Misplaced Pages

Bifrustum

Article snapshot taken from Wikipedia with creative commons attribution-sharealike license. Give it a read and then ask your questions in the chat. We can research this topic together.
Polyhedron made by joining two identical frusta at their bases
Family of bifrusta
Example: hexagonal bifrustum
Faces2 n-gons
2n trapezoids
Edges5n
Vertices3n
Symmetry groupDnh, , (*n22)
Surface area n ( a + b ) ( a b 2 cot π n ) 2 + h 2     +   n b 2 2 tan π n {\displaystyle {\begin{aligned}&n(a+b){\sqrt {\left({\tfrac {a-b}{2}}\cot {\tfrac {\pi }{n}}\right)^{2}+h^{2}}}\\&\ \ +\ n{\frac {b^{2}}{2\tan {\frac {\pi }{n}}}}\end{aligned}}}
Volume n a 2 + b 2 + a b 6 tan π n h {\displaystyle n{\frac {a^{2}+b^{2}+ab}{6\tan {\frac {\pi }{n}}}}h}
Dual polyhedronElongated bipyramids
Propertiesconvex

In geometry, an n-agonal bifrustum is a polyhedron composed of three parallel planes of n-agons, with the middle plane largest and usually the top and bottom congruent.

It can be constructed as two congruent frusta combined across a plane of symmetry, and also as a bipyramid with the two polar vertices truncated.

They are duals to the family of elongated bipyramids.

Formulae

For a regular n-gonal bifrustum with the equatorial polygon sides a, bases sides b and semi-height (half the distance between the planes of bases) h, the lateral surface area Al, total area A and volume V are: and A l = n ( a + b ) ( a b 2 cot π n ) 2 + h 2 A = A l + n b 2 2 tan π n V = n a 2 + b 2 + a b 6 tan π n h {\displaystyle {\begin{aligned}A_{l}&=n(a+b){\sqrt {\left({\tfrac {a-b}{2}}\cot {\tfrac {\pi }{n}}\right)^{2}+h^{2}}}\\A&=A_{l}+n{\frac {b^{2}}{2\tan {\frac {\pi }{n}}}}\\V&=n{\frac {a^{2}+b^{2}+ab}{6\tan {\frac {\pi }{n}}}}h\end{aligned}}} Note that the volume V is twice the volume of a frusta.

Forms

Three bifrusta are duals to three Johnson solids, J14-16. In general, a n-agonal bifrustum has 2n trapezoids, 2 n-agons, and is dual to the elongated dipyramids.

Triangular bifrustum Square bifrustum Pentagonal bifrustum
6 trapezoids, 2 triangles. Dual to elongated triangular bipyramid, J14 8 trapezoids, 2 squares. Dual to elongated square bipyramid, J15 10 trapezoids, 2 pentagons. Dual to elongated pentagonal bipyramid, J16

References

  1. "Octagonal Bifrustum". etc.usf.edu. Retrieved 2022-06-16.
  2. "Regelmäßiges Bifrustum - Rechner". RECHNERonline (in German). Retrieved 2022-06-30.
  3. "mathworld pyramidal frustum".
Convex polyhedra
Platonic solids (regular)
Archimedean solids
(semiregular or uniform)
Catalan solids
(duals of Archimedean)
Dihedral regular
Dihedral uniform
duals:
Dihedral others
Degenerate polyhedra are in italics.
Stub icon

This polyhedron-related article is a stub. You can help Misplaced Pages by expanding it.

Categories: