Misplaced Pages

CSS code

Article snapshot taken from Wikipedia with creative commons attribution-sharealike license. Give it a read and then ask your questions in the chat. We can research this topic together.
Class of quantum error correcting codes For the document presentation language, see CSS.

In quantum error correction, CSS codes, named after their inventors, Robert Calderbank, Peter Shor and Andrew Steane, are a special type of stabilizer code constructed from classical codes with some special properties. An example of a CSS code is the Steane code.

Construction

Let C 1 {\displaystyle C_{1}} and C 2 {\displaystyle C_{2}} be two (classical) [ n , k 1 ] {\displaystyle } , [ n , k 2 ] {\displaystyle } codes such, that C 2 C 1 {\displaystyle C_{2}\subset C_{1}} and C 1 , C 2 {\displaystyle C_{1},C_{2}^{\perp }} both have minimal distance 2 t + 1 {\displaystyle \geq 2t+1} , where C 2 {\displaystyle C_{2}^{\perp }} is the code dual to C 2 {\displaystyle C_{2}} . Then define CSS ( C 1 , C 2 ) {\displaystyle {\text{CSS}}(C_{1},C_{2})} , the CSS code of C 1 {\displaystyle C_{1}} over C 2 {\displaystyle C_{2}} as an [ n , k 1 k 2 , d ] {\displaystyle } code, with d 2 t + 1 {\displaystyle d\geq 2t+1} as follows:

Define for x C 1 : | x + C 2 := {\displaystyle x\in C_{1}:{|}x+C_{2}\rangle :=} 1 / | C 2 | {\displaystyle 1/{\sqrt {{|}C_{2}{|}}}} y C 2 | x + y {\displaystyle \sum _{y\in C_{2}}{|}x+y\rangle } , where + {\displaystyle +} is bitwise addition modulo 2. Then CSS ( C 1 , C 2 ) {\displaystyle {\text{CSS}}(C_{1},C_{2})} is defined as { | x + C 2 x C 1 } {\displaystyle \{{|}x+C_{2}\rangle \mid x\in C_{1}\}} .

References

  1. Robert Calderbank and Peter Shor (1996). "Good quantum error-correcting codes exist". Physical Review A. 54 (2): 1098–1105. arXiv:quant-ph/9512032. Bibcode:1996PhRvA..54.1098C. doi:10.1103/PhysRevA.54.1098. PMID 9913578. S2CID 11524969.
  2. Steane, Andrew (1996). "Multiple-Particle Interference and Quantum Error Correction". Proc. R. Soc. Lond. A. 452 (1954): 2551–2577. arXiv:quant-ph/9601029. Bibcode:1996RSPSA.452.2551S. doi:10.1098/rspa.1996.0136. S2CID 8246615.

Nielsen, Michael A.; Chuang, Isaac L. (2010). Quantum Computation and Quantum Information (2nd ed.). Cambridge: Cambridge University Press. ISBN 978-1-107-00217-3. OCLC 844974180.

External links

Quantum information science
General
Theorems
Quantum
communication
Quantum cryptography
Quantum algorithms
Quantum
complexity theory
Quantum
processor benchmarks
Quantum
computing models
Quantum
error correction
Physical
implementations
Quantum optics
Ultracold atoms
Spin-based
Superconducting
Quantum
programming
Stub icon

This quantum mechanics-related article is a stub. You can help Misplaced Pages by expanding it.

Categories: