}

Since s y = 0 {\displaystyle s\oplus y={\vec {0}}} is only true when s = y {\displaystyle s=y} , this means that the only non-zero amplitude is on | s {\displaystyle |s\rangle } . So, measuring the output of the circuit in the computational basis yields the secret string s {\displaystyle s} .


A generalization of Bernstein–Vazirani problem has been proposed that involves finding one or more secret keys using a probabilistic oracle. This is an interesting problem for which a quantum algorithm can provide efficient solutions with certainty or with a high degree of confidence, while classical algorithms completely fail to solve the problem in the general case.

See also

References

  1. ^ Ethan Bernstein and Umesh Vazirani (1997). "Quantum Complexity Theory". SIAM Journal on Computing. 26 (5): 1411–1473. doi:10.1137/S0097539796300921.
  2. ^ S D Fallek, C D Herold, B J McMahon, K M Maller, K R Brown, and J M Amini (2016). "Transport implementation of the Bernstein–Vazirani algorithm with ion qubits". New Journal of Physics. 18. arXiv:1710.01378. doi:10.1088/1367-2630/aab341.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  3. Alok Shukla and Prakash Vedula (2023). "A generalization of Bernstein--Vazirani algorithm with multiple secret keys and a probabilistic oracle". Quantum Information Processing. 22:244 (6): 1–18. arXiv:2301.10014. doi:10.1007/s11128-023-03978-3.
Quantum information science
General
Theorems
Quantum
communication
Quantum cryptography
Quantum algorithms
Quantum
complexity theory
Quantum
processor benchmarks
Quantum
computing models
Quantum
error correction
Physical
implementations
Quantum optics
Ultracold atoms
Spin-based
Superconducting
Quantum
programming
Categories: